EXHIBIT F

Preliminary Stormwater Report

Riverlands Subdivision

Stormwater Drainage Report

Prepared For

Del Boca Vista LLC

Newberg, OR

Prepared By

2100 SW River Parkway Portland, OR 97201

> Project Engineer: Brady Berry, P.E.

February 26, 2019

TABLE OF CONTENTS

1	INTRODUCTION AND PURPOSE	. 1
2	PROJECT LOCATION AND DESCRIPTION	. 1
3	EXISTING CONDITIONS	. 1
4	DRAINAGE DESIGN/ANALYSIS	. 2
5	PIPE SIZING & STORM HYDROGRAPH DESIGN	. 2
6	WATER QUANTITY	. 2
7	WATER QUALITY	. 3
9	CONCLUSION	. 3
10	REFERENCES	. 3
11	APPENDICES	. 5

APPENDIX 1: BASIN MAPS,

APPENDIX 2: WATER QUALITY CALCS & HYDROGRAPHS

APPENDIX 3: CONVEYANCE CALCS

APPENDIX 4: SOIL PROPERTIES

		: :

1 INTRODUCTION AND PURPOSE

The purpose of this report is to provide documentation for the stormwater management associated with the development of the Riverlands subdivision, located on the west side of River Street between 11th Street and 14th Street in Newberg, Oregon, in Yamhill County. This report will evaluate the proposed stormwater conveyance, water quality, and water quantity design.

The calculations and stormwater management methods contained in this report have been based on the current City of Newberg Public Works Design and Construction Standards 2015 stormwater standards.

2 PROJECT LOCATION AND DESCRIPTION

This project proposes the construction of a new roadway with associated sidewalks, landscaping, and stormwater facilities located on tax lot R3229 02500. The current property is mostly undeveloped with an existing single family dwelling with a few trees, outbuildings, and driveway.

3 EXISTING CONDITIONS

The total site area is approximately 1.64 acres with 0.12 acres of offsite work. There is approximately 0.2 acres of existing impervious area per EX001 in Appendix 1. Currently, there is no storm system or water quality facility on the property. The storm runoff from the site sheet flows to the west where it eventually discharges into Chehalem Creek and Willamette River.

The soil is composed of:

2300A – Aloha silt loam, 0 to 3 percent slopes, Hydrologic Soil Group C/D

The NRCS Web Soil Survey documentation regarding soil groups and site composition is available in Appendix 3.

February 2019 Page 1

4 DRAINAGE DESIGN/ANALYSIS

The proposed drainage analysis is based on the requirements of the City of Newberg Public Works Design and Construction Standards, dated August 2015.

The storm runoff values contained in this report were modeled with Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2016 by Autodesk, Inc. Hydrologic analysis is based upon the Santa Barbara Urban Hydrograph (SBUH) method. The following criteria were input to the model:

- 24-Hour rainfall depths:
 - o 2-yr: 2.5 inches
 - o 10-yr: 3.5 inches
 - o 25-yr: 4.0 inches
- Hydrologic Soil Group is C taken from the NRCS Soil Survey of Yamhill County.
- NRCS 24-Hr Type 1A Hydrograph
- The runoff curve number (CN) value for developed urban impervious areas is 98.
- The runoff curve number (CN) value for good condition grassland is 74.
- A minimum time of concentration of 5 minutes was used for all catchment areas within the project area.

5 CONVEYANCE DESIGN

The proposed storm pipe system is designed using manning's equation to have the capacity to convey the runoff from a 25-year return frequency storm event without roadway ponding, and to convey runoff from all impervious areas and some pervious areas on site with a minimum free flow velocity of 3.0 ft/s in all pipes.

Conveyance map EX003 is included in Appendix B. Calculations determining the pipe capacities and flow velocities of the proposed storm drain system for a 25-year storm event are also compiled in Appendix B.

6 WATER QUANTITY

The post-developed flow rates were determined by modeling the peak discharge released from the site at a common downstream point. The design assumes approximately 70% of each post-developed lot area will consist of impervious area based on keeping side and rear setbacks non-impervious. Table 1 below compares the peak pre-developed flow rates with the peak post-developed flow rates for the 2-yr, 10-yr, and 25-yr storm events. The resulting post-developed peak flows do not exceed the pre-developed peak flows for the listed storm events.

Page 2 February 2019

Table 1: Storm event peak flows in cubic-feet per second.

	2-year	10-year	25-year
Total Pre-developed	0.145	0.353	0.472
Total Post-developed	0.100	0.241	0.420

7 WATER QUALITY

The proposed ponds are designed to treat runoff from proposed impervious areas. See Appendix 1 for the post-developed basin maps EX002 and the water quality storm hydrographs. The same calculation methods used for water quantity analysis were also used for water quality. The water quality storm depth is 1 inch falling in 24 hours with an average storm return period of 96 hours per City of Newberg standards.

Runoff from Basins P1-P3 will be routed into Facility A, an extended dry basin, which has a bottom elevation of 165.00. The water quality volume required for the total contributing impervious areas is 1,632 ft³. The pond is designed to have a capacity of 6,658 ft³ and maximum ponding depth of 4' for a 25-year storm event. Discharge from Facility A will be controlled by two ditch inlets with rim elevations of 165.00 and 167.8 with a 0.625" orifice restricting flow from the lower inlet to the higher. Facility A will discharge into the proposed public storm drain system, connecting with the existing storm drain system within River Street. In the rare occurrence that the basin capacity is exceeded, overflow from Facility A will flow to the south into the adjacent railway, following existing drainage patterns.

Runoff from Basin P4 will be routed into Facility B, a stormwater planter, which has a standard depth of 8 in. and a length 26 ft. The water quality volume required for the total contributing impervious areas is 77 ft³. The pond is designed to have a treatment volume of 87 ft³. Facility B will discharge into the public storm drain system within River Street. In the occurrence that the pond capacity is exceeded for a greater storm event, BMP B will overflow into the street gutter.

