

Ad Hoc Stormwater, Wastewater and Water Citizens Advisory Committee Wednesday, February 10, 2021 - 6:00 PM Newberg City Hall 414 E First Street (teleconference meeting)

Join from a PC, Mac, iPad, iPhone or Android device: Please click this URL to join. <u>https://zoom.us/j/92307033576?pwd=V011VkovaG5mK085VDkxTldFWk8vQT09</u>

Or join by phone: Dial (for higher quality, dial a number based on your current location): +1 669 900 6833, +1 253 215 8782, +1 346 248 7799, +1 929 205 6099, +1 301 715 8592, +1 312 626 6799

> Webinar ID: 923 0703 3576 Passcode: 234549

Email any comments to Brett.Musick@newbergoregon.gov

I. CALL MEETING TO ORDER - 6:00 PM

II. ROLL CALL

Maryl KunkelBill RourkeCasey CreightonConnie WoodberryPeter SideriusDenise BaconJeremiah HortonLeonard RydellMike Gougler

III. NEW BUSINESS

- Water Master Plan Technical Update Presentation, Murrarysmith 6:15 PM to 7:00 PM
- **IV. OLD BUSINESS** 7:00 PM to 7:45 PM
 - Stormwater Policy Discussion, Committee
- V. PUBLIC COMMENTS 7:45 PM to 7:50 PM
- VI. ITEMS FROM STAFF 7:50 PM to 7:55 PM

ACCOMMODATION OF PHYSICAL IMPAIRMENTS: In order to accommodate persons with physical impairments, please notify the Engineering Department of any special physical or language accommodations you may need as far in advance of the meeting as possible, and no later than two business days prior to the meeting. To request these arrangements, please contact the Engineering Department at (503) 537-1273. For TTY services please dial 711.

VII. ITEMS FROM COMMITTEE MEMBERS – 7:55 PM to 8:00 PM

VIII. ADJOURNMENT

ACCOMMODATION OF PHYSICAL IMPAIRMENTS: In order to accommodate persons with physical impairments, please notify the Engineering Department of any special physical or language accommodations you may need as far in advance of the meeting as possible, and no later than two business days prior to the meeting. To request these arrangements, please contact the Engineering Department at (503) 537-1273. For TTY services please dial 711.

ENGINEERING SERVICES

P.O. Box 970 • 414 E. First Street • Newberg, Oregon 97132 • 503.537.1273 • Fax 503.537.1277

TO: AD HOC STORMWATER, WASTEWATER AND WATER CITIZENS **ADVISORY COMMITTEE**

FROM: **BRETT MUSICK, PE, SENIOR ENGINEER**

SUBJECT: CAC Meeting #3A - Water

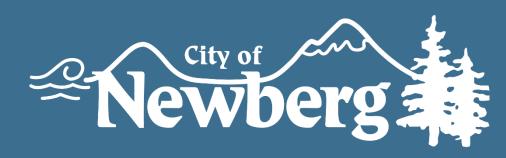
DATE: FEBRUARY 3, 2021

This memorandum is to provide a summary of materials in the meeting packet for the February 10, 2021 meeting of the Ad Hoc Stormwater, Wastewater and Water Citizens Advisory Committee. This is the second meeting related to water.

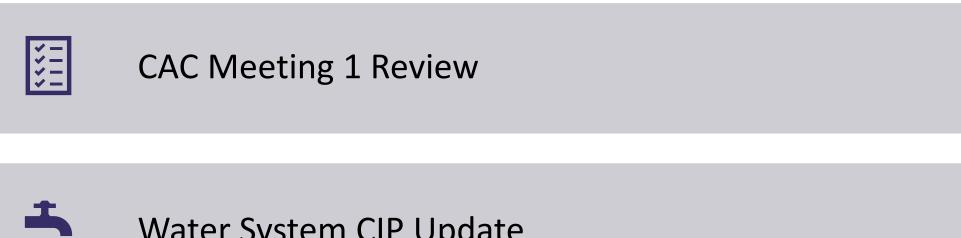
In addition to the Agenda, the meeting packet includes the following:

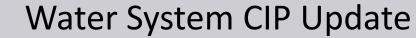
- New Business Item
 - Water Master Plan Technical Update Presentation, Murrarysmith 0
 - Water Master Plan Technical Update Memorandum with appendices for an Addendum 0

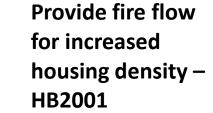
to the 2017 Water Master Plan


- Appendix A: IBTER Memo
- Appendix B: SDC Methodology
- Appendix C: Seismic Resilience Assessment Executive Summary without appendices. The full document with appendices is located on the City of Newberg website at:

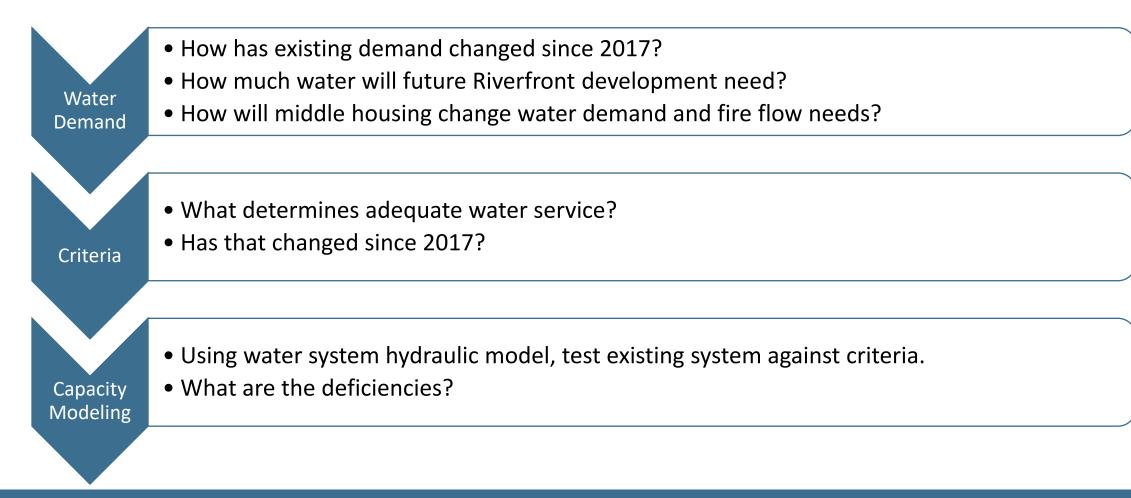
https://www.newbergoregon.gov/engineering/page/water-distributionsystem-master-plan

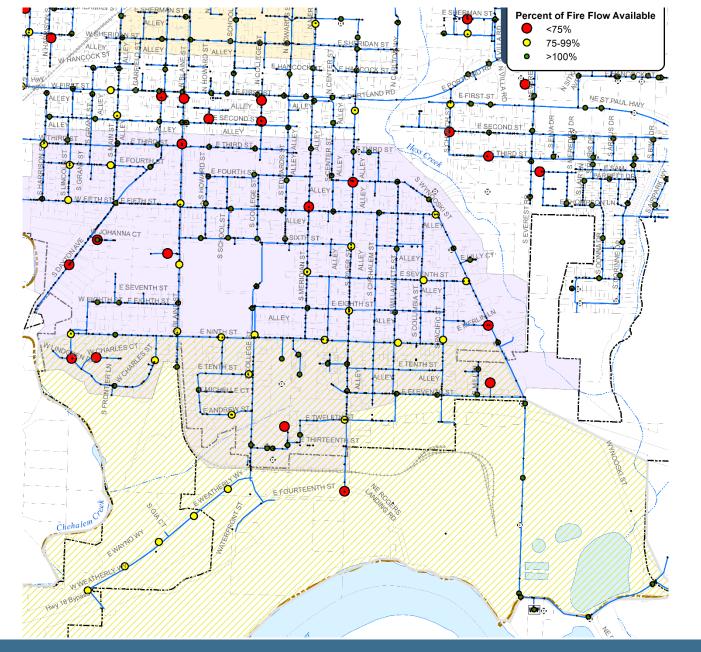

CAC Meeting 2 Water Master Plan Technical Update


Capital Improvement Program (CIP) and System Development Charge (SDC) methodology

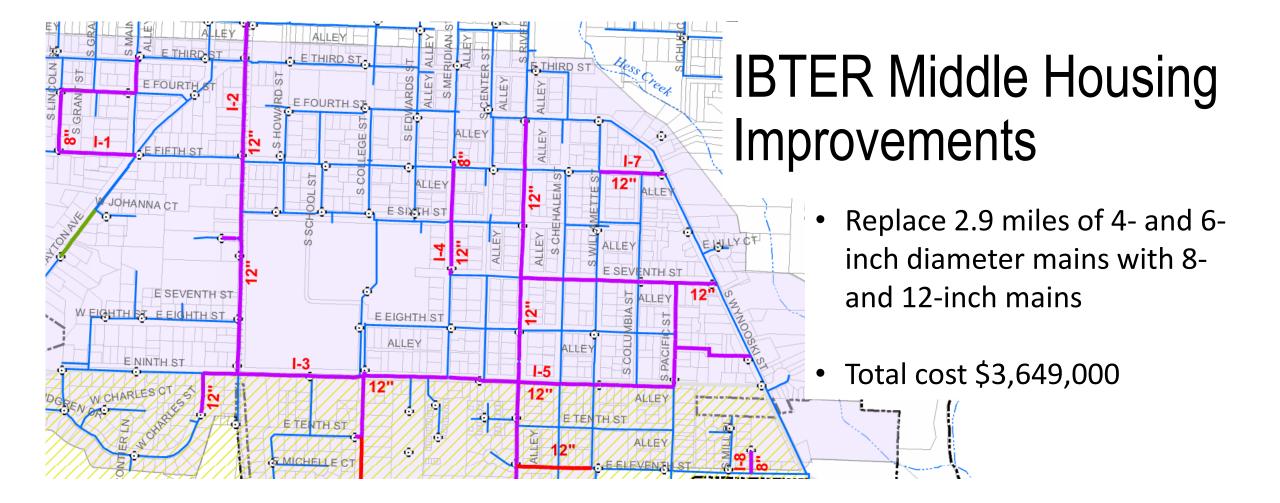


CAC 1 Review - Project Goals

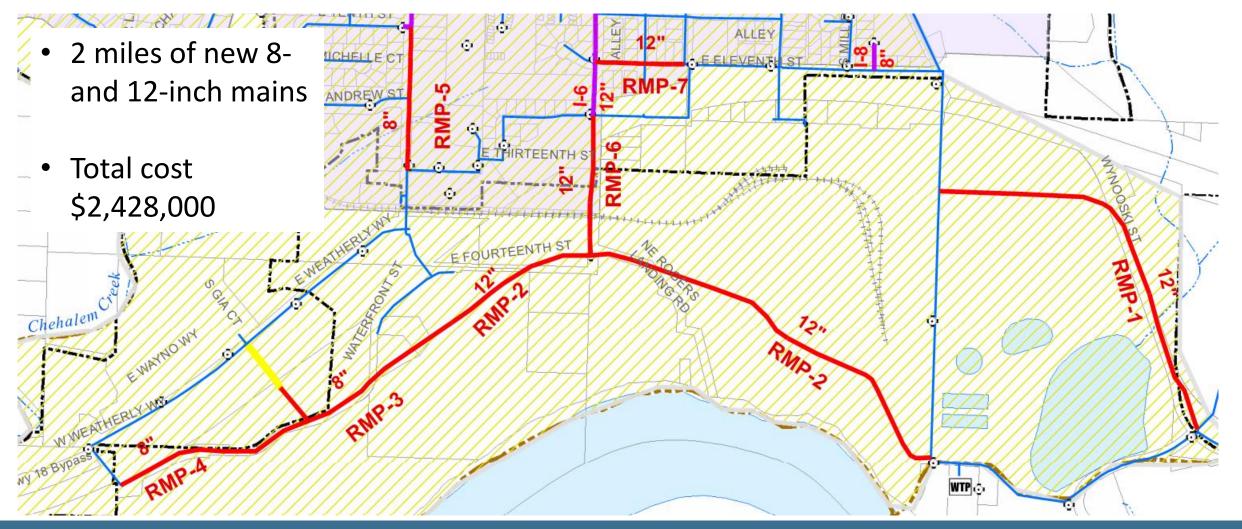

Add seismic resilience to the CIP Update system development charges (SDCs)


Support Urban Renewal program requirements

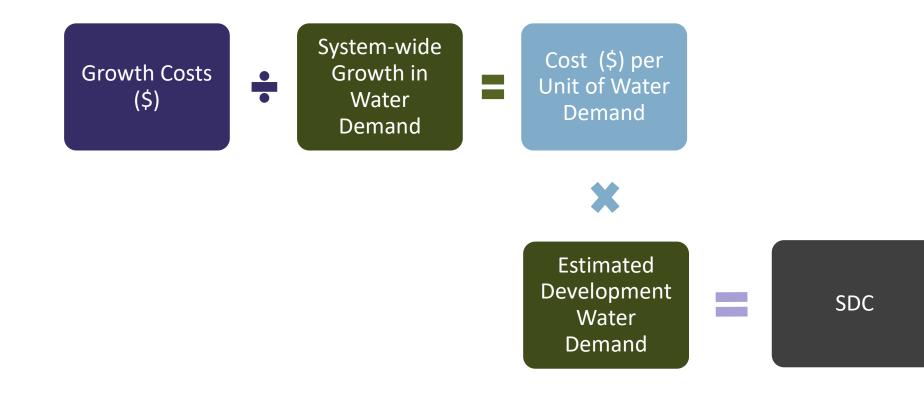
CAC 1 Review - Analysis Process



Fire Flow Analysis Results

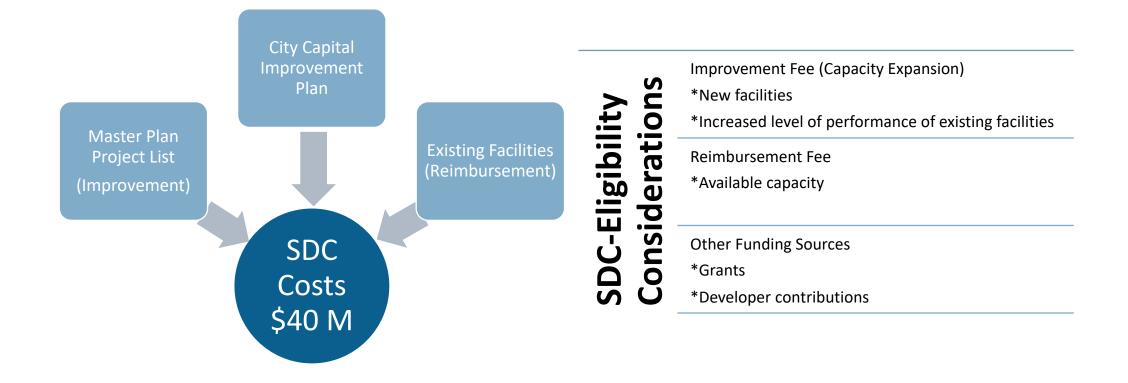

- Riverfront
 - Reduced fire flow in dead end mains
 - Future pipe looping improves available fire flow
- IBTER South of Downtown
 - Small diameter grid can't supply 2,000 gpm fire flow