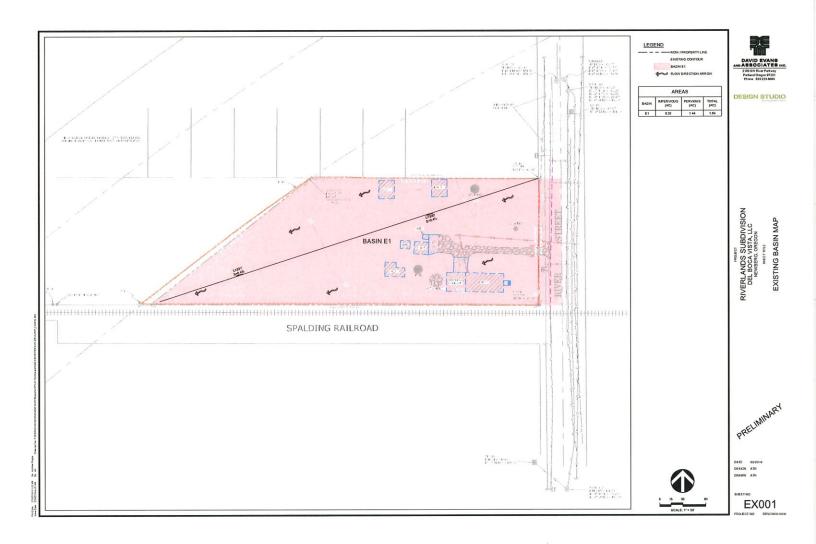
8 CONCLUSION

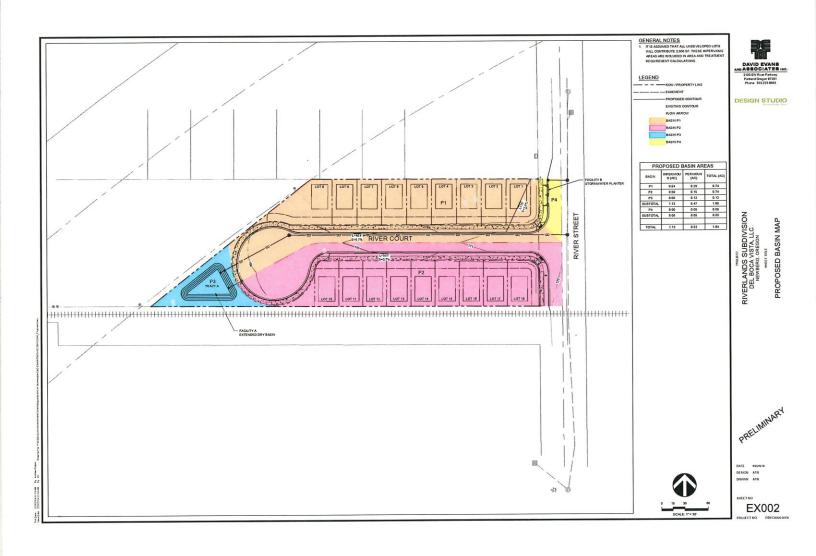
The proposed development has appropriate stormwater facilities and a system that fulfills the required conveyance, water quality and water quantity based on City of Newberg standards.

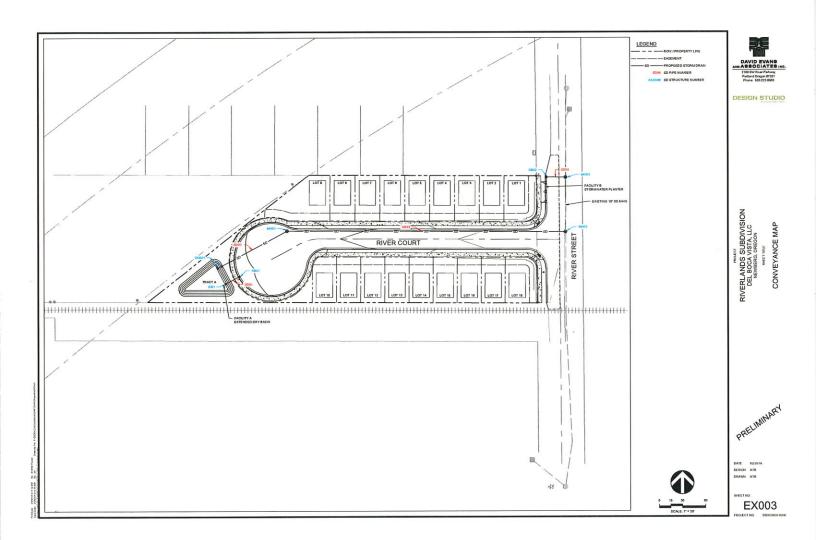
9 REFERENCES

Public Works Design and Construction Standards, City of Newberg, dated August 2015 NRCS County Web Soil Survey accessed on line on November 9, 2018

February 2019 Page 3


10 APPENDICES


February 2019 Page 5


	:

Stormwa	4	_ /	D
SIOTHWA	rer i ir	amame	RADOL

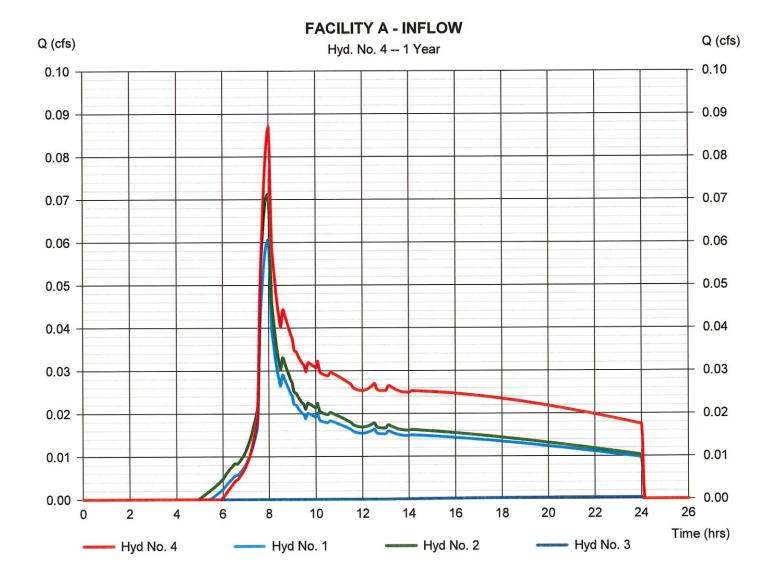
Appendix 1: Basin Maps

Stormwater	Drainage	Report

Appendix 2: Water Quality Calcs & Hydrographs

		;

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

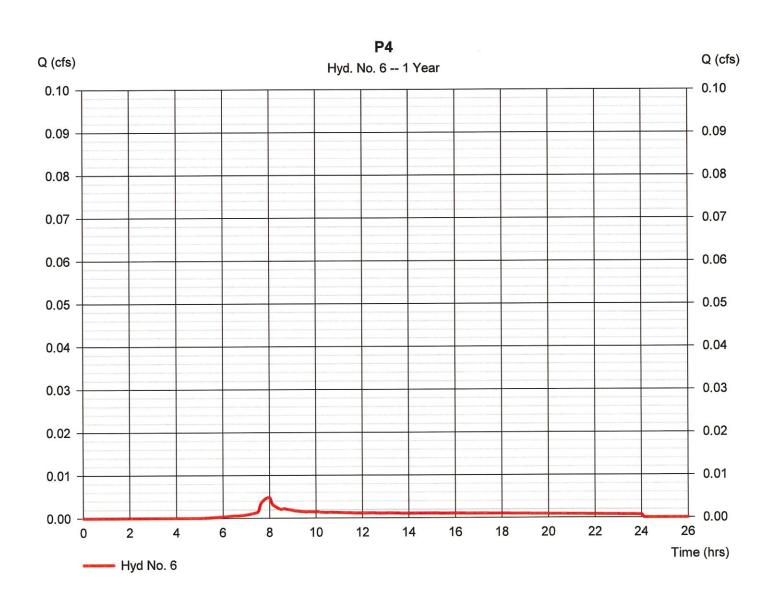

Tuesday, 02 / 26 / 2019

Hyd. No. 4

FACILITY A - INFLOW

Hydrograph type = Combine
Storm frequency = 1 yrs
Time interval = 2 min
Inflow hyds. = 1, 2, 3

Peak discharge = 0.087 cfs
Time to peak = 8.00 hrs
Hyd. volume = 1,632 cuft
Contrib. drain. area = 1.600 ac

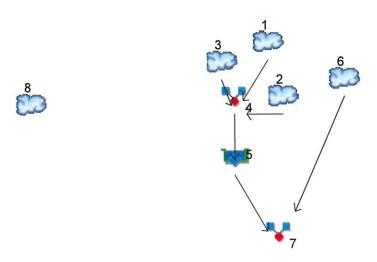

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 6

= SCS Runoff	Peak discharge	= 0.005 cfs
= 1 yrs	Time to peak	= 7.97 hrs
= 2 min	Hyd. volume	= 77 cuft
= 0.050 ac	Curve number	= 93*
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 5.00 min
= 1.00 in	Distribution	= Type IA
= 24 hrs	Shape factor	= 484
	= 1 yrs = 2 min = 0.050 ac = 0.0 % = User = 1.00 in	= 1 yrs Time to peak = 2 min Hyd. volume = 0.050 ac Curve number = 0.0 % Hydraulic length = User Time of conc. (Tc) = 1.00 in Distribution

^{*} Composite (Area/CN) = [(0.040 x 98) + (0.010 x 74)] / 0.050


Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Watershed Model Schematic	. 1
2 - Year	
Summary Report	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, P1	3
Hydrograph No. 2, SCS Runoff, P2	
Hydrograph No. 3, SCS Runoff, P3	
Hydrograph No. 4, Combine, FACILITY A - INFLOW	6
Hydrograph No. 5, Reservoir, FACILITY A - OUTFLOW	7
Pond Report - BMP A	8
Hydrograph No. 6, SCS Runoff, P4	9
Hydrograph No. 7, Combine, Post-Construction Discharge	. 10
Hydrograph No. 8, SCS Runoff, E1	. 11
10 - Year	42
Summary Report	12
Hydrograph Reports	13
Hydrograph No. 2, SCS Runoff, P1Hydrograph No. 2, SCS Runoff, P2	
Hydrograph No. 3, SCS Runoff, P3	15
Hydrograph No. 4, Combine, FACILITY A - INFLOW	. 10 16
Hydrograph No. 5, Reservoir, FACILITY A - OUTFLOW	17
Hydrograph No. 6, SCS Runoff, P4	18
Hydrograph No. 7, Combine, Post-Construction Discharge	19
Hydrograph No. 8, SCS Runoff, E1	20
riyurograph No. 0, 000 Nunon, Ermininininininininininininininininininin	. =0
25 - Year	
Summary Report	. 21
Hydrograph Reports	. 22
Hydrograph No. 1, SCS Runoff, P1	. 22
Hydrograph No. 2, SCS Runoff, P2	. 23
Hydrograph No. 3, SCS Runoff, P3	. 24
Hydrograph No. 4, Combine, FACILITY A - INFLOW	25
Hydrograph No. 5, Reservoir, FACILITY A - OUTFLOW	
Hydrograph No. 6, SCS Runoff, P4	
Hydrograph No. 7, Combine, Post-Construction Discharge	
Hydrograph No. 8, SCS Runoff, E1	. 29

Watershed Model Schematic Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	P1
2	SCS Runoff	P2
3	SCS Runoff	P3
4	Combine	FACILITY A - INFLOW
5	Reservoir	FACILITY A - OUTFLOW
6	SCS Runoff	P4
7	Combine	Post-Construction Discharge
8	SCS Runoff	E1

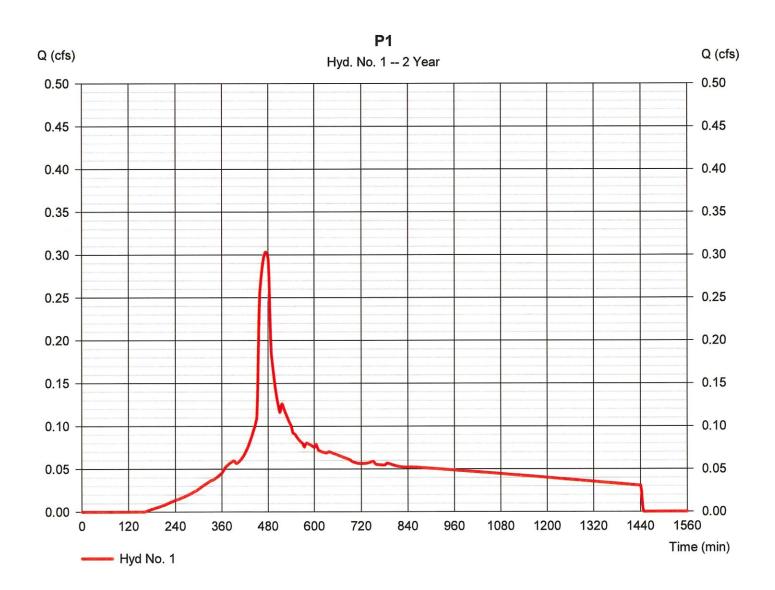
Project: Post-Construction.gpw

Tuesday, 02 / 26 / 2019

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.304	2	474	4,264	****	No. 46. 10. 50. 10. 50.		P1
2	SCS Runoff	0,322	2	474	4,481				P2
3	SCS Runoff	0.010	2	480	248		******		P3
4	Combine	0.542	2	476	7,909	1, 2, 3	*****		FACILITY A - INFLOW
5	Reservoir	0.096	2	948	7,514	4	167.82	4,698	FACILITY A - OUTFLOW
6	SCS Runoff	0.022	2	474	303				P4
7	Combine	0.100	2	948	7,816	5, 6			Post-Construction Discharge
8	SCS Runoff	0.145	2	518	4,375				E1
D^	st-Constructi	on gov.			Return	Period: 2 Y	/ear	Tuesday	02 / 26 / 2019

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

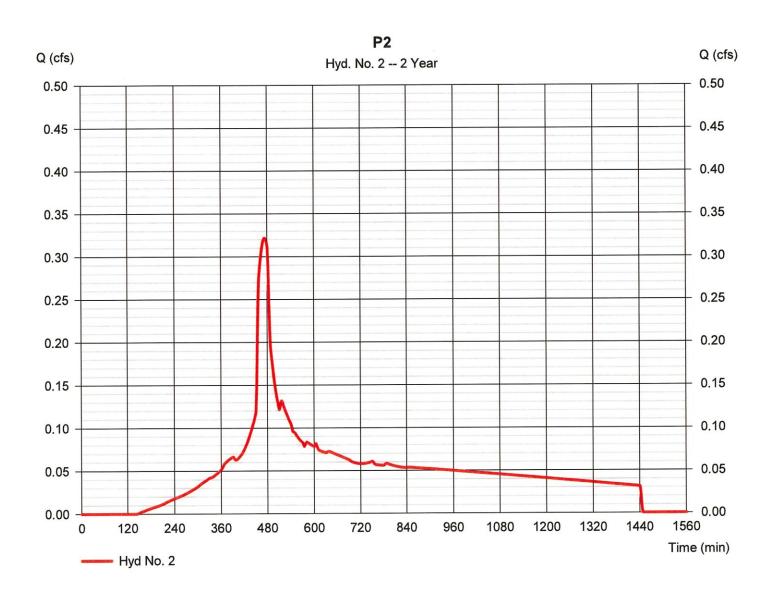

Tuesday, 02 / 26 / 2019

Hyd. No. 1

P1

Hydrograph type = SCS Runoff Peak discharge = 0.304 cfsTime to peak = 474 min Storm frequency = 2 yrsHyd. volume = 4,264 cuft Time interval = 2 min = 92* Curve number = 0.740 acDrainage area Hydraulic length = 0 ft**Basin Slope** = 0.0 % Time of conc. (Tc) Tc method = User $= 5.00 \, \text{min}$ Distribution = Type IA = 2.50 inTotal precip. Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.540 x 98) + (0.200 x 74)] / 0.740