Riverfront Improvements



Seismic Improvements

Project	Description		Estimated Cost	
Existing WTP Seismic Retrofit	Install ground improvements between WTP site and the Willamette shoreline to prevent lateral movement, strengthen structural components to withstand a CSZ \$		8,500,000	
Emergency Connection andAdd an emergency cross-connection and hydraulic control valves to isolate theControls at the WTPWTP during an earthquake		\$	500,000	
Improvements to Noth Valley Reservoirs	Add hydraulic control valves and replace a portion of the pipe at North Valley Water Storage Tanks	\$	1,050,000	
Cast Iron and Concrete Pipe Replacement – 20-year total	Replacement of more than 37,000 linear feet of old cast iron and concrete pipe	\$	1,500,000	
Seismic Resilience Planning and	d Studies			
Develop new engineering st	andards	\$	50,000	
Additional geotechnical investigations to define geohazards		\$	75,000	
Investigate specific structural recommendations at existing WTP and other City facilities			100,000	
Evaluate mitigation strategie	Evaluate mitigation strategies for raw water pipeline bridge			
	Total Cos	t	\$ 11,850,000	



Basic SDC Methodology

Determining Growth Costs for SDC

Summary of Growth SDC Costs

	City	SDC Share	
Description	Cost	%	\$
Supply			
Performance upgrades (capacity)	\$4,415,000	50%	\$2,185,692
Seismic resilience (replacement)	\$8,500,000	0%	\$0
Pumping & Storage			
Performance upgrades (capacity)	\$4,622,104	97%	\$4,491,904
Seismic resilience (replacement)	\$1,050,000	0%	\$0
Distribution			
Upsizing existing mains (capacity)	\$7,786,000	58%	\$4,504,687
New mains in Riverfront ¹	\$1,926,000	12%	\$237,204
Seismic resilience (replace/upsize)	\$1,500,000	6%	\$96,620
Main extensions	\$721,000	100%	\$721,000
Fixed base radio read	\$453,998	50%	\$224,756
High Elevation Infrastructure	\$5,962,000	97%	\$5,794,056
Planning	\$865,000	50%	\$434,286
Nonpotable Improvements	\$2,105,000	100%	\$2,105,000
Other	\$844,145	20%	\$168,829
Total	\$40,750,247	51%	\$20,964,034

¹ Net of assumed developer funding (8" equivalent cost)

SDC Unit Costs

2017

- Growth in Demand = 3.9 mgd
- Demand per EDU = 605 gpd

Calculations \$36.5 M / 3.9 mgd = \$9.4 M per mgd

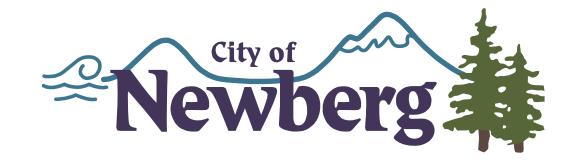
\$9.4 M * 0.000605 = \$5,703

2021

- Growth in Demand = 4.5 mgd
- Demand per EDU = 543 gpd

\$40.2 M / 4.5 mgd = \$8.9 M per mgd **\$8.9 M * 0.000453 = \$4,845**

mgd = million gallons per day; gpm = gallons per day; EDU = equivalent dwelling unit


Updated SDC Schedule

	Combined	Unit	SDC per EDU ²		
Description	Cost	Cost ¹	Potable	Nonpotable	
Supply	\$10,441,844	\$2,315,265	\$1,258	\$1,258	
Pump & Storage	\$7,352,828	\$1,630,339	\$886	\$0	
Delivery	\$15,901,177	\$3,525,760	\$1,916	\$1,916	
Upper Elevation Infrastructure	\$5,794,056	\$1,284,713	\$698	\$0	
Planning	\$434,286	\$96,294	\$52	\$52	
Other	\$293,728	\$65,128	\$35	\$35	
Total	\$40,217,920	\$8,917,499	\$4,845	\$3,261	

¹ Cost divided by 4.5 mgd

² Unit cost X 0.000543 mgd

Questions?

Technical Memorandum

Date:	February 2, 2021
Project:	Water Master Plan Technical Update
То:	Mr. Brett Musick, PE City of Newberg
From:	Heidi Springer, PE Murraysmith
Re:	Technical Update Addendum – Riverfront water demand, performance criteria review, distribution system analysis, IBTER analysis

Introduction and Purpose

The Newberg City Council accepted the 2019 Riverfront Master Plan (RMP) on September 16, 2019. The purpose of this Water Master Plan (WMP) Technical Update Addendum is to build on and refine the proposed water infrastructure identified in the RMP. The RMP identified various infrastructure improvements necessary to support the overall vision of the Riverfront area and the development and redevelopment opportunities.

Although refining the recommended Riverfront area infrastructure was the initial goal for this WMP Technical Update, the City also identified other water system analyses and recommended improvements since 2017 which are included in this update.

The 2020 Technical Update of the City of Newberg's (City's) 2017 Water Master Plan (WMP) focused on three key areas:

- 1. **Riverfront** update the 2017 WMP analysis, capital improvement program (CIP), and system development charge (SDC) methodology to include the Riverfront Master Plan (RMP) area
- 2. Seismic resilience update the 2017 WMP CIP and SDC methodology to include recommended improvements from the City's Seismic Resilience Assessment (SRA) (HDR, 2020)
- 3. **IBTER** evaluate the water system impact, if any, of potential increased density in two areas near downtown Newberg to support an Infrastructure Based Time Extension Request (IBTER) under Oregon House Bill 2001 Middle Housing implementation rules

Each of these analyses resulted in recommended changes to the City's water system CIP and impacts to the current water SDC. This memo documents the analyses, results, and recommendations including key assumptions. This technical memorandum is not intended to meet all State requirements for a WMP update rather to provide supporting analysis for an amendment to the 2017 WMP. The goal of this technical update is to assist the City in planning for adequate water infrastructure and SDCs to serve new development areas that were not included in the 2017 WMP and incorporate seismic resilience recommendations in the City's long-term water system planning.

Background

Riverfront

In 2019 the City accepted the Riverfront Master Plan (RMP), a re-development concept plan for a 450-acre area adjacent to the Willamette River at the southern end of Newberg's water service area. The RMP area includes the former WestRock mill site which was permanently closed in 2015 while the 2017 WMP project was in progress. At that time, the mill site and surrounding RMP area were outside of the city limits and the water service area.

The RMP includes proposed land use for the Riverfront area which is used in this technical update to estimate future water demand for the Riverfront. The RMP also includes high-level water system improvement recommendations to serve proposed land uses and potential development in the Riverfront area. This technical update implements the RMP recommendations by conducting analysis to refine the recommended infrastructure, such as, recommended water main size and incorporating this recommended infrastructure into the City's existing WMP CIP and SDC methodology.

Seismic Resilience

In accordance with utility planning guidelines in the Oregon Resilience Plan the City conducted a water system Seismic Resilience Assessment (HDR, 2020) to identify geohazards associated with a Cascadia Subduction Zone (CSZ) earthquake and possible impacts to vulnerable water system facilities from the CSZ. This technical update incorporates recommended capital improvements and recommendations for further evaluation of specific facilities from the City's SRA. This WMP technical update does not include any additional assessment of seismic geohazards or potential water facility vulnerabilities to seismic hazards.

IBTER

This technical update includes recommended capital improvements identified as part of the IBTER analysis. The details of the IBTER analysis are documented in a separate technical memorandum included as **Appendix A.** The IBTER analysis is an estimate of the impact of increased residential housing density on water system infrastructure in two areas of the City of Newberg. Increased housing density is anticipated as a result of 2019 Oregon legislation, House

Bill (HB) 2001 Missing Middle Housing, which requires updates to local laws throughout Oregon that currently limit the types of housing approved for construction in residentially zoned areas. The City will adopt regulations that will allow for the development of duplexes and other types of middle housing in areas zoned for residential development to comply with this legislation and address needed housing types for residents at all income levels.

The IBTER analysis documented in **Appendix A** was conducted to inform an Infrastructure-Based Time Extension Request (IBTER) as described in Oregon Administrative Rules (OARs) 660-046-0300 to 0370 which became effective August 7, 2020. An approved IBTER would grant the City additional time to comply with the requirements of HB 2001 Missing Middle Housing.

IBTER Study Areas

City staff identified two areas for infrastructure analysis to inform an IBTER:

- North of Downtown Newberg up to the rail line that runs through Newberg to Hess Creek (Appendix A, Figure 1)
- South of Downtown Newberg from the Chehalem Creek and railroad line intersection to the WestRock line and Hess Creek (Appendix A, Figure 2)

2017 WMP References

The City will complete an addendum to the 2017 WMP utilizing this Technical Update. To support this addendum, sections of the 2017 WMP which are impacted by analyses documented in this report are indicated in brackets throughout the text. Example: [Sect. 2, page 2-1]. Changes are summarized in **Table 8** at the end of this memo.

Water Demand Update

Water demand refers to all potable water required by the system including residential, commercial, industrial, and institutional uses. Potable water demands are described using three water use metrics, each stated in gallons per unit of time, such as, million gallons per day (mgd):

- average daily demand (ADD) the total annual water volume used system-wide divided by 365 days per year
- maximum day demand (MDD) the largest 24-hour water volume for a given year, occurs each year between July 1st and September 30th, historically about 2 times ADD in Newberg
- peak hour demand (PHD) the largest hour of demand on the maximum water use day, estimated as 1.7 times MDD

Water demand can be calculated using either water consumption or water production data. Water consumption data is taken from the City's customer billing records and includes all revenue

metered uses. Water production is measured as the water supplied to the distribution system from the City's Water Treatment Plant (WTP) plus the water volume supplied from distribution storage. Water production includes unaccounted-for water like water loss through minor leaks and unmetered, non-revenue uses, such as, hydrant flushing. For the purposes of this analysis, water production data is used to estimate current water demand.

Current Demand

Table 1 summarizes the City's current and historical system-wide water demand based on water production data from the WTP. [Table 2-1, page 2-3] As shown in **Table 1** Newberg's system-wide demand has remained steady over the last 10 years. In general, the City's per person water demand is declining with ADD growing approximately 7 percent and population growing 10 percent over the same period. Per person water demand is measured in gallons per capita per day (gpcd) and is used to correlate water demand with population for estimating future water demand.

Table 1

Current and Historical Water Demand

Year	Population	ADD		MDD	
Teal	Population	(mgd)	(gpcd)	(mgd)	(gpcd)
2010	22,110	2.23	101	4.84	219
2011	22,230	2.24	101	4.42	199
2012	22,300	2.27	102	4.76	213
2013	22,580	2.24	99	4.39	194
2014	22,765	2.31	101	4.43	194
2015	22,900	2.38	104	4.75	207
2016	23,465	2.34	100	Data not re	equested
2017	23,480	2.35	100	Data not re	equested
2018	23,795	2.39	100	4.72	198
2019	24,045	2.27	94	4.16	173
2020	24,120	2.34	97	4.60	191

1. Population estimates are from Portland State University Population Research Center (PSU PRC) 2019 annual report.

Estimated Future Demand

The 2017 WMP included estimated future water demand in 2035 based on anticipated population growth. Due to slower than anticipated growth since 2017, it is assumed that the 2035 water demand projection from the 2017 WMP is an adequate estimate of projected 20-year demand in 2041 within the current water service area.

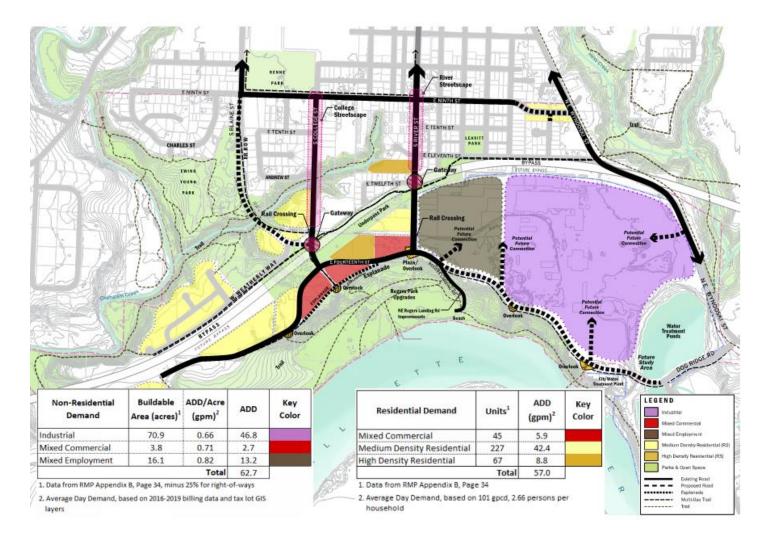
Riverfront

The Riverfront area was outside of the anticipated future water service area in the 2017 WMP, thus projected demand for this area must be added to projected 20-year demands from the 2017 WMP. Potential development in the Riverfront area is estimated based on anticipated land use described in the RMP Appendix C Preferred Alternative E. Future water demand is estimated by applying an average water use per acre (non-residential) or per unit (residential) based on 2019 City water billing records. **Figure 1** illustrates estimated water demand. **Table 2** summarizes projected 20-year water demand [Table 2-3, page 2-5] including the Riverfront area.