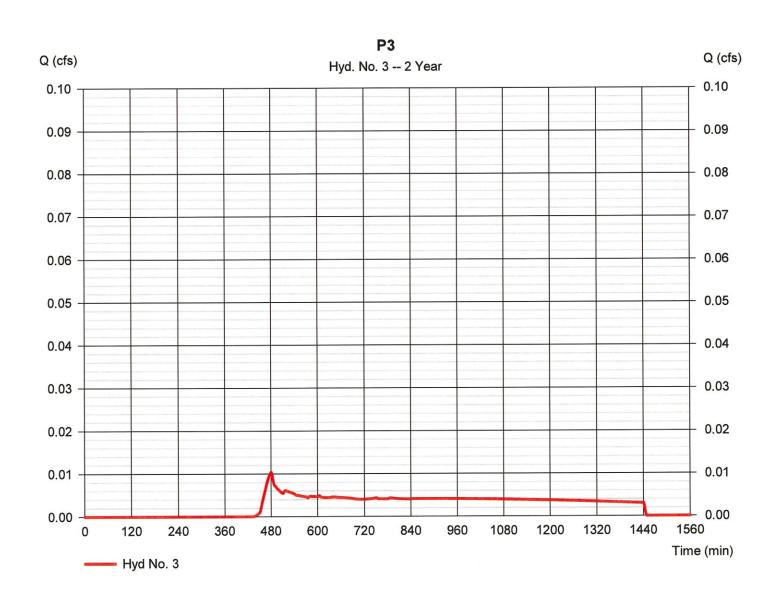

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.322 cfs
Storm frequency	= 2 yrs	Time to peak	= 474 min
Time interval	= 2 min	Hyd. volume	= 4,481 cuft
Drainage area	= 0.740 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(0.590 x 98) + (0.150 x 74)] / 0.740

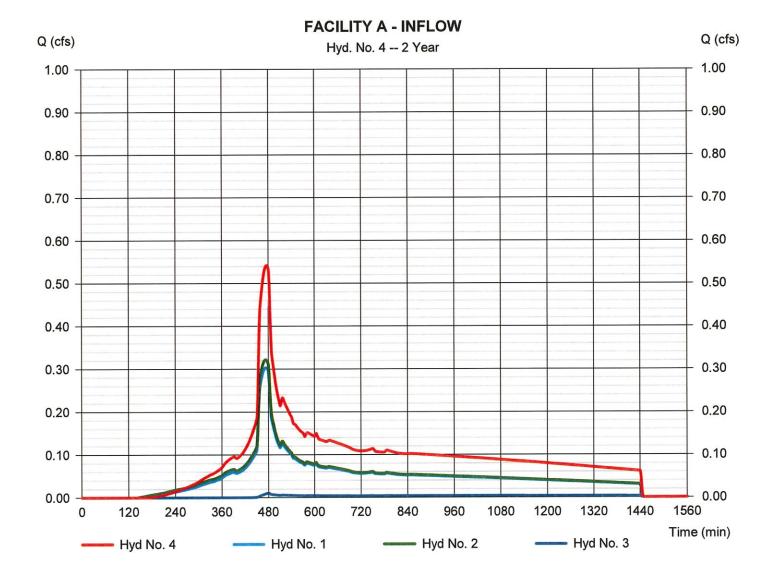

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.010 cfs
Storm frequency	= 2 yrs	Time to peak	= 480 min
Time interval	= 2 min	Hyd. volume	= 248 cuft
Drainage area	= 0.120 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = + (0.120 x 74)] / 0.120


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 4

FACILITY A - INFLOW

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2, 3 Peak discharge = 0.542 cfs
Time to peak = 476 min
Hyd. volume = 7,909 cuft
Contrib. drain. area = 1.600 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 5

FACILITY A - OUTFLOW

Hydrograph type Storm frequency = Reservoir = 2 yrs Peak discharge Time to peak = 0.096 cfs = 948 min

Storm frequence Time interval

= 2 min

Hyd. volume

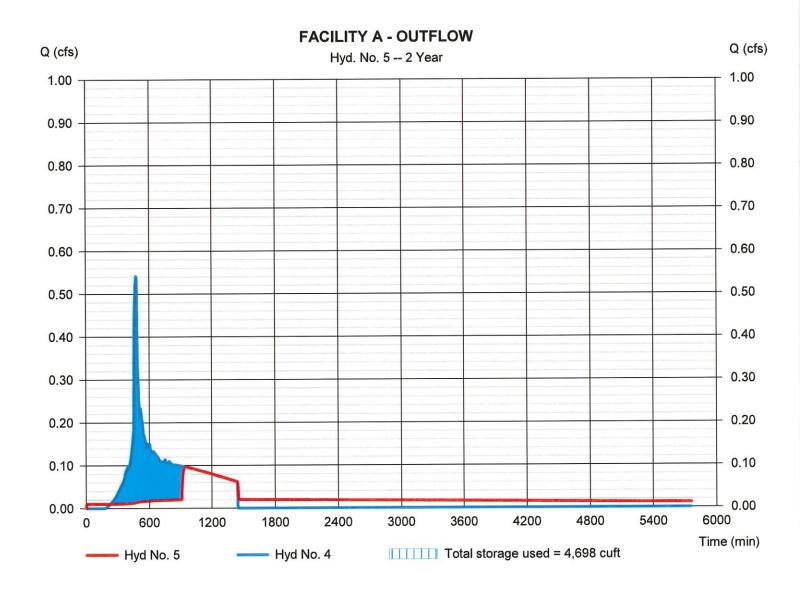
= 7,514 cuft

Inflow hyd. No.

= 4 - FACILITY A - INFLOW

Max. Elevation

= 167.82 ft


Reservoir name

= BMP A

Max. Storage

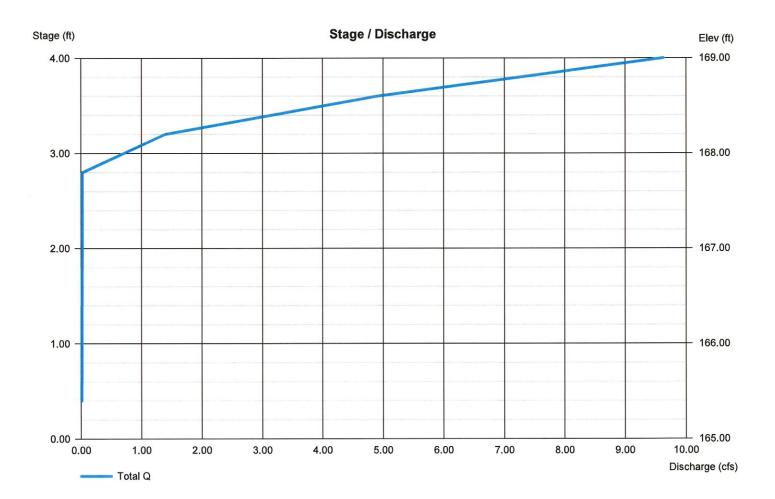
= 4,698 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Pond No. 1 - BMP A