Projected demands presented in **Table 2** assume that all future Riverfront demand will be served from Pressure Zone 1 [Table 2-4, page 2-6], the Riverfront area will reach saturation development or build-out within 20 years (by 2041), and water use characteristics will resemble those of existing Newberg water customers. Projected demands do not explicitly include high water use industries, such as, food processing or semi-conductor manufacturing.

Table 2 Projected 20-year Water Demand

20-year Demand (mgd)	ADD	MDD	PHD
2035 Demand from 2017 WMP	3.89	7.78	13.23
Riverfront demand	0.17	0.34	0.58
2041 Projected Demand	4.06	8.12	13.80


Future Demand by Zone

As stated above, all future Riverfront water demand is anticipated to be served from Zone 1. Existing demand in Zone 2 is assumed to be approximately the same as existing Zone 2 presented in the 2017 WMP. Future Zone 2 and 3 water demands projected in the 2017 WMP to occur in 2035 are assumed to occur by 2041. Future water demands for Zones 2, 3, and 4 projected to occur beyond the 20-year planning horizon in the 2017 WMP, remain beyond the new 20-year planning horizon (2041) for this analysis. Existing, projected 20-year, and build-out demand is summarized in **Table 3** [Table 2-4, page 2-6]

Table 3 Projected Future Demand by Zone

Zone	Current (mgd)		2041 (mgd)		Build-out	(mgd)
	ADD	MDD	ADD	MDD	ADD	MDD
1	2.31	2.23	3.76	7.52	3.79	7.58
2	0.02	2.24	0.27	0.54	0.27	0.54
3	-	-	0.03	0.06	0.33	0.66
4	-	-	-	-	0.11	0.22
TOTAL	2.33	4.47	4.06	8.12	4.50	9.00

Figure 1 Estimated Water Demand – Future Riverfront Development

1. Basemapping and proposed zoning in Figure 1 taken from RMP Appendix C Preferred Alternative E.

Performance Criteria Review

Performance criteria defines water system operating standards, such as, service pressure and required supply or storage capacity. These criteria are used to evaluate the existing water supply and distribution system under existing and projected future water demand conditions. Criteria is also used to size proposed facilities to serve future growth or mitigate deficiencies in the existing water infrastructure. **Table 4** summarizes performance criteria from the 2017 WMP and proposed criteria for this WMP Technical Update [Sect. 3, Summary, page 3-8]. No changes were recommended to 2017 WMP performance criteria. Criteria was selected for required fire flow in unique Riverfront zoning designations.

Based on 2019 Oregon Fire Code (OFC) revisions, the City could elect less conservative required fire flow criteria for industrial, institutional, and hospitality zoned areas. The 2019 OFC Appendix B.105 sets a maximum required fire flow from any public water system at 3,000 gallons per minute (gpm) in areas with adequate and reliable water systems such as the City of Newberg. This 3,000 gpm requirement is less than the 4,500 gpm for this zoning documented in the 2017 WMP. Maintaining the more conservative fire flow criteria for these zoning designations did not increase the number of fire flow related CIP projects within the water service area.

Table 4Performance Criteria Comparison Summary

Water System Component	Evaluation Criterion	2017 WMP Value	2020 WMP Update Value	Design Standard/Guideline and Comments on Differences
Water Supply	MDD Supply under Firm Capacity Conditions	Largest well out of service; 1 transmission main out of service; One treatment train out of service; Largest high-service pump out of service	No change	Washington Water System Design Manual
Service Pressure	Normal Range, during ADD	40-80 psi	No change	City's 2015 Public Works <i>Design</i> and Construciton Standards, Oregon Plumbing Specialty Code
	Maximum, without PRV	80 psi	No change	Oregon Plumbing Specialty Code 608.2
	Minimum, during emergency or fire flow	20 psi	No change	OAR 333-061
	Minimum, during PHD ²	75% of normal, not less than 30 psi	No change	Murraysmith recommended
Distribution	Velocity during PHD or fire flow	Not to exceed 8 fps	No change	City's 2015 Public Works Design
Mains	Velocity during ADD	Not to exceed 5 fps	No change	and Construciton Standards
	Minimum Pipe Diameter	8-inch minimum for new, permanently dead-ended residential water mains and primary feeeder mains in residential areas	No change	-
Storage	Operational Storage	PHD for 2.5 hours with non- emergency pumps serving at full capacity	No change	Washington State Department of Health's <i>Water System Design</i> Manual
	Fire Storage	Flow times duration of most severe fire demand within each zone	No change	2019 Oregon Fire Code B106
	Emergency Storage	100% of MDD	No change	Murraysmith recommended (City has a single supply source)

Table 4 Performance Criteria Comparison Summary (continued)

Water System Component	Evaluation Criterion	2017 WMP Value	2020 WMP Update Value	Design Standard/Guideline and Comments on Differences
Required Fire Flow and Duration	Low Density - Single Family and Duplex Residential <= 3,600 sq ft	1,000 gpm for 2 hours	No change	
	Single Family and Duplex Residential >3,600 sq ft	1,500 gpm for 2 hours	1,500 gpm for 2 hours Possible increase, not selected 1,750 gpm for 2 hours	
	Medium Density Residential	1,500 gpm for 2 hours	Possible increase, not selected 2,000 gpm for 2 hours	 2014 Oregon Fire Code vs. 2019 Oregon Fire Code Appendix B, Insurance Services Office (ISO) Supply Oregoin Fire Dublic Dustaction
	High Density Residential	2,000 gpm for 3 hours	Possible increase, not selected 3,000 gpm for 3 hours	 Gradings for Public Protection Classification (PPC)
	Commerical	3,000 gpm for 3 hours	No change	_
	Industrial, Institutional, and Hospitality	4,500 gpm for 3 hours	Possible decrease, not selected 3,000 gpm for 3 hours	_
	Mixed Commercial (RMP)	-	2,000 gpm for 3 hours	Murraysmith recommended for new
	Mixed Employment (RMP)	-	3,000 gpm for 3 hours	land use designations in Riverfront area

Distribution System Analysis

The distribution system analysis is an evaluation of existing supply, finished water storage, and pumping facilities as well as distribution mains to determine if adequate capacity is available to meet the criteria defined in **Table 4** through the 20-year planning period. As previously described, projected 20-year (2041) water demands within the current water service area remain the same for this analysis as those projected in the 2017 WMP to occur in 2035. The new Riverfront area adds approximately 4 percent to the projected 20-year Zone 1 ADD for this WMP Technical Update. This minor increase in projected demand will not impact the City's Zone 1 storage or Zone 1 pumping capacity which is adequately sized for projected 20-year demands as concluded in the 2017 WMP [Sect 5, Tables 5-1 and 5-2]. Facilities recommended in the 2017 WMP to serve future growth in higher elevation Zones 2 and 3, such as the Bell Road Reservoir, are not impacted by this future Riverfront demand.

Supply

Capacity criteria documented in **Table 4** states that supply capacity must be equal to MDD. As shown in **Table 2**, projected 20-year MDD with the Riverfront area exceeds the current 8 mgd capacity of the City's WTP by 0.12 mgd. Although this indicates a supply deficiency in 20 years [Sect. 4, page 4-8], for a deficiency this small, approximately 1.5 percent of demand, it is recommended that the City manage this deficit through operational strategy rather than investing capital in constructing additional storage. This would mean using more depth in the City's existing Zone 1 storage reservoirs, North Valley and Corral Creek, to meet the small amount of demand that exceeds supply from the WTP on the 2 to 3 days of each year that system demand is expected to be over 8 mgd.

When considering an operational approach to offsetting projected future deficiencies it is also important to recognize the degrees of uncertainty involved in projecting future water demand. Planning for future water demand growth involves uncertainty in population and economic growth rates as well as customer water use volumes, conservation, and potential impacts from climate change. As growth continues in the City, projected growth rates and customer water use characteristics can be revised to represent trends more accurately at the time. As these projected demand revisions are completed, this operational strategy recommendation to address supply deficiencies should be revisited.

Distribution Mains

For the current analysis, distribution mains were evaluated using a hydraulic network analysis model developed and calibrated for the 2017 WMP. Capacity deficiencies and recommended improvements were the same as those identified in the 2017 WMP except for the Riverfront and IBTER areas. These results are as expected given the localized change in 20-year projected demand from the anticipated Riverfront development and increased fire flow requirements because of changes in zoning to accommodate future middle housing in the IBTER analysis areas. Analysis results and recommended improvements are documented in the following paragraphs. Proposed

Riverfront and IBTER piping improvement CIP projects are illustrated on **Figure 2** at the end of this memo and summarized in **Tables 5** and **6**.

Future Riverfront Distribution Mains

Distribution main alignments to serve future Riverfront development are based on proposed roadway alignments from the RMP and preliminary site plans from the Riverrun development on the north side of W Weatherly Way. Riverfront distribution mains are sized based on the projected 20-year demands summarized in **Table 2** and required fire flow based on proposed zoning from the RMP Appendix C Preferred Alternative E zoning as presented in **Table 4** and **Figure 1**.

Table 5

Proposed Riverfront Improvements

Project No.	Project Description	Est	imated Cost
RMP-1	Install 2,398 LF of 12-inch DI Pipe in Wynooski Street	\$	593,000
RMP-2	Install 3,368 LF of 12-inch DI Pipe in new Riverfront road	\$	832,000
RMP-3	Install 1,266 LF of 8-inch DI Pipe in Waterfront Street to (future) 8" crossing to Weatherly Way	\$	261,000
RMP-4	Install 1,163 LF of 8-inch DI Pipe in NE Waterfront St to new W Weatherly Way loop	\$	240,000
RMP-5	Install 834 LF of 8-inch DI Pipe in S College Street	\$	172,000
RMP-6	Install 812 LF of 12-inch DI Pipe in S River Street (south of the by-pass)	\$	201,000
RMP-7	Install 521 LF of 12-inch DI Pipe in E 11th Street	\$	129,000
	Total Cost	\$	2,428,000

1. All costs in 2020 dollars.

2. Includes: costs for fittings/valves and connections to existing services and hydrants; local street trench patch resurfacing; an allowance of 30% for construction contingency, 25% for engineering, permitting and inspection, and 1% for Oregon Corporate Activity Tax (applied to construction costs only)

3. Not included: whole or half street overlay cost; easement or property acquisition costs; City project management and administrative costs

IBTER Analysis

Consistent with IBTER state guidelines, local fire flow availability and service pressure resulting from potential increased density within the IBTER study areas were evaluated. The full IBTER analysis report is available in **Appendix A.** IBTER guidelines limit estimated housing unit growth due to HB 2001 to less than 3 percent. Increased water demand for such a small percent of residential growth has no impact on water system operating pressure.

Fire Flow Availability

Fire flow availability was tested at 2,000 gpm in the IBTER study areas consistent with high density residential required fire flow from **Table 4**. This 2,000 gpm fire flow may be conservative in some parts of the IBTER study areas where smaller structures with fewer units, like duplexes, are more likely to be developed. However, providing water infrastructure capable of supplying a 2,000 gpm fire flow allows the City to consider a broader range of middle housing options as HB 2001 zoning changes are evaluated.

Fire flow availability in the south IBTER study area is constrained by high pipe flow velocity. Adequate pressure is available to supply fire flow and maintain service pressures above 20 psi for public health. However, small diameter 4- and 6-inch pipe grids in the south study area create flow velocities over 20 feet per second (fps) during a fire flow event. Fire flow in the north study area is less constrained with 8-inch diameter well looped existing mains interconnected with the 18-inch diameter North Valley Reservoirs transmission main.

The primary concern with high pipe velocity is abrasion of the interior pipe coating, which can expose the pipe material to corrosion and lead to potential pipe failure. This is generally a greater concern when high flow velocity extends over a long period of time as part of normal system operation. In the case of a fire flow event, these high flow velocities are both infrequent and for a short time when they do occur. Thus, a pipe velocity higher than the 8 fps specified in **Table 4** may be acceptable, provided there is adequate available pressure to supply fire flow as is the case in Newberg's IBTER south study area. For the purposes of this analysis available fire flow in IBTER study areas is evaluated at a flow velocity of 14 fps.

Recommended Middle Housing (IBTER) Pipe Improvements

Eight significant pipe improvement projects are recommended for the south study area and one minor project is recommended for the north study area to provide adequate fire flows to potential higher density development. In the south, existing development is primarily served from a 4- and 6-inch diameter pipe grid. While a 6-inch diameter main can provide a 1,000 gpm single-family residential fire flow, a 6-inch diameter grid does not have adequate capacity to provide a 2,000 gpm multi-family residential fire flow.

Existing 6-inch diameter mains along key corridors in the south study area, including S College Street, S River Street, and E 9th Street, are recommended to be upsized to 12-inch diameter mains to provide a large diameter backbone for the area to meet 2,000 gpm fire flow requirements for potential higher density development. Additional looping is also recommended to connect larger diameter mains with the 18-inch diameter transmission main in Wynooski Street and for the W 4th Street neighborhood between Dayton Avenue and Hwy 99W.

Two areas in the southwest corner of the south study area cannot be supplied a 2,000 gpm fire flow without significant or total pipe replacement and upsizing. The first area is the S Charles Street loop, which is bordered by Chehalem Creek to the west making it difficult to loop with the water system outside of the south study area. The second area is between S College Street and S River

Street just north of the Newberg Dundee Bypass, which does not have an existing east-west rightof-way to provide additional looping. Rather than replacing these pipes in their current alignments, it is instead recommended that the City assess fire flow to these areas and potential distribution system looping along with future transportation projects associated with the Riverfront area, such as the extension of S Blaine Street south of Ewing Young Park and the extension of a future road across the former WestRock mill property connecting the area around the City's WTP and NE Rogers Landing Road.

Table 5

Proposed IBTER Improvements

Project No.	Project Description	Estimated Cost
I-1	Install 1,733 LF of 8-inch DI Pipe in S Main Street, W 4th Street, S Lincoln Street, and W 5th Street	\$ 357,000
I-2	Install 2,558 LF of 12-inch DI Pipe in S Blaine Street	\$ 633,000
I-3a	Install 28 LF of 8-inch DI Pipe in S College Street north of E 9th Street	\$ 6,000
I-3b	Install 2,934 LF of 12-inch DI Pipe in E 9th Street, Charles Street, and S College Street	\$ 725,000
I-4a	Install 42 LF of 8-inch DI Pipe in S Meridian Street north of E 5th Street	\$ 9,000
I-4b	Install 730 LF of 12-inch DI Pipe in S Meridian Street	\$ 181,000
I-5	Install 3,691 LF of 12-inch DI Pipe in E 7th Street, S Pacific Street, E 9th Street, and Paradise Drive	\$ 913,000
I-6	Install 2,736 LF of 12-inch DI Pipe in S River Street (north of the by-pass)	\$ 676,000
I-7	Install 453 LF of 12-inch DI Pipe in E 5th Street	\$ 112,000
I-8	Install 159 LF of 8-inch DI Pipe from E 11th Street to the Boston Square Apartments	\$ 33,000
I-9	Install 15 LF of 8-inch DI Pipe in Vermillion Street	\$ 4,000
	Total Cost	3,649,000

1. All costs in 2020 dollars.

 Includes: costs for fittings/valves and connections to existing services and hydrants; local street trench patch resurfacing; an allowance of 30% for construction contingency, 25% for engineering, permitting and inspection, and 1% for Oregon Corporate Activity Tax (applied to construction costs only)

3. Not included: whole or half street overlay cost; easement or property acquisition costs; City project management and administrative costs

Seismic Resilience

As of 2018, OARs governing WMPs require that water providers address seismic resilience in their WMPs. The City conducted a water system Seismic Resilience Assessment (SRA) in 2020 (HDR, 2020). The purpose of the SRA is to define seismic recovery goals for the City system, evaluate the expected performance of the water system during a CSZ earthquake, and identify recommended mitigation measures to address deficiencies.

Geohazards and System Vulnerability

The SRA included a review of the existing geologic and geotechnical conditions in Newberg's water service area to develop seismic ground motion, seismic hazard, and permanent ground deformation hazard maps. Water system components were compared against these seismic hazard maps showing peak ground velocity, probability of liquefaction, and landslide induced permanent ground deformation.

Based on the SRA, vulnerabilities were identified in the raw water pipeline bridge, the 30-inch raw water transmission main, the wellfield, and the WTP due to lateral spreading and soil liquefaction. In general, the SRA review of the WTP structures indicated that none meet either the structural or non-structural performance objectives outlined as part of the seismic recovery goals. The SRA noted that while the buildings will not withstand a CSZ event, the WTP site itself is not susceptible to a landslide into the adjacent Willamette River. The SRA states significant work is required at the WTP to meet recovery goals, and further evaluation is recommended to compare the cost of upgrading the WTP with building a new WTP. Follow-on analysis conducted after the SRA indicates retrofitting the WTP is the more cost-effective option for addressing these seismic vulnerabilities as presented in the seismic improvements **Table 6**.

The water distribution network is considered a lower priority for seismic resilience based on the seismic recovery goals established by the City in the SRA. Improvements are recommended in the SRA at system finished water reservoirs at the North Valley site to address hydraulic control and yard piping seismic vulnerabilities. Distribution backbone piping is also recommended for replacement with more seismically resilient materials.

Recommended Seismic Mitigation Projects

Table 6 summarizes projects recommended in the SRA to mitigate seismic vulnerabilities in the City's water facilities and water distribution backbone piping. The SRA provided a range of costs for mitigation projects as well as recommendations for additional studies needed to assess specific facilities. City staff provided final cost estimates for these projects to be included in the CIP.

Table 6 Proposed Seismic Resilience Improvements

Project	Description	Est Co:	imated st		
Existing WTP Seismic Retrofit	Install ground improvements between WTP site and the Willamette shoreline to prevent lateral movement, strengthen structural components to withstand a CSZ	\$	8,500,000		
Emergency Connection and Controls at the WTP	Add an emergency cross-connection and hydraulic control valves to isolate the WTP during an earthquake	\$	500,000		
Improvements to North Valley Reservoirs	Add hydraulic control valves and replace a portion of the pipe at North Valley Water Storage Tanks	\$	1,050,000		
Cast Iron and Concrete Pipe Replacement - 20 year total	Replacement of more than 37,000 linear feet of old cast iron and concrete pipe	\$	1,500,000		
Seismic Resilience Planning and Studies					
Develop new engineering standa	rds	\$	50,000		
Additional geotechnical investigations to define geohazards			75,000		
Investigate specific structural recommendations at existing WTP and other City facilities			100,000		
Evaluate mitigation strategies fo	r raw water pipeline bridge	\$	75,000		
	Total Cost	\$	11,850,000		

Capital Improvement Program Update

The 2017 WMP CIP project list [Table 7-5, page 7-11] was updated by:

- Removing completed projects
- Revising costs for projects with more refined City budgeted costs and adjusting for regional construction cost changes since 2017
- Adding proposed CIP projects for Riverfront, IBTER/middle housing areas, and seismic resilience as presented in Tables 4, 5, and 6

The proposed CIP for this WMP Technical Update is presented in **Table 7**.

Cost Estimates

An estimated cost has been developed for each recommended improvement project. For Riverfront and IBTER projects, new piping is assumed to be ductile iron pipe installed by private contractors. Seismic resilience improvement costs were taken from the SRA and refined as needed by City staff. Cost estimates represent opinions of cost only, acknowledging that final costs of individual projects will vary depending on actual labor and material costs, market conditions for construction, regulatory factors, final project scope, project schedule and other factors. The Association for the Advancement of Cost Engineering International (AACE) classifies cost estimates depending on project definition, end usage, and other factors. The cost estimates presented here are considered Class 4 with an end use being a study or feasibility evaluation and an expected accuracy range of -30 percent to +50 percent. As the project is better defined, the accuracy level of the estimates can be narrowed.

Since construction costs change periodically, an indexing method to adjust present estimates in the future is useful. The Engineering News-Record (ENR) Construction Cost Index (CCI) is a commonly used index for this purpose. For purposes of future cost estimate updating, the ENR CCI for Seattle, Washington for these estimates is 12,771.70 (September 2020).

System Development Charges (SDCs)

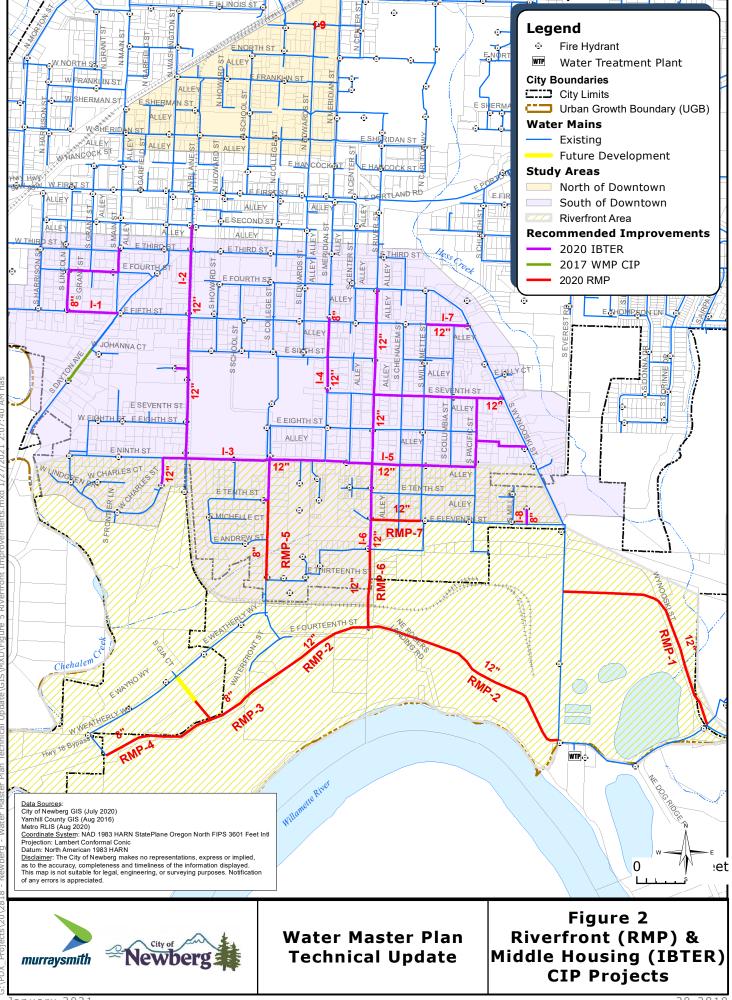
An evaluation of SDCs in support of the proposed water system CIP was conducted as part of this WMP Technical Update. A description of SDCs, their role in funding capital projects, and the revised SDC Methodology is presented in **Appendix B**.

Cost Allocation to Growth

CIP costs are allocated to growth based on a percentage of benefit to existing and future (growth) customers. This percentage can be determined as a ratio of existing to future demand or a ratio of facility capacity needed to serve existing and future customers. For instance, in the Riverfront area, an existing 6-inch main may be adequate to provide flow to existing development where planned future development will require an 8-inch main to provide adequate fire flow. The allocation to growth in this case is only for the portion of the new main which is larger than the existing 6-inch, sometimes called the oversizing capacity. A percent allocation to growth is calculated as a ratio of the flow capacity of 6-inch to an 8-inch main.

Cost allocations to growth are listed for each project in the CIP **Table 7**, growth share percentages common to several CIP projects are described briefly as:

- 49.5% performance improvement, benefits all customers equally, calculated as a ratio of existing to future MDD including urban growth boundary and urban reserve areas developing beyond 20 years
- 97.3% improvements which benefit upper pressure zone customers (above Zone 1), calculated as a ratio of existing to future upper zone MDD, existing Oak Knoll neighborhood demand is the only existing upper zone demand
- 45% and 75% growth shares based on flow capacity differences between existing 4- and 6inch diameter mains and proposed 8- and 12-inch diameter mains, see Riverfront example in the preceding paragraph


Table 7

Capital Improvement Program (CIP)