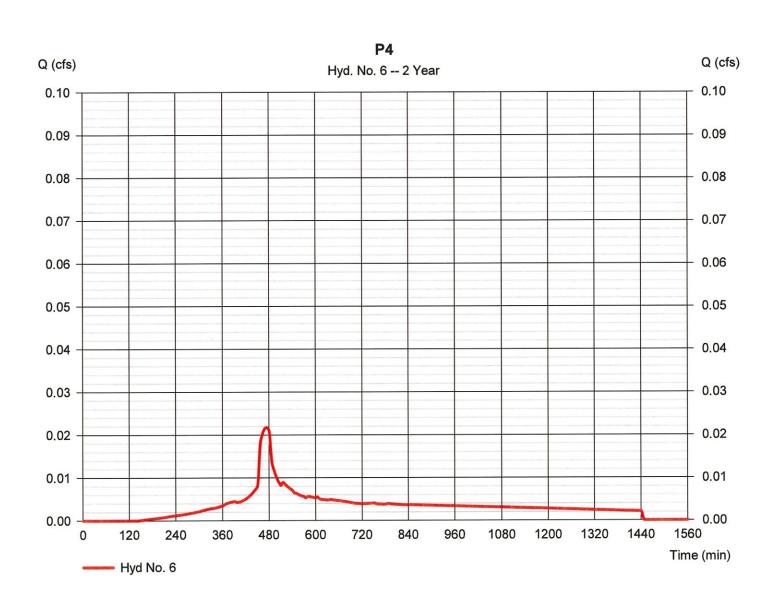

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 165.00 ft

Stage /	Storage	Table

Stage (ft)	Elevation (ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00 4.00	165.00 169.00		979 2,350		0 6,658	6,	0 6,658			
Culvert / Ori	fice Structure	es			Weir Structu	res				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 0.63	0.00	0.00	0.00	Crest Len (ft)	= 2.50	0.00	0.00	0.00	
Span (in)	= 0.63	0.00	0.00	0.00	Crest El. (ft)	= 167.90	0.00	0.00	0.00	
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 164.00	0.00	0.00	0.00	Weir Type	= Rect			·	
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 0.00	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (b)	y Contour)			
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00				

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

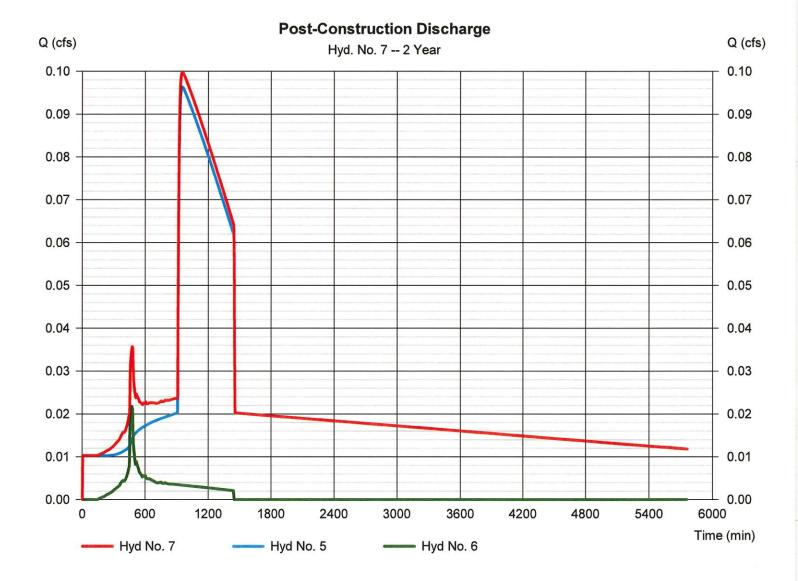

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.022 cfs
Storm frequency	= 2 yrs	Time to peak	= 474 min
Time interval	= 2 min	Hyd. volume	= 303 cuft
Drainage area	= 0.050 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(0.040 x 98) + (0.010 x 74)] / 0.050


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

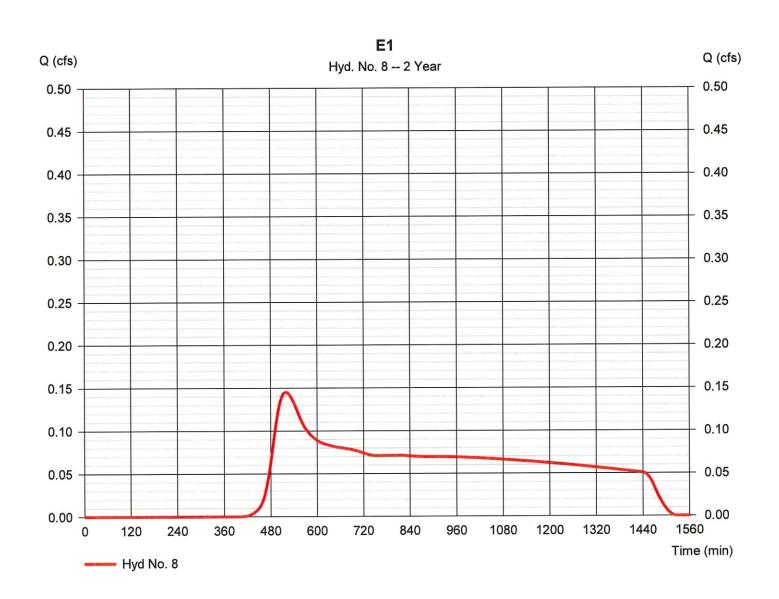
Tuesday, 02 / 26 / 2019

Hyd. No. 7

Post-Construction Discharge

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 5, 6 Peak discharge = 0.100 cfs
Time to peak = 948 min
Hyd. volume = 7,816 cuft
Contrib. drain. area = 0.050 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Tuesday, 02 / 26 / 2019

Hyd. No. 8

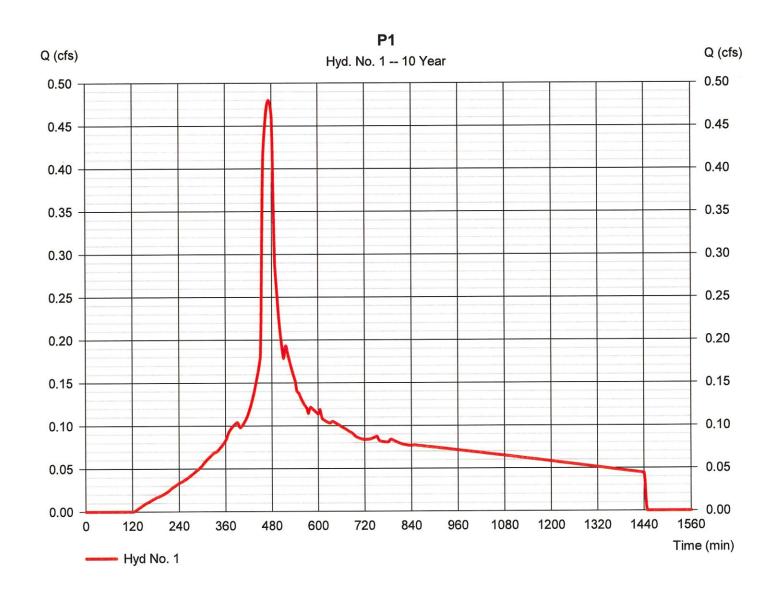
E1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 2 yrs	Time to peak	= 518 min
Time interval	= 2 min	Hyd. volume	= 4,375 cuft
Drainage area	= 1.640 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 54.40 min
Total precip.	= 2.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(1.440 x 74) + (0.200 x 98)] / 1.640

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.480	2	472	6,640	*******			P1
2	SCS Runoff	0.499	2	472	6,887				P2
3	SCS Runoff	0.028	2	480	506				P3
4	Combine	0.902	2	474	12,741	1, 2, 3			FACILITY A - INFLOW
5	Reservoir	0.233	2	588	12,309	4	167.86	4,764	FACILITY A - OUTFLOW
6	SCS Runoff	0.034	2	472	465			*******	P4
7	Combine	0.241	2	588	12,775	5, 6			Post-Construction Discharge
8	SCS Runoff	0.353	2	512	8,453				E1
Po	st-Constructi	on.gpw			Return	Period: 10	Year	Tuesday,	02 / 26 / 2019