Improvement Category	Project No.	. Project Title		5-year 11 to 2026		CIP Cost S 5 to 10-year 027 to 2031	ummary ¹ 10 to 20-year 2032 to 2041	20-year TOTAL	Purpose	% Allocated to Growth
Supply		2 mgd redundant supply development	\$	3,915,000				\$ 3,915,000	Resilience	49.5%
		Seismic resilience - add emergency conection and controls at existing WTP	\$	500,000				\$ 500,000	Resilience	49.5%
		Seismic resilience - existing WTP seismic upgrade			\$	8,500,000		\$ 8,500,000	Resilience, replacement of existing, not SDC eligible	0%
		Supply Subtotal	\$	4,415,000	\$	8,500,000	\$-	\$ 12,915,000	Resilience, replacement	
Storage Reservoirs		Seismic resilience - North Valley Reservoirs hydraulic control valves and site piping improvements			\$	1,050,000		\$ 1,050,000	of existing, not SDC eligible	0%
Pump Stations	P-1	Storage Subtotal Bell East Pump Station - Zone 3 constant pressure	\$ \$	- 2,605,000	\$	1,050,000	•	\$ 1,050,000 \$ 2,605,000	Growth, Reliability	97.3%
	P-2	Rell West Pump Station - Zone 2 constant pressure:	\$	2,017,104				\$ 2,017,104	Growth, Reliability	97.3%
		Pump Stations Subtotal	\$	4,622,104	\$	- 5	\$-	\$ 4,622,104		
		, Upsize existing mains and construct new distribution loops to improve fire flow capacity	\$	2,085,000	\$	569,000		\$ 2,654,000	Improve level of service - Zone 1	41.3%
	M-9	NE Zimri Drive Zone 3 distribution backbone within UGB	\$	413,000				\$ 413,000	Growth, reliability - Zone 2 and 3	97.3%
	M-19	Chehalem Drive water system extension north to Columbia Drive			\$	721,000		\$ 721,000	Service area extension	100%
	M-20	ODOT 219/N College Street - waterline relocation and valves	\$	568,000				\$ 568,000	ODOT requirement/ system maintenance	10%
	I	IBTER Fire Flow improvements for increased housing density	ty					\$ 3,649,000	,	
	I-1	Upsize existing 6-inch mains to 8-inch mains on S Main, S Lincoln, W 4th, W 5th Streets					\$ 357,000	\$ 357,000	Growth, upsize existing	45%
	I-2	Upsize existing 4- and 6-inch mains to 12-inch mains on S Blaine Street			\$	633,000		\$ 633,000	Growth, upsize existing	77%
	I-3a	Upsize existing 6-inch main to 8-inch main in S College Street north of E 9th Street			\$	6,000		\$ 6,000	Growth, upsize existing	45%
	I-3b	Upsize existing 6-inch mains to 12-inch mains in E 9th Street, Charles Street, and S College Street			\$	725,000		\$ 725,000	Growth, upsize existing	75%
	I-4a	Upsize existing 6-inch main to 8-inch main in S Meridian					\$ 9,000	\$ 9,000	Growth, upsize existing	45%
	I-4b	Street north of E 5th Street Upsize existing 6-inch main to 12-inch main in S Meridian					\$ 181,000	\$ 181,000	Growth, upsize existing	75%
Distribution Mains ³		Street Upsize existing 4- and 6-inch mains to 12-inch mains in E					Ŷ)0000	÷,		
Mains	I-5	7th Street, S Pacific Street, E 9th Street, and Paradise Drive Upsize existing 6-inch mains to 12-inch mains in S River	\$	913,000				\$ 913,000	Growth, upsize existing	77%
	I-6	Street (north of the by-pass)			\$	676,000		\$ 676,000	Growth, upsize existing	75%
	I-7	Upsize existing 6-inch mains to 12-inch mains in E 5th Street					\$ 112,000	\$ 112,000	Growth, upsize existing	75%
	I-8	Upsize existing 6-inch main to 8-inch main from E 11th Street to the Boston Square Apartments					\$ 33,000	\$ 33,000	Growth, upsize existing	45%
	1-9	Upsize existing 6-inch main to 8-inch main in Vermillion Street					\$ 4,000	\$ 4,000	Growth, upsize existing	45%
	RMP	Riverfront area improvements						\$ 2,428,000	Countly Zone 1 and	
	RIVIP-1 thru 4	New water mains to serve future development in Riverfront area			\$	963,000	\$ 963,000	\$ 1,926,000	Growth, Zone 1 not currently served	
	RMP-5	Upsize existing 6-inch S College St main to 8-inch main to serve future Riverfront development Upsize existing 6-inch River and 11th St mains to 12-inch			\$	172,000		\$ 172,000	Growth, upsize existing	45%
	RMP-6, 7	mains to serve future Riverfront development (south of the by-pass)			\$	330,000		\$ 330,000	Growth, upsize existing	75%
		Seismic resilience - cast iron and concrete pipe replacement			\$	500,000	\$ 1,000,000	\$ 1,500,000	Resilience	
		Routine Main Replacement Program Distribution Mains Subtotal	\$ \$	875,500 4,854,500		1,000,000 \$			Asset renewal, reliability	0%
Future High Elevation Water Infrastructure	R-1	1.7 MG Bell Road Reservoir - Zone 3			Ţ		\$ 2,886,000		Growth, reliability	97.3%
	M-16	Zimri Drive East transmission main to Bell Road Reservoir				9	\$ 1,606,000	\$ 1,606,000	Growth, reliability	97.3%
	M-17	Bell Road west transmission main - N College Street to Zimri Drive					\$ 1,470,000	\$ 1,470,000	Growth, reliability	97.3%
		<i>Zone 2, 3, 4 Infrastructure Subtotal</i> Water Management & Conservation Plan update	\$	-	\$ \$	- 9		\$	Requirement	49.5%
Planning		Water Management & Conservation Plan update Water Master Plan update			ڔ		\$ 300,000	, ,	Requirement	49.5% 49.5%
		AWIA Risk & Resilience Assessment Seismic resilience planning	\$	103,000				\$ 103,000	Requirement	49.5%
		Develop new engineering standards			\$	50,000		\$ 50,000	Resilience	49.5%
		Additional geotechnical investigations to define geohazards			\$	75,000		\$ 75,000	Resilience	49.5%
		Investigate specific structural recommendations at existing WTP and other City facilities			\$	100,000		\$ 100,000	Resilience	49.5%
		Evaluate mitigation strategies for raw water pipeline bridge			\$	75,000		\$ 75,000	Resilience	49.5%
		priage Planning Subtotal	\$	103,000	\$	450,000	\$ 300,000	\$ 853,000		
Other		Fixed base automatic meter reading infrastructure (AMI)	\$	453,998				\$ 453,998	Efficiency	49.5%
		North non-potable water line and Otis Springs pumping improvements			\$	2,105,000		\$ 2,105,000	Non-potable system growth	100%
			\$	844,145				\$ 844,145	ຮູເວທີແມ	20%
		Other Subtotal	\$	453,998		2,105,000	\$-	\$ 3,403,143		
		CIP Total	\$	14,448,602	\$	18,400,000	\$ 10,921,000	\$ 44,613,747		

Table 8 2017 WMP References

Technical Update memo	2017 WMP Report Section		
page or reference	Section or reference	Page	Description
Table 1	Table 2-1	2-3	Historical Water Demand Summary - add data through 2020
Table 2	Table 2-3	2-5	Future Water Demand Summary - update 2035 to 2041, add Riverfront
Table 3, Page 5 Riverfront	Table 2-4	2-6	Future Water Demand by Pressure Zone - update Zone 1, all Riverfront demand is in Zone 1
Table 4	Section 3	3-8	Criteria summary - add recommended fire flow for new Riverfront zoning designations
Page 10 Supply	Section 4	4-8	Treatment capacity summary text - update with projected 20-year demands and operational strategy to address deficiency
Page 10 Distribution System Analysis	Table 5-1 & 5-2	5-5	Storage and pumping analysis tables - update Zone 1 required capacity based on change in 20-year demand with Riverfront, no impact to capacity
Table 7	Table 7-5	7-11	CIP Table - replace with updated
Appendix B	Appendix D		Water SDC Methodology - replace with updated

XC

Technical Memorandum

Date:	October 30, 2020
Project:	Newberg Water Master Plan (WMP) Technical Update
То:	Brett Musick, P.E. City of Newberg Engineering
From:	Heidi Springer, P.E. Murraysmith
Re:	Water system analysis results to inform Infrastructure Based Time Extension Request (IBTER) for Oregon House Bill 2001 (HB 2001) Missing Middle Housing
	This project is funded by Oregon general fund dollars through the Department of Land Conservation and Development. The contents of this document do not necessarily reflect the views or policies of the State of Oregon.

Introduction and Purpose

This memo documents an analysis of the estimated impact of increased residential housing density on water system infrastructure in two areas of the City of Newberg (City). Increased housing density is anticipated as result of 2019 Oregon legislation, House Bill (HB) 2001 Missing Middle Housing, which requires updates to local laws throughout Oregon that currently limit the types of housing approved for construction in residentially zoned areas. The City will adopt regulations that will allow for the development of duplexes and other types of middle housing in areas zoned for residential development to comply with this legislation and address needed housing types for residents at all income levels.

This analysis was conducted to inform an Infrastructure-Based Time Extension Request (IBTER) as described in Oregon Administrative Rules (OARs) 660-046-0300 to 0370 which became effective August 7, 2020. An approved IBTER would grant the City additional time to comply with the requirements of HB 2001 Missing Middle Housing.

IBTER Study Areas

City staff identified two areas for infrastructure analysis to inform an IBTER:

- North of Downtown Newberg up to the rail line that runs through Newberg to Hess Creek (Figure 1)
- South of Downtown Newberg from the Chehalem Creek and railroad line intersection to the WestRock line and Hess Creek (Figure 2)

Water System Background

The existing Newberg water system is served almost entirely as a single pressure zone, Zone 1. Both IBTER study areas are in Zone 1. Zone 1 customers receive pressure from three finished water storage reservoirs, North Valley Reservoirs 1 and 2 north of downtown and Corral Creek Reservoir east of downtown. These reservoirs are filled through the distribution system pipe network by pumps at the City's Water Treatment Plant on the Willamette River near the former WestRock mill site. The WTP is supplied by the City's wellfield on the south side of the Willamette River across from the WTP.

In general, the City's distribution system runs at relatively high pressures with most customers receiving near 80 pounds per square inch (psi), which is the Oregon Plumbing Code service pressure maximum.

The City adopted the current Water Master Plan (WMP) in 2017. The current WMP identifies a single distribution main capital improvement program (CIP) project within the IBTER south study area, replacement of a 4-inch diameter main on Dayton Avenue to meet fire flow criteria (WMP CIP M-2).

Water System Hydraulic Analysis

Consistent with IBTER state guidelines, the following analysis considers fire flow availability and service pressure impacts, if any, resulting from increased density within the IBTER study areas. Required fire flow by land use type and acceptable service pressure ranges in the distribution system are as established in the 2017 WMP and summarized in the following paragraphs.

IBTER guidelines specify that only localized utility impacts, not system-wide impacts, should be evaluated in support of an IBTER, thus a Zone 1 storage and system-wide supply analysis are not examined in detail. In general, the City's existing Zone 1 storage and supply facilities have adequate surplus capacity, therefore a short-term storage or supply impact is not expected from increased density in these limited areas. Impacts to the distribution system piping to meet fire flow and pressure criteria are understood to be only those improvements needed beyond what was recommended in the 2017 WMP, WMP CIP M-2.

A distribution system analysis was conducted using a steady-state hydraulic network analysis model developed and calibrated with field flow testing data for the 2017 WMP.

Water Demand

Water demands can be estimated using either water consumption billed to customers or finished water production recorded at the WTP. For planning purposes, water consumption from billing records is used to assign water use geographically throughout the water system model based on service address. However, water consumption data does not capture non-revenue water, such as minor leaks and maintenance uses like hydrant flushing for water quality. To account for non-revenue water uses, distributed demands by customer service address are scaled up in the model to match water produced by the WTP. This approach effectively distributes non-revenue water evenly throughout the distribution system.

Water Demand Metrics

Water demand is described using two metrics:

- Average Daily Demand (ADD) the total water production for a given year divided by 365 days
- Maximum Day Demand (MDD) the largest calendar day (24 hours) water production for a given year; in Newberg and western Oregon, maximum day demand occurs between July 1 and September 30th each year (this is referred to as the peak season)

Demand per Dwelling Unit

In systems with primarily residential demands like Newberg, it can be useful to estimate a demand per person per day measured in gallons per capita day (gpcd). This is estimated as system-wide ADD divided by the water service area population. This per capita demand implicitly includes all non-residential water system demands and can be used to forecast future water demands based on population growth or new residential unit construction. **Table 1** summarizes estimated demand per dwelling unit based on historical WTP production records, Newberg population estimates from the Portland State University Population Research Center (PSU PRC), and a 2.66 average number of persons per dwelling unit from US Census data. MDD is approximately two times ADD, consistent with the 2017 WMP.

Table 1 Average Water Demand per Dwelling Unit

Year	ADD (mgd)	Population	ADD/person (gpcd)	ADD/unit (gpd)	MDD/unit (gpd)
2016	2.35	23,465	100	266	532
2017	2.35	23,480	100	266	532
2018	2.39	23,795	101	269	538
2019	2.27	24,045	94	250	500
Ave	rage ADD and MD	D per Unit in gallor	ns per day (gpd)	263	526

Estimated Growth from Increased Density due to Middle Housing

Per state IBTER guidelines in OAR 660-046-0320 and 330, the City may consider a one percent growth rate for infill development in the IBTER study areas. The City may consider a three percent growth rate for any properties considered un- or underdeveloped. Underdeveloped is defined in the OARs as a larger than one-half acre parcel zoned for detached single-family housing which has an existing density of less than or equal to two units per acre.

City Planning staff provided detailed parcel information for each area and identified parcels which may be considered underdeveloped. Estimated growth in dwelling units for the IBTER study areas based on this parcel data and the OAR guidelines is summarized in Table 2.

Table 2 **Estimated Dwelling Unit Growth**

		Existing Units		Infill Growth Units	Redevelopment Growth Units
IBTER Area	Developed Parcels	Underdeveloped Parcels	TOTAL Existing Units	(1% for existing developed)	(3% for existing underdeveloped)
South of Newberg	1,485	36	1,521	18	3
Single Family	879	35	914	9	2
Multi Family	428	-	428	5	-
Duplex	125	1	126	2	1
Triplex	21	-	21	1	-
Fourplex	32		32	1	-
North of Newberg	176		176	3	
Single Family	170	-	170	2	-
Multi Family	-	-	-	-	-
Duplex	6	-	6	1	-
	тс	TAL Existing Units	1,697	TOTAL Growth	24

Estimated Study Area Demand

Current demand and estimated demand with middle housing growth for the IBTER study areas is summarized in **Table 3**. Current ADD was estimated based on geographic assignment of 2015 billing records in the hydraulic model for the 2017 WMP and 2019 City WTP production. As shown in **Table 1**, ADD has remained relatively constant since 2016.

Table 3 IBTER Study Area Demand Summary

_	Current Dema	nd (gpd)	Estimated Deman housing grow	
Area	ADD	MDD	ADD	MDD
South of Downtown	336,240	672,480	341,763	683,526
North of Downtown	52,070	104,141	52,859	105,719

Distribution System Performance Criteria

System performance was evaluated using pressure, pipe velocity, and required fire flow criteria established in the 2017 WMP and summarized in **Table 4**.

Table 4 Distribution Performance Criteria

Water System Component	Evaluation Criterion	2017 WMP Value	Design Standard/Guideline
Service Pressure	Normal Range, during ADD	40-80 psi	City's 2015 Public Works Design and Construction Standards
	Maximum, without PRV	80 psi	Oregon Plumbing Specialty Code 608.2
	Minimum, during emergency or fire flow	20 psi	OAR 333-061
Distribution	Velocity during fire flow	Not to exceed 8 fps	City's 2015 Public Works Design and
Mains	Velocity during ADD	Not to exceed 5 fps	Construction Standards
Required Fire Flow and Duration	Low Density – Single-Family and Duplex Residential <= 3,600 sq ft	1,000 gpm for 2 hours	Oregon Fire Code
	Single-Family and Duplex Residential >3,600 sq ft	1,500 gpm for 2 hours	
	Medium Density Residential	1,500 gpm for 2 hours	
	High Density Residential	2,000 gpm for 3 hours	
	Commercial	3,000 gpm for 3 hours	
	Industrial, Institutional, and Hospitality	4,500 gpm for 3 hours	-

Assumptions and Modeling Conditions

For the purposes of this analysis, it is assumed that all Zone 1 reservoirs are operating approximately three-quarters full and the WTP is not actively pumping to fill storage reservoirs.

Analysis Findings and Distribution System Constraints

Service Pressure

Modeled main line pressures under MDD conditions in the IBTER south area are between approximately 90 and 100 psi. Pressures in the north study area range between approximately 80 and 90 psi. These mainline pressure ranges remain the same with the approximately two percent increase in water demand generated by potential middle housing increased density.

Fire Flow Availability

Fire flow availability was tested at 2,000 gallons per minute (gpm) consistent with high density residential required fire flow from Table 4. This 2,000 gpm fire flow may be conservative in some parts of the IBTER study areas where smaller structures with fewer units, like duplexes, are more likely to be developed. However, providing water infrastructure capable of supplying a 2,000 gpm fire flow allows the City to consider a broader range of middle housing options as HB 2001 zoning changes are evaluated.

Fire flow availability in the south IBTER study area is constrained by high pipe flow velocity. Adequate pressure is available to supply fire flow and maintain service pressures above 20 psi for public health. However, small diameter 4- and 6-inch diameter pipe grids in the south study area create flow velocities over 20 feet per second (fps) during a fire flow event. Fire flow in the north study area is less constrained with 8-inch diameter well looped existing mains interconnected with the 18-inch diameter North Valley Reservoirs transmission main.

The primary concern with high pipe velocity is abrasion of the interior pipe coating, which can expose the pipe material to corrosion and lead to potential pipe failure. This is generally a greater concern when high flow velocity extends over a long period of time as part of normal system operation. In the case of a fire flow event, these high flow velocities are both infrequent and for a short time when they do occur. Thus, a pipe velocity higher than the 8 fps specified in **Table 4** may be acceptable, provided there is adequate available pressure to supply fire flow as is the case in Newberg's IBTER south study area. According to information from the Ductile Iron Pipe Research Association (DIPRA), 14 fps is a conservative maximum pipe velocity based on satisfactory historical performance of cement mortar lined ductile iron pipe. For the purposes of this analysis available fire flow is evaluated at a flow velocity of 14 fps.

Figure 3 at the end of this memo illustrates available fire flow in the north and south IBTER study areas with existing water mains under max day demand conditions and with a maximum flow velocity of 14 fps.

Recommended Improvements

Eight significant pipe improvement projects are recommended for the south study area and one minor project is recommended for the north study area to provide adequate fire flows to potential higher density development. In the south, existing development is primarily served from a 4- and 6-inch diameter pipe grid. While a 6-inch diameter main can provide a 1,000 gpm single-family residential fire flow, a 6-inch diameter grid is inadequate to provide a 2,000 gpm multi-family residential fire flow.

Existing 6-inch diameter mains along key corridors in the south study area, including S College Street, S River Street, and E 9th Street, are recommended to be upsized to 12-inch diameter mains to provide a large diameter backbone for the area to meet 2,000 gpm fire flow requirements for potential higher density development. Additional looping is also recommended to connect larger diameter mains with the 18-inch diameter transmission main in Wynooski Street and for the W 4th Street neighborhood between Dayton Avenue and Hwy 99W.

Two areas in the southwest corner of the south study area cannot be supplied a 2,000 gpm fire flow without significant or total pipe replacement and upsizing. The first area is the S Charles Street loop, which is bordered by Chehalem Creek to the west making it difficult to connect to the water system outside of the south study area. The second area is between S College Street and S River Street just north of the Newberg Dundee Bypass, which does not have an existing east-west right-of-way to provide additional looping. Rather than replacing these pipes in their current alignments, it is instead recommended that the City assess fire flow to these areas and potential distribution system looping along with future transportation projects associated with the Riverfront area, such as the extension of S Blaine Street south of Ewing Young Park and the extension of a future road across the former WestRock mill property connecting the area around the City's WTP and NE Rogers Landing Road.

Figure 4 at the end of this memo illustrates recommended pipe improvement projects.

Cost Estimates

An estimated cost has been developed for each recommended piping improvement project. New piping is assumed to be ductile iron pipe installed by private contractors.

Cost estimates represent opinions of cost only, acknowledging that final costs of individual projects will vary depending on actual labor and material costs, market conditions for construction, regulatory factors, final project scope, project schedule and other factors. The Association for the Advancement of Cost Engineering International (AACE) classifies cost estimates depending on project definition, end usage, and other factors. The cost estimates presented here are considered Class 4 with an end use being a study or feasibility evaluation and an expected accuracy range of -30 percent to +50 percent. As the project is better defined, the accuracy level of the estimates can be narrowed.

Since construction costs change periodically, an indexing method to adjust present estimates in the future is useful. The Engineering News-Record (ENR) Construction Cost Index (CCI) is a commonly used index for this purpose. For purposes of future cost estimate updating, the current ENR CCI for Seattle, Washington is 12,771.70 (September 2020).

Recommended improvements and estimated costs are summarized in Table 5.

Table 5 Recommended Improvements

Project No.	Project Description	Estimated Project Cost ¹⁻⁶
I-1	Install 1,733 LF of 8-inch DI Pipe in S Main Street, W 4th Street, S Lincoln Street, and W 5th Street	\$486,000
I-2	Install 2,558 LF of 12-inch DI Pipe in S Blaine Street	\$812,000
I-3	Install 2,962 LF of 8- and 12-inch DI Pipe in E 9th Street, Charles Street, and S College Street	\$1,756,000
I-4	Install 772 LF of 8- and 12-inch DI Pipe in S Meridian Street	\$440,000
I-5	Install 3,691 LF of 12-inch DI Pipe in E 7th Street, S Pacific Street, E 9th Street, and Paradise Drive	\$1,167,000
I-6	Install 2,736 LF of 12-inch DI Pipe in S River Street	\$868,000
I-7	Install 453 LF of 12-inch DI Pipe in E 5th Street	\$148,000
I-8	Install 159 LF of 8-inch DI Pipe from E 11th Street to the Boston Square Apartments	\$49,000
I-9	Install 15 LF of 8-inch DI Pipe in Vermillion Street	\$11,000
	Total Cos	t \$5,737,000

Notes:

- 1. All costs are in 2020 dollars
- 2. Includes costs for fittings/valves and connections to existing services and hydrants
- 3. Includes local street trench patch resurfacing; whole or half street overlays are not included
- 4. Includes an allowance of 30% for construction contingency, 25% for engineering, permitting and inspection, and 1% for Oregon Corporate Activity Tax (applied to construction costs only)
- 5. Easement and right-of-way costs are not included
- 6. City project management and administrative costs are not included

Figure 1: North of Downtown Newberg

Figure 2: South of Downtown Newberg

Methodology Report

Water System Development Charges

Prepared For City of Newberg

January 21, 2021

Introduction

Oregon legislation establishes guidelines for the calculation of system development charges (SDCs). Within these guidelines, local governments have latitude in selecting technical approaches and establishing policies related to the development and administration of SDCs. A discussion of this legislation follows, along with the methodology for calculating updated water SDCs for the City of Newberg (the City) based on the recently completed Water Master Plan Technical Update (Murraysmith, 2021).

SDC Legislation in Oregon

In the 1989 Oregon state legislative session, a bill was passed that created a uniform framework for the imposition of SDCs statewide. This legislation (Oregon Revised Statute [ORS] 223.297-223.314), which became effective on July 1, 1991, (with subsequent amendments), authorizes local governments to assess SDCs for the following types of capital improvements:

- Drainage and flood control
- Water supply, treatment, and distribution
- Wastewater collection, transmission, treatment, and disposal
- Transportation
- Parks and recreation

The legislation provides guidelines on the calculation and modification of SDCs, accounting requirements to track SDC revenues, and the adoption of administrative review procedures.

SDC Structure

SDCs can be developed around two concepts: (1) a reimbursement fee, and (2) an improvement fee, or a combination of the two. The **reimbursement fee** is based on the costs of capital improvements *already constructed or under construction*. The legislation requires the reimbursement fee to be established or modified by an ordinance or resolution setting forth the methodology used to calculate the charge. This methodology must consider the cost of existing facilities, prior contributions by existing users, gifts or grants from federal or state government or private persons, the value of unused capacity available for future system users, rate-making principles employed to finance the capital improvements, and other relevant factors. The objective of the methodology must be that future system users contribute no more than an equitable share of the capital costs of *existing* facilities. Reimbursement fee revenues are restricted only to capital expenditures for the specific system with which they are assessed, including debt service.

The methodology for establishing or modifying an **improvement fee** must be specified in an ordinance or resolution that demonstrates consideration of the *projected costs of capital improvements identified in an adopted plan and list,* that are needed to increase capacity in the system to meet the demands of new development. Revenues generated through improvement fees are dedicated to capacity-increasing capital improvements or the repayment of

debt on such improvements. An increase in capacity is established if an improvement increases the level of service provided by existing facilities or provides new facilities.

In many systems, growth needs will be met through a combination of existing available capacity and future capacity-enhancing improvements. Therefore, the law provides for a **combined fee** (reimbursement plus improvement component). However, when such a fee is developed, the methodology must demonstrate that the charge is not based on providing the same system capacity.

Credits

The legislation requires that a credit be provided against the improvement fee for the construction of "qualified public improvements." Qualified public improvements are improvements that are required as a condition of development approval, identified in the system's capital improvement program, and either (1) not located on or contiguous to the property being developed, or (2) located in whole or in part, on or contiguous to, property that is the subject of development approval and required to be built larger or with greater capacity than is necessary for the particular development project to which the improvement fee is related.

Methodology Update and Review

The methodology for establishing or modifying improvement or reimbursement fees shall be available for public inspection. The local government must maintain a list of persons who have made a written request for notification prior to the adoption or amendment of such fees. The legislation includes provisions regarding notification of hearings and filing for reviews. The notification requirements for changes to the fees that represent a modification to the methodology are 90-day written notice prior to first public hearing, with the SDC methodology available for review 60 days prior to public hearing.

Other Provisions

Other provisions of the legislation require:

- Preparation of a capital improvement program (CIP) or comparable plan (prior to the establishment of an SDC), that includes a list of the improvements that the jurisdiction intends to fund with improvement fee revenues and the estimated timing, cost, and eligible portion of each improvement.
- Deposit of SDC revenues into dedicated accounts and annual accounting of revenues and expenditures, including a list of the amount spent on each project funded, in whole or in part, by SDC revenues.
- Creation of an administrative appeals procedure, in accordance with the legislation, whereby a citizen or other interested party may challenge an expenditure of SDC revenues.

The provisions of the legislation are invalidated if they are construed to impair the local government's bond obligations or the ability of the local government to issue new bonds or other financing.

Water SDC Methodology

The general methodology used to calculate water SDCs begins with an analysis of system planning and design criteria to determine growth's capacity needs and how they will be met through existing system available capacity and capacity expansion. Then, the capacity to serve growth is valued to determine the "cost basis" for the SDCs, which is then spread over the total growth capacity units to determine the system wide unit costs of capacity. The final step is to determine the SDC schedule, which identifies how different developments will be charged, based on their estimated capacity requirements.

Determine Capacity Needs

Table 1 shows the planning assumptions for the water system as determined by the Master Plan. Capacity requirements are evaluated based on the following system design criteria:

- Maximum Day Demand (MDD) -- The highest daily recorded rate of water production in a year. Used for allocating source, pumping and delivery facilities.
- Storage Requirements Storage facilities provide three functions: operational (or equalization) storage, and storage for emergency and fire protection needs. Used for allocating storage and pumping costs.

Planning Data		
	MDD (mgd) ¹	Storage (mg)
Capacity Requirements		
Current		
System	4.60	
Zone 1	4.56	5.57
High Elevation Zones	0.04	
Future Requirements		
System	9.11	
Zone 1	7.69	9.14
High Elevation Zones	1.42	1.70
Growth Allocations		
System Growth	4.51	
Share of Future Requirements	49.5%	
Zone 1 Growth	3.13	3.57
Share of Future Requirements	40.7%	39%
High Elevation Growth	1.38	1.7
Share of Future Requirements	97.2%	100%

Table 1City of NewbergWater System Development Charge AnalysisPlanning Data

¹ Includes potable and non-potable systems

As shown in Table 1, system MDD is currently about 4.6 million gallons per day (mgd), including both potable and non-potable use. System MDD is projected to increase by 4.5 mgd over the study period. For supply and delivery purposes, the potable and non-potable systems are evaluated on a combined basis, as the systems will be used collectively to meet future MDD.

Storage requirements are about 5.6 million gallons (mg) currently and are limited to the potable system. Future storage requirements are expected to be 9.1 mg in Zone 1, and 1.7 mg in Zone 2. Pumping and storage requirements are evaluated separately for each zone.

Develop Cost Basis

The capacity needed to serve new development will be met through a combination of existing system available capacity and additional capacity from planned system improvements. The reimbursement fee is intended to recover the costs associated with the growth-related (available) capacity in the existing system; the improvement fee is based on the costs of capacity-increasing future improvements needed to meet the demands of growth. The value of capacity needed to serve growth in aggregate within the planning period, adjusted for contributions used to fund facilities, is referred to as the "cost basis".

Reimbursement Fee

Table 2 shows the reimbursement fee cost basis calculations. The reimbursement fee cost basis reflects the growth share of existing system assets of June 30, 2020. As shown in Table 2, the value of the existing water system (based on original purchase cost) is almost \$48 million. When developer contributions are deducted, the City's historical investment in water system facilities totals about \$41 million (excluding vehicles and minor equipment costs).

The growth share for each asset type is based on the planning data provided in Table 1. The existing supply, storage, and delivery system facilities all have available capacity that will be utilized by future growth; therefore, the facility costs are allocated in proportion to growth's share of total future demands. As shown in Table 1, growth share of future MDD (used to allocate supply and delivery costs) is 50 percent (4.51 mgd divided by 9.11 mgd) and storage (based on Zone 1 requirements) is 39 percent (3.57 mgd divided by 9.14 mgd).

Support facilities are allocated 20 percent to future growth, based on the City's estimates. The reimbursement fee cost basis excludes assets (like the sodium hypochlorite equipment) that will be replaced by planned capital improvements.

As show in Table 2, the reimbursement fee cost basis totals \$19.3 million.