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

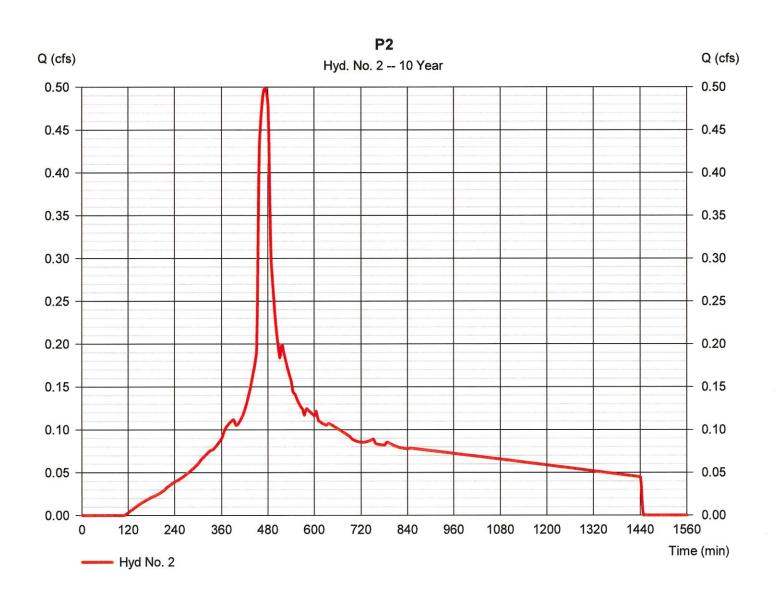
Tuesday, 02 / 26 / 2019

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.480 cfs
Storm frequency	= 10 yrs	Time to peak	= 472 min
Time interval	= 2 min	Hyd. volume	= 6,640 cuft
Drainage area	= 0.740 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(0.540 x 98) + (0.200 x 74)] / 0.740

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

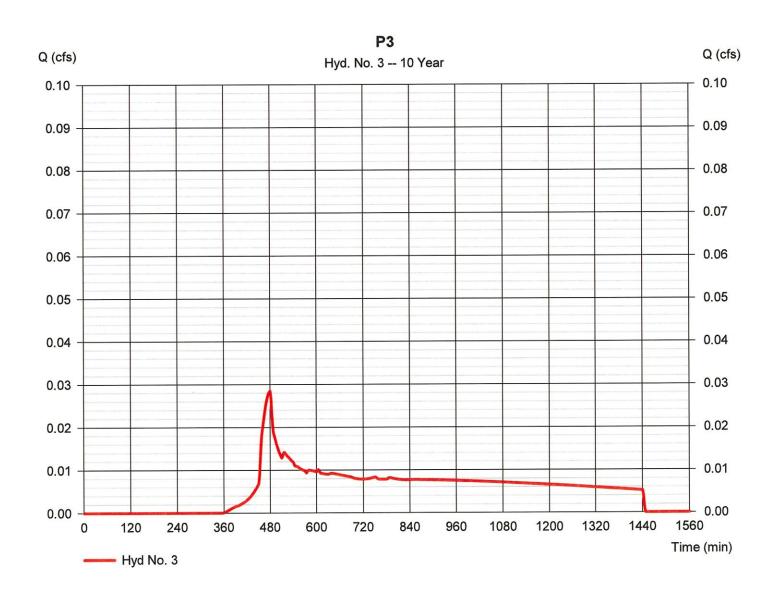

Tuesday, 02 / 26 / 2019

Hyd. No. 2

P2

Hydrograph type = SCS Runoff Peak discharge = 0.499 cfsStorm frequency = 10 yrsTime to peak = 472 min Time interval = 2 min Hyd. volume = 6,887 cuft Curve number Drainage area = 0.740 ac= 93* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 5.00 \, \text{min}$ Total precip. = 3.50 inDistribution = Type IA Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.590 x 98) + (0.150 x 74)] / 0.740


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

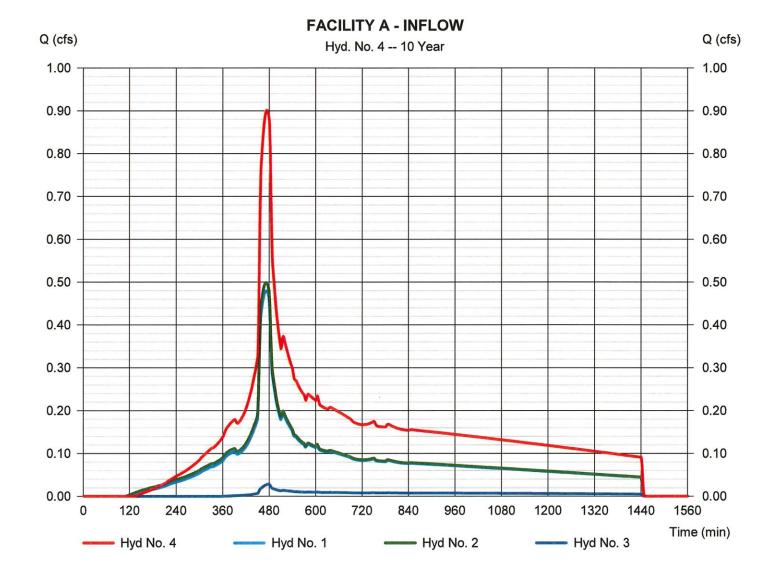
Tuesday, 02 / 26 / 2019

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.028 cfs
Storm frequency	= 10 yrs	Time to peak	= 480 min
Time interval	= 2 min	Hyd. volume	= 506 cuft
Drainage area	= 0.120 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = + (0.120 x 74)] / 0.120

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Tuesday, 02 / 26 / 2019

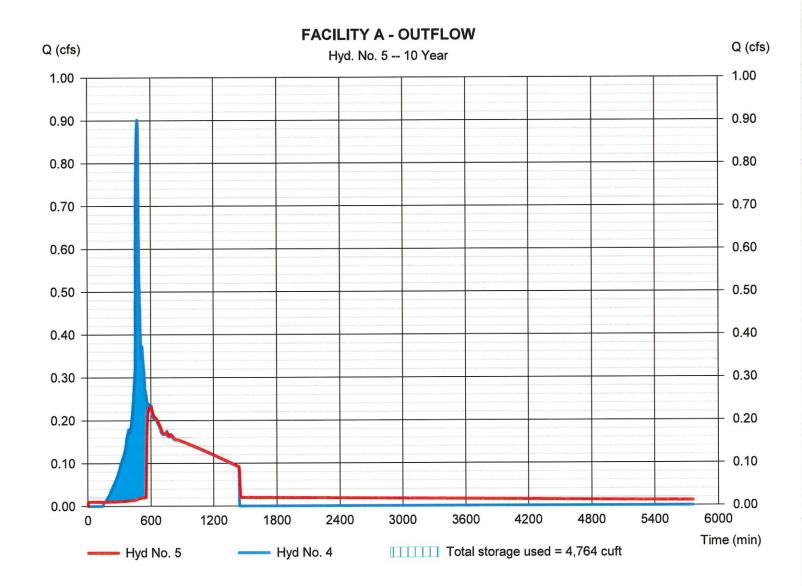
Hyd. No. 4

FACILITY A - INFLOW

Hydrograph type = Combine
Storm frequency = 10 yrs
Time interval = 2 min
Inflow hyds. = 1, 2, 3