Table 2City of NewbergWater System Development Charge AnalysisReimbursement Fee Cost Basis

	Original	City	Growth Share		
Description	Cost	Cost	%	\$	
Supply					
Wells	\$3,858,253	\$3,858,253	49.5%	\$1,910,068	
Treatment	\$10,348,765	\$10,348,765	49.5%	\$5,123,263	
Sodium Hypochlorite Equipment	\$167,464	\$167,464	0.0%	\$0	
Springs	\$52,059	\$52,059	49.5%	\$25,772	
Effluent Re-use	\$2,417,985	\$2,417,985	49.5%	\$1,197,048	
Subtotal	\$16,844,526	\$16,844,526	_	\$8,256,152	
Storage					
Corral Creek	\$3,573,002	\$3,573,002	39.1%	\$1,395,582	
North Valley Rd. Reservoir	\$2,262,029	\$2,262,029	39.1%	\$883,528	
Reservoir 1 & 2	\$1,157,019	\$1,157,019	39.1%	\$451,921	
Reservoir 3	\$12,487	\$12,487	39.1%	\$4,877	
East Reservoir	\$320,070	\$320,070	39.1%	\$125,016	
Subtotal	\$7,324,607	\$7,324,607		\$2,860,924	
Water Delivery					
Developer	\$6,522,268	\$0	49.5%	\$0	
City Water	\$11,146,211	\$11,146,211	49.5%	\$5,518,047	
Parallel River Line	\$3,191,301	\$3,191,301	49.5%	\$1,579,887	
Water Line N Arterial S Curve	\$1,027,555	\$1,027,555	49.5%	\$508,702	
Effluent Reuse	\$818,636	\$818,636	49.5%	\$405,274	
Subtotal	\$22,705,971	\$16,183,703		\$8,011,910	
Support Facilities					
3rd St. Building/Land	\$278,546	\$278,546	20%	\$55,709	
2nd St. Parking	\$74,535	\$74,535	20%	\$14,907	
Other	\$271,416	\$271,416	20%	\$54,283	
Subtotal	\$624,496	\$624,496	_	\$124,899	
Total	\$47,499,600	\$40,977,332		\$19,253,886	

Source: City Fixed Asset Records as of June 30, 2020

Improvement Fee

Table 3 shows the Master Plan and CIP projects included in the improvement fee cost basis. SDC eligibility for new projects that expand system performance (redundant supply development and planning and some seismic improvements) is determined based on growth's share of future water demands, using the percentages in Table 1. New pump stations and associated high elevation water infrastructure improvements are allocated to growth in proportion to the upper zone future MDD.

Existing facility replacements (valves, piping, and water treatment plant facilities) that do not expand capacity are excluded from the SDC cost basis. A portion of new distribution looping and costs associated with main upsizing are SDC-eligible.

Table 3City of NewbergWater System Development Charge AnalysisImprovement Fee Cost Basis (Project List)

				Total	Developer	SDC-Elig	jible Portion
PROJECT	2021 to 2026	2027 to 2031	2032 to 2041	Cost	Portion	%	\$
Supply							
2 mgd redundant supply development	\$3,915,000			\$3,915,000		49.5%	\$1,938,161
Hypochlorite Generator				\$0		49.5%	\$0
Nater Rights Review and Reconfiguration				\$0		49.5%	\$0
Seismic resilience - add emergency connection & controls at existing WTP	\$500,000			\$500,000		49.5%	\$247,530
Seismic resilience - existing WTP seismic upgrade		\$8,500,000		\$8,500,000		0.0%	\$C
Subtotal	\$4,415,000	\$8,500,000	\$0	\$12,915,000			\$2,185,692
Pumping & Storage							
Bell East Pump Station - Zone 3 constant pressure	\$2,605,000			\$2,605,000		97.18%	\$2,531,620
Bell West Pump Station - Zone 2 constant pressure; mains Bell West P.S. to Veritas School M-14, M-15	\$2,017,104			\$2,017,104		97.18%	\$1,960,284
Seismic resilience - N. Valley Reservoirs hydraulic control valves & site piping		\$1,050,000		\$1,050,000		0.00%	\$C
Subtotal	\$4,622,104	\$1,050,000	\$0	\$5,672,104			\$4,491,904
Distribution							
Upsize existing mains; construct new distribution loops to improve fire flow capacity	\$2,085,000	\$569,000		\$2,654,000		40.7%	\$1,080,237
NE Zimri Drive Zone 3 distribution backbone within UGB	\$413,000			\$413,000		97%	\$401,366
BTER Fire Flow improvements for increased density							
Upsize existing 6-inch mains to 8-inch mains on S Main, S Lincoln, W 4th, W 5th St.			\$357,000	\$357,000		45%	\$158,904
Upsize existing 4- and 6-inch mains to 12-inch mains on S Blaine St.		\$633,000		\$633,000		77%	\$484,249
Upsize existing 6-inch main to 8-inch main in S College St. north of E 9th St.		\$6,000		\$6,000		45%	\$2,671
Upsize existing 6-inch mains to 12-inch mains in E 9th St., Charles St., and S College St.		\$725,000		\$725,000		75%	\$544,237
Upsize existing 6-inch main to 8-inch main in S Meridian St. north of E 5th St.			\$9,000	\$9,000		45%	\$4,006
Upsize existing 6-inch main to 12-inch main in S Meridian St.			\$181,000	\$181,000		75%	\$135,871
Upsize existing 4- and 6-inch mains to 12-inch mains in E 7th St., S Pacific St., E 9th St., and Paradise Drive	\$913,000			\$913,000		77%	\$704,069

				Cost	Developer	SDC-E	ligible Portion
PROJECT	2021 to 2026	2027 to 2031	2032 to 2041	Estimate	Portion	%	\$
Upsize existing 6-inch mains to 12-inch mains in S River St.		\$676,000		\$676,000		75%	\$507,454
Upsize existing 6-inch mains to 12-inch mains in E 5th St.			\$112,000	\$112,000		75%	\$84,075
Upsize existing 6-inch main to 8-inch main from E 11th St. to the Boston Square Apartments			\$33,000	\$33,000		45%	\$14,689
Upsize existing 6-inch main to 8-inch main in Vermillion St.			\$4,000	\$4,000		45%	\$1,780
New water mains to serve future development in Riverfront area		\$963,000	\$963,000	\$1,926,000	\$1,688,796	100%	\$237,204
Upsize existing 6-inch S College St main to 8-inch main to serve future Riverfront development		\$172,000		\$172,000		45%	\$76,559
Upsize existing 6-inch River and 11th St mains to 12-inch mains to serve future Riverfront development		\$330,000		\$330,000		75%	\$247,721
Seismic resilience - cast iron and concrete pipe replacement		\$500,000	\$1,000,000	\$1,500,000		6%	\$96,620
Chehalem Drive water system extension west and north to Columbia Drive		\$721,000		\$721,000		100%	\$721,000
N College St N Terrace St Bell West P.S Veritas School				\$0		97%	\$0
College St. water line to Mountain View	\$568,000			\$568,000		10%	\$56,800
Fixed Base Radio Read	\$453,998			\$453,998		50%	\$224,756
Subtotal	\$4,432,998	\$5,295,000	\$2,659,000	\$12,386,998	\$1,688,796		\$5,784,267
Future High Elevation Water Infrastructure							
1.7 MG Bell Road Reservoir - Zone 3			\$2,886,000	\$2,886,000		97%	\$2,804,704
Zimri Dr. E transmission main to Bell Rd Reservoir			\$1,606,000	\$1,606,000		97%	\$1,560,761
Bell Rd W transmission main - N College St. to Zimri Dr.			\$1,470,000	\$1,470,000		97%	\$1,428,592
Subtotal	\$0	\$0	\$5,962,000	\$5,962,000			\$5,794,056
Planning							
Water Management & Conservation Plan update		\$150,000		\$150,000		50%	\$74,259
Water System Master Plan update			\$300,000	\$300,000		50%	\$148,518
SDC Study	\$12,000			\$12,000		100%	\$12,000
AWIA Risk & Resilience Assessment	\$103,000			\$103,000		50%	\$50,991
Seismic resilience planning		\$300,000		\$300,000		50%	\$148,518
Subtotal	\$115,000	\$450,000	\$300,000	\$865,000			\$434,286
Other							
North non-potable water line and Otis Springs pumping improvements		\$2,105,000		\$2,105,000		100%	\$2,105,000
Public Works Maintenance Facility Master Plan	\$844,145			\$844,145		20%	\$168,829
Subtotal	\$844,145	\$2,105,000	\$0	\$2,949,145			\$2,273,829
Total	\$14,429,247	\$17,400,000	\$8,921,000	\$40,750,247	\$1,688,796		\$20,964,034

New water mains to serve future development in the planned Riverfront area are related to growth; however, developer responsibility is assumed for constructing the City's minimum standard pipe size (8-inch diameter), so only the oversizing costs are included in the SDCs. System extension at Chehalem Drive and in the North nonpotable system are also needed exclusively future growth.

Support facilities are allocated 20 percent to growth based on the City's analysis. As shown in Table 3, the total improvement fee cost basis is about \$21 million.

Develop Unit Costs

The reimbursement and improvement unit costs of capacity are shown in Table 4 and are calculated by dividing the respective cost bases by the projected growth requirements provided in Table 1. The system-wide unit costs are then multiplied by the capacity requirements per equivalent dwelling unit (EDU) to yield the fees per EDU.

EDU capacity requirements are estimated based on current MDD and the total number of meter equivalents in the system. The base service unit for the water system is a 3/4-inch meter, the standard size for a single-family dwelling. The meter equivalents for larger meter sizes represent the equivalent hydraulic capacity relative to a ³/₄-inch meter. **Table 5** shows the meter equivalency factors for each meter size.

Based on the existing MDD and meter equivalents, the estimated capacity requirement per EDU is 543 gallons per day (0.000543 mgd). Applying the capacity requirement per EDU by the unit costs of capacity yields reimbursement and improvement costs per EDU of \$2,320 and \$2,526, respectively as shown in Table 4.

Table 4
City of Newberg
Water System Development Charge
Unit Cost Calculations

	System Con	nponent					
	Supply	Storage/ Pumping	Distribution	Upper Elevation	Planning	Support	Total
Reimbursement Cost Basis	\$8,256,152	\$2,860,924	\$8,011,910	\$0	\$0	\$124,899	\$19,253,886
Growth Capacity Req (mgd)	4.5	4.5	4.5			4.5	
Unit Cost	\$1,830,632	\$634,351	\$1,776,477			\$27,694	
Capacity per EDU (mgd)	0.000543	0.000543	0.000543			0.000543	
Reimbursement \$/EDU	\$995	\$345	\$965	\$0	\$0	\$15	\$2,320
Improvement Cost Basis	\$2,185,692	\$4,491,904	\$7,889,267	\$5,794,056	\$434,286	\$168,829	\$20,964,034
Growth Capacity Req (mgd)	4.5	4.5	4.5	4.5	4.5	4.5	
Unit Cost	\$484,632	\$995,988	\$1,749,283	\$1,284,713	\$96,294	\$37,434	
Capacity per EDU (mgd)	0.000543	0.000543	0.000543	0.000543	0.000543	0.000543	
Improvement \$/EDU	\$263	\$541	\$950	\$698	\$52	\$20	\$2,526

SDC Schedule

Table 5 shows the SDC schedule for each meter size for potable and non-potable customers. The potable SDCs include the full cost per EDU shown in Table 4, while the non-potable SDCs exclude the costs of storage and upper elevation pumping and other improvements. The total SDC per EDU for potable and non-potable are \$4,845 and \$3,261, respectively. The SDCs for larger meter sizes are scaled up based on the hydraulic capacity factors.

Table 5

City of Newberg Water System Development Charge Analysis SDC Schedule

			Potable	Factor	
Meter Size	SDCr	SDCi	SDC	3/4"	
Potable					
3/4"	\$2,320	\$2,526	\$4,845	1.0	
1"	\$3,943	\$4,294	\$8,237	1.7	
1 1/4	\$5,799	\$6,314	\$12,113	2.5	
1 1/2"	\$7,655	\$8,335	\$15,990	3.3	
2"	\$12,294	\$13,386	\$25,681	5.3	
3"	\$23,197	\$25,257	\$48,454	10.0	
4"	\$38,739	\$42,179	\$80,918	16.7	
6"	\$76,549	\$83,348	\$159,898	33.0	
8"	\$122,943	\$133,862	\$256,805	53.0	
10"	\$177,842	\$193,638	\$371,479	76.7	
NonPotable					
3/4"	\$1,975	\$1,286	\$3,261	1.0	
1"	\$3,357	\$2,187	\$5,544	1.7	
1 1/4	\$4,937	\$3,216	\$8,154	2.5	
1 1/2"	\$6,517	\$4,245	\$10,763	3.3	
2"	\$10,467	\$6,818	\$17,286	5.3	
3"	\$19,750	\$12,865	\$32,615	10.0	
4"	\$32,982	\$21,484	\$54,467	16.7	
6"	\$65,175	\$42,454	\$107,628	33.0	
8"	\$104,675	\$68,183	\$172,858	53.0	
10"	\$151,416	\$98,630	\$250,046	76.7	

Memo

Date:	Monday, July 20, 2020
Project:	Seismic Resilience Assessment
To:	Brett Musick, PE, City of Newberg
From:	Andy McCaskill, P.E.; Katie Walker, P.E.
Subject:	Executive Summary

Introduction

The City of Newberg (City) operates a water system consisting of a wellfield, raw water transmission pipelines, a water treatment plant, three water storage reservoirs, one pump station, and distribution system pipelines. In support of the 2017 Water Master Plan and Oregon Health Authority (OHA) guidelines, the City conducted a water system seismic resilience assessment (SRA). The purpose of the SRA is to define level-of-service (LOS) goals, evaluate the expected performance of the system during a Cascadia Subduction Zone (CSZ) earthquake, and identify recommended mitigation measures to address deficiencies. The SRA included the following studies:

- Seismic Resiliency Goals during this study, goals and retrofit performance criteria were defined (see Appendix A).
- Geotechnical Engineering Report (GER) during this study, geotechnical conditions were reviewed to identify seismic hazards (see Appendix B).
- Vulnerabilities Assessments the purpose of this report was to assess the vulnerabilities of the City's water system and the pipeline bridge (see Appendix C).
- Mitigation Recommendations mitigation strategies were recommended and developed at a conceptual level to address some system vulnerabilities (see Appendix D).
- Recommendations for Future Studies additional studies were identified to clarify and confirm the City's seismic mitigation needs (see Appendix E).