Peak discharge = 0.902 cfs
Time to peak = 474 min
Hyd. volume = 12,741 cuft
Contrib. drain. area = 1.600 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

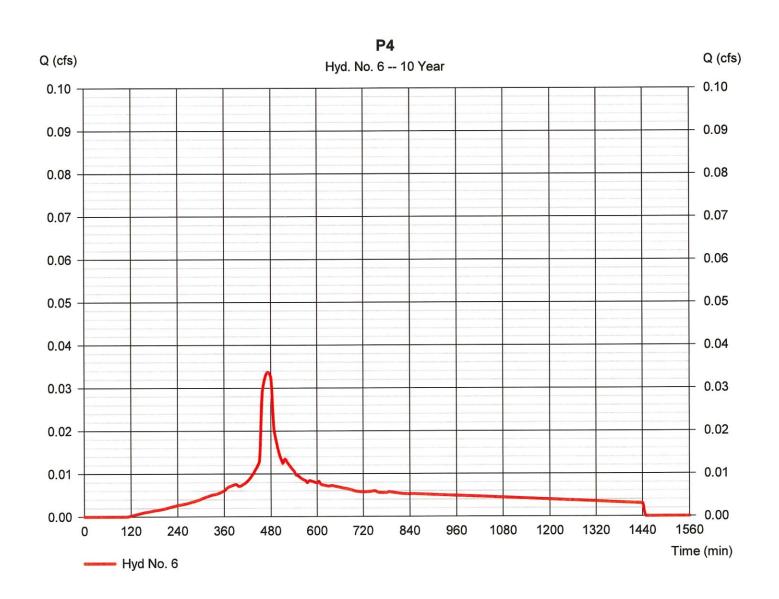

Tuesday, 02 / 26 / 2019

Hyd. No. 5

FACILITY A - OUTFLOW

Peak discharge = 0.233 cfsHydrograph type = Reservoir Storm frequency Time to peak = 588 min = 10 yrsHyd. volume = 12,309 cuftTime interval = 2 min Max. Elevation = 167.86 ft= 4 - FACILITY A - INFLOW Inflow hyd. No. = 4,764 cuft Reservoir name = BMP A Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 6

CS Runoff	Peak discharge =	= 0.034 cfs
) yrs	Time to peak =	= 472 min
min	Hyd. volume =	 465 cuft
050 ac	Curve number =	= 93*
0 %	Hydraulic length =	= 0 ft
ser	Time of conc. (Tc) =	5.00 min
50 in	Distribution =	Type IA
hrs	Shape factor =	= 484
n	yrs nin 050 ac 0 % er 50 in	yrs Time to peak = nin Hyd. volume = 050 ac Curve number = 0 Hydraulic length = 050 in Distribution = 050 Time to peak = 050 Ti

^{*} Composite (Area/CN) = [(0.040 x 98) + (0.010 x 74)] / 0.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

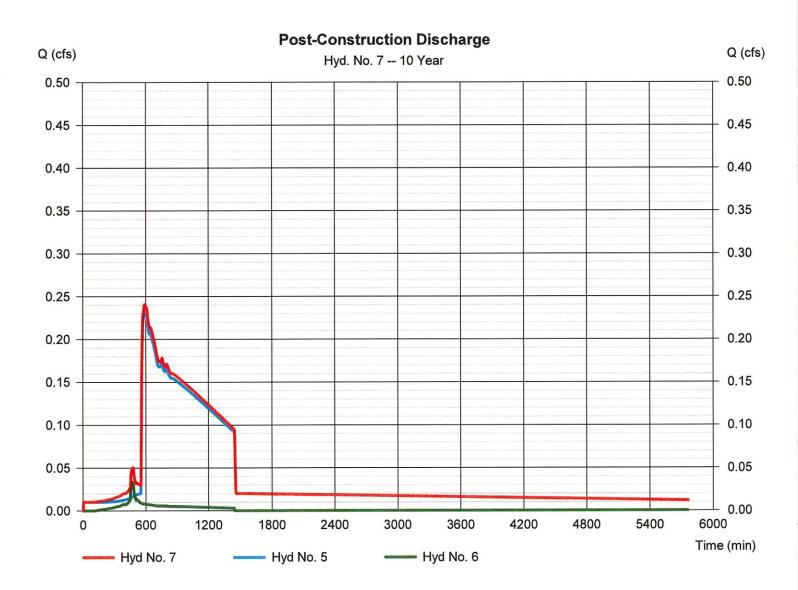
Hyd. No. 7

Post-Construction Discharge

Hydrograph type Storm frequency Time interval

Inflow hyds.

= Combine


= 10 yrs = 2 min

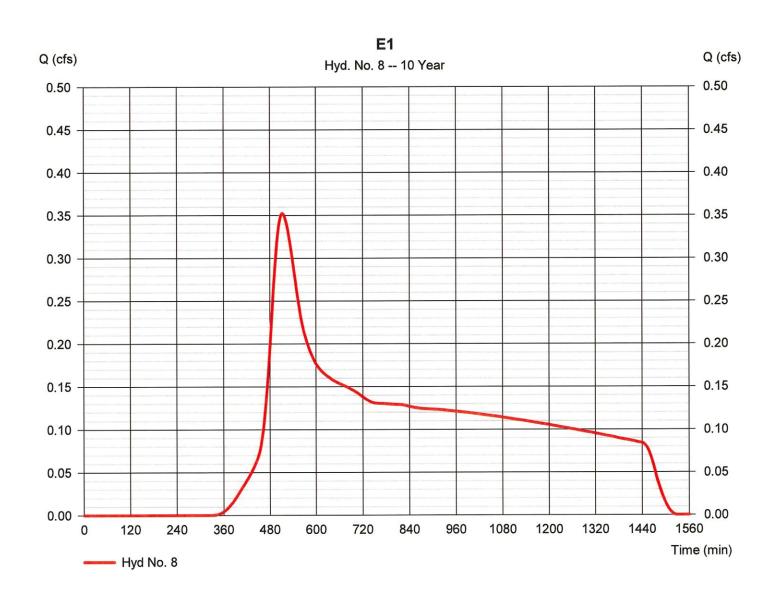
= 5, 6

Peak discharge Time to peak = 0.241 cfs

Time to peak = 588 min Hyd. volume = 12,775 cuft

Contrib. drain. area = 0.050 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Tuesday, 02 / 26 / 2019