This executive summary presents the purpose and key findings from each study.

Seismic Recovery Goals

In this study, the water system level of service goals were established to define performance expectations after a CSZ earthquake. A collaborative workshop was conducted to identify the restoration priorities for the City with short-term (no disruption) needs including fire suppression and the Providence Newberg Medical Center. Using guidelines in the Oregon Resilience Plan (ORP) tailored to the City's needs, recovery goals were identified for all major components of the water system (see Attachment A).

The study also identified the backbone of the City's water system, which are the components required to meet the short-term needs outlined in the recovery goals (see Attachment B). These

components should be designed or modified to experience only minor damage during a CSZ earthquake.

In addition to defining goals and identifying the system backbone, objectives for retrofitting existing water system components were identified based on how quickly they could be restored.

Geotechnical Engineering Report

The GER included a review of the existing geologic and geotechnical conditions to develop seismic ground motion, seismic hazard, and permanent ground deformation hazard maps. At the WTP, the following was conducted:

- One boring
- Evaluation of liquefaction potential and liquefaction-induced settlement
- Evaluation of potential for slope failure
- Evaluation of seismically induced ground movement and potential for lateral spread

Vulnerabilities Assessment

In the Vulnerabilities Assessments, water system components were compared against the seismic hazard maps developed in the GER showing peak ground velocity, probability of liquefaction, and landslide induced permanent ground deformation. In addition to a desktop review, a site visit was conducted to inspect the water system and interview City personnel. Based on the assessment, the following vulnerabilities were identified:

Pipeline Bridge

A desktop assessment was conducted to review the bridge, but record drawings were not available. The assessment concluded that the bridge and transmission main are unlikely to survive a CSZ earthquake. A retrofit, likely costing in the tens-of-millions, would be required with additional studies and inspections needed to clarify and confirm the bridge conditions.

Wellfield

In general, the wells are likely at risk for liquefaction and lateral spread. During a CSZ earthquake, differential settlement could occur between the well casing and pipe connection, the well screen could be plugged, and the seismic shaking could cause groundwater levels to fluctuate. Additional vulnerabilities include lack of backup power and lack of reliable access across the river.

30-inch HDPE Transmission Main

Based on a review of the geotechnical documents from the construction of the main, the transmission main is susceptible to liquefaction induced settlement on the southern side of the river, and at the shallowest section on the northern side of the river. These conditions would likely result in differential settlement causing pipe separation or damage during a CSZ earthquake.

Water Treatment Plant

Studies conducted at the WTP indicate up to two feet of lateral spread displacements at a distance of approximately 300 feet from the crest of the slope during a CSZ earthquake. Stability analyses also showed seismically induced ground displacements in the range of approximately 7.5 feet. In addition, the review of the slope indicated that it is only marginally stable under static conditions and not stable in seismic or post-seismic conditions.

A site visit was conducted to assess components at the WTP. In general, the review of the structures indicated that none meet either the structural or non-structural performance objectives outlined as part of the Seismic Recovery Goals. Significant work is required at the WTP to meet recovery goals, and it was recommended that further evaluation be conducted to compare the cost of upgrading the WTP versus building a new WTP. However, it should be noted that while the buildings will not withstand a CSZ event, the plant site itself is not susceptible to a landslide into the river.

Water System Backbone

The seismic hazard maps prepared under the GER were applied against pipeline information, such as age, corrosion, and material, to identify the estimated number of pipeline breaks and length of repair. For the non-landslide areas, it is estimated that 245 breaks will occur (see Attachment C, Table 1). For the landslide prone areas, a range of 84 to 626 breaks will occur (see Attachment C, Table 2).

Water Distribution Pipelines

The water distribution network is considered a lower priority for seismic resilience based on the LOS goals established by the City. For the non-landslide areas, it is estimated that 1,159 water breaks will occur (see Attachment C, Table 3). For the landslide prone areas, a range of 336 to 2,518 breaks will occur (see Attachment C, Table 4).

WTP Yard Piping

Several vulnerabilities exist at the WTP including:

- Lack of isolation valves at the WTP to prevent water loss or cross contamination, or preserve water storage at the WTP
- Lack of a WTP bypass line to supply water from the wellfield to the distribution for firefighting or domestic use (boiling required for potable use)
- Lack of seismic couplings at building pipeline penetrations to prevent pipe separation

Water Storage Tanks Yard Piping

Vulnerabilities at the Corral Creek Site include:

- Flexible couplings may need to be replaced with seismic couplings to provide more movement during an earthquake
- Lack of seismic couplings on the pipeline to prevent pipe separation
- Lack of a hydraulic control valve to quickly protect water storage if a loss of power or SCADA occurs

Vulnerabilities at the North Valley Water Storage Tanks include:

- Unknown capabilities of couplings at pipe penetrations
- Inlet/outlet line will be subject to landslide movements and pipeline separation
- Lack of a hydraulic control valve to quickly protect water storage if a loss of power or SCADA occurs

Water System Operations

Vulnerabilities and observations related to water system operations include:

- No fire flow or pressure deficiencies were identified that could affect system recovery after a CSZ earthquake
- No deficiencies in water system storage capacity
- SCADA system could be improved or expanded to include greater centralized monitoring and control of the system, with backup power and communications improved at identified locations
- Lack of a redundant water supply, which is currently being investigated under another study
- Ensure GIS mapping is adequately detailed to locate critical isolation valves and facilities in an emergency.

Mitigation Recommendations

The Vulnerabilities Assessment identified areas where the City needs to improve or retrofit the water system. The following five mitigation strategies were identified as top priorities for the City. Mitigation strategies were presented in two separate memos: one for recommendations at the WTP and one for recommendations within the distribution and storage system.

Rehabilitation of Existing WTP

The existing WTP is susceptible to liquefaction, ground deformation, and lateral spreading. The goal of rehabilitation is to address the deficiencies identified in previous studies by installing ground improvements between the WTP site and the shoreline to prevent lateral movement and strengthening structural components to withstand a CSZ event. The range of construction cost estimates could be from \$3.3M to \$13M.

Construction of Greenfield WTP

Since several structures at the existing WTP are nearing the end of their useful life, an alternative strategy is to replace the existing plant with a seismically resilient one. The range of construction cost for a new plant could be from \$12.3M to \$49.2M.

Emergency Connection and Control at the WTP

As identified in the vulnerability assessment, the WTP poses several risks if a CSZ earthquake occurs. By adding a point for emergency cross-connection and installing hydraulic control valves, the plant could be isolated during an earthquake event, allowing raw water to continue

into the distribution system. The construction cost for these improvements is approximately \$500K.

Improvements to Water Storage

The vulnerability assessment identified the potential for water loss at the storage tanks during a CSZ earthquake. By adding hydraulic control valves and replacing a portion of the pipe at North Valley Water Storage Tanks, water storage at the tanks could be preserved. The construction for the improvements at the Corral Creek Site is approximately \$300K, and \$750K at the North Valley Water Storage Tanks.

Cast Iron and Concrete Pipe Replacement

Based on the evaluation of pipeline in the City's backbone, old cast iron and concrete pipe poses the greatest risk for damage during a CSZ earthquake. The construction costs for the replacement of pipe is approximately \$12.5M and represents the replacement of more than 37,000 linear feet of pipe.

Recommendations for Future Studies

To further refine mitigation strategies, additional studies are required. Studies recommended include the following list (Note that this list is not all-inclusive as other efforts will likely be identified):

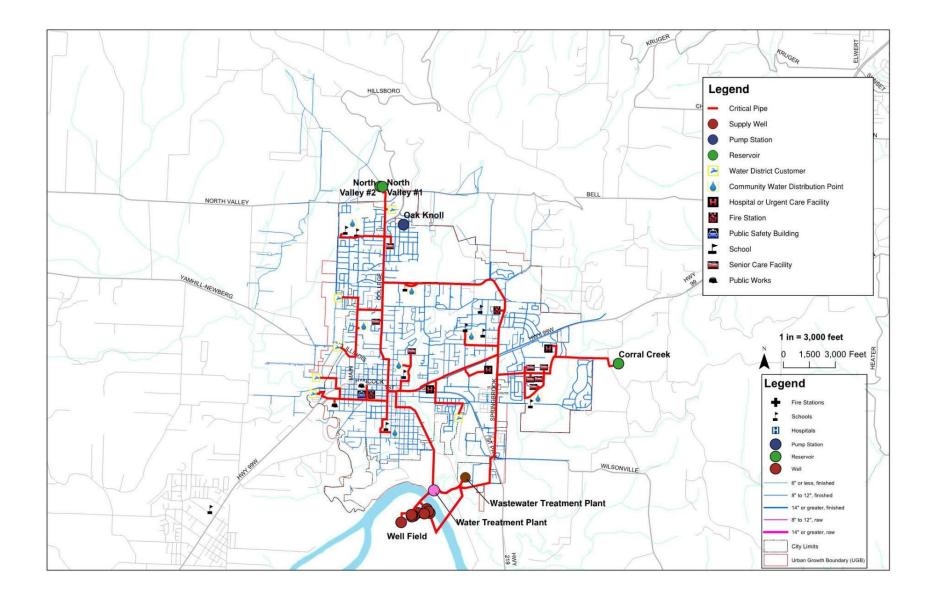
- Develop new engineering standards to address seismic resiliency needs in new infrastructure or buildings
- Identification of alternative water demands that could impact water storage available within the system
- Additional geotechnical investigations to better classify the seismic hazards that the water system may experience and allow the City to focus on the most hazardous areas.
- Investigate specific structural recommendations for structures at the WTP and other City facilities
- Evaluate specific mitigation strategies for the pipeline bridge
- Investigate additional mitigation strategies that address remaining vulnerabilities

FSS

Attachment A:

Water System Recovery Goals

City of Newberg Water System Recovery Goals (adapted from OSSPAC 2013 and NIST 2015)


Water Systems	Target Timeframe for Recovery							
	Phase 1: Short-Term Days		Phase 2: Intermediate			Phase 3: Long-Term		
			Weeks			Months		
	0-1	1-3	3-7	1-2	2-4	4-12	3-6	6-12
Source								
Raw or source water and terminal reservoirs	R	Y		G				
Raw water conveyance (pump stations and piping to WTP)	R	Y		G				
Water Production	R	Y		G				
Well and/or Treatment operations functional	R	Y		G				
Transmission (including Booster Stations)								
Backbone transmission facilities (pipelines, pump station, and tanks)	G							
Water for fire suppression at key supply points (to promote redundancy)	G							
Control Systems								
SCADA and other control systems	G							
Distribution		2	als a	2000 - 200 200				
Critical Facilities								
Wholesale Users (other communities, rural water districts)	G							
Hospitals	G							
EOC, Police Stations, Fire Stations, Public Works Buildings	Y	G						
Emergency Housing				• •				
Emergency Shelters	Y	G						
Housing/Neighborhoods							-	
Potable water available at community distribution centers		Y	G	-				
Water for fire suppression at fire hydrants			R	Y	G			
Community Recovery Infrastructure					1		-	
All other clusters			R	Y	G			

Key to Table

Desired time to restore components to 30% operational Desired time to restore components to 60% operational Desired time to restore components to 90% operational

Attachment B: Water System Backbone Map

FX

FX

Attachment C: Water System Summary Tables

Pipe Material	Total Material Length Within Geo- Hazard (ft)	Percentage of Backbone Total	Est. Total No. of Breaks	Est. No. of Breaks per 1,000 ft.	Est. Space Between Breaks (ft)
Cast Iron	23,860	25%	89	4	268
Ductile Iron	58,433	62%	109	2	536
RCC	12,592	13%	47	4	268
Grand Total	94,884	100%	245	3	387

Table 1. Water System Backbone Summary, Non-Landslide Areas

Table note: Estimated Number of Breaks Due to peak ground velocity (PGV) and peak ground deformation (PGD) (non-landslide) by Pipe Material

Pipe Material	Total Material Length Within Geo- Hazard(ft.)	Percentage of Backbone Total	Est. Total No. of Breaks	Est. No. of Breaks per 1,000 ft.	Est. Space Between Breaks (ft.)
Cast Iron	1,193	1%	30-228	25-191	5-39
Ductile Iron	2,922	3%	37-279	13-95	10-79
RCC	630	1%	16-120	25-191	5-39
Grand Total	4,744	5%	84-626	64-477	5-79

Table note: Estimated Number of Breaks Due to PGD (landslide) by Pipe Material

Table 3. Water Distribution System Summary, Non-Landslide Areas

Pipe Material	Total Material Length Within Geo-Hazard (ft)	Percentage of Distribution Total	Est. Total No. of Breaks	Est. No. of Breaks per 1,000 ft.	Est. Space Between Breaks (ft)
C-900	11,713	3%	35	3	336
CI	106,470	23%	397	4	268
DI	296,271	63%	553	2	536
PVC	28,707	6%	85	3	336
Other	23,905	5%	89	4	268
Grand Total	467,065	100%	1,159	2	403

Table note: Estimated Number of Breaks Due to PGV and PGD (non-landslide) by Pipe Material

Table 4. Water Distribution System Summary, Landslide Areas

Pipe Material	Total Material Length Within Geo- Hazard(ft.)	Percentage of Distribution Total	Est. Total No. of Breaks	Est. No. of Breaks per 1,000 ft.	Est. Space Between Breaks (ft.)
C-900	586	3%	12-89	20-153	7-49
CI	5,324	23%	135-1,016	25-191	5-39
DI	14,814	63%	188-1,413	13-95	10-79
PVC	1,435	6%	29-219	20-153	7-49
Other	1,195	5%	30-228	25-191	5-39
Grand Total	23,353	100%	336-2,518	59-439	5-79

Table note: Estimated Number of Breaks Due to PGD (landslide) by Pipe Material