Hyd. No. 8

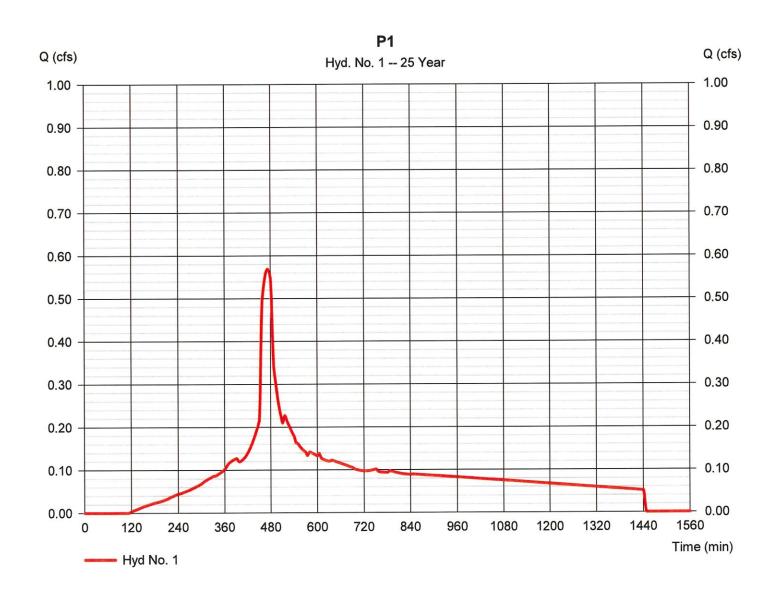
E1

= 0.353 cfsPeak discharge = SCS Runoff Hydrograph type Time to peak = 512 min Storm frequency = 10 yrsHyd. volume = 8.453 cuft = 2 min Time interval Curve number = 77* = 1.640 acDrainage area Hydraulic length = 0 ftBasin Slope = 0.0 %Time of conc. (Tc) $= 54.40 \, \text{min}$ Tc method = TR55 Distribution = Type IA Total precip. = 3.50 inShape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = [(1.440 x 74) + (0.200 x 98)] / 1.640

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.569	2	472	7,851				P1
2	SCS Runoff	0.588	2	472	8,109		*****	***************************************	P2
3	SCS Runoff	0.039	2	478	652				P3
4	Combine	1.086	2	474	15,237	1, 2, 3			FACILITY A - INFLOW
5	Reservoir	0.405	2	526	14,795	4	167.91	4,848	FACILITY A - OUTFLOW
6	SCS Runoff	0.040	2	472	548				P4
7	Combine	0.420	2	526	15,343	5, 6			Post-Construction Discharge
8	SCS Runoff	0.472	2	510	10,708	***************************************			E1
				are commenced and the commence					
Pos	st-Construction	on.gpw			Return	Period: 25	Year	Tuesday, (02 / 26 / 2019

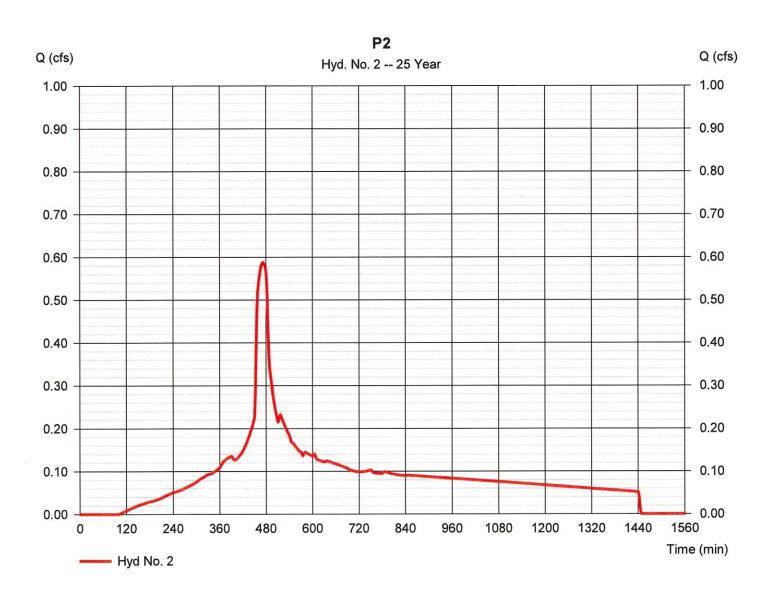

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.569 cfs
Storm frequency	= 25 yrs	Time to peak	= 472 min
Time interval	= 2 min	Hyd. volume	= 7,851 cuft
Drainage area	= 0.740 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(0.540 x 98) + (0.200 x 74)] / 0.740

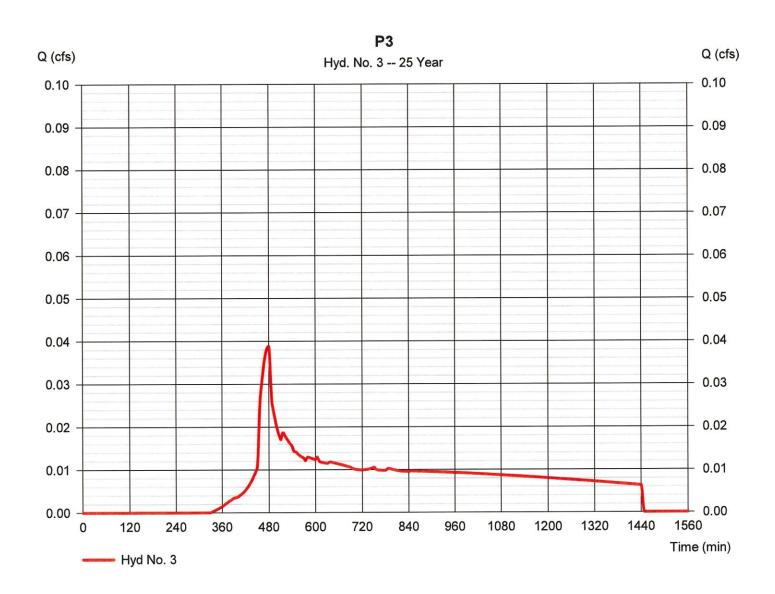

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Tuesday, 02 / 26 / 2019

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.588 cfs
Storm frequency	= 25 yrs	Time to peak	= 472 min
Time interval	= 2 min	Hyd. volume	= 8,109 cuft
Drainage area	= 0.740 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(0.590 x 98) + (0.150 x 74)] / 0.740


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

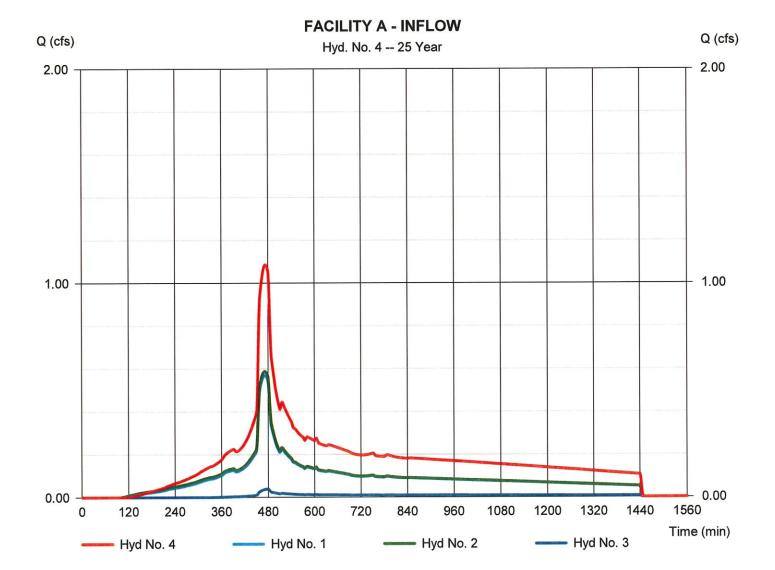
Tuesday, 02 / 26 / 2019

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.039 cfs
Storm frequency	= 25 yrs	Time to peak	= 478 min
Time interval	= 2 min	Hyd. volume	= 652 cuft
Drainage area	= 0.120 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = + (0.120 x 74)] / 0.120

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Tuesday, 02 / 26 / 2019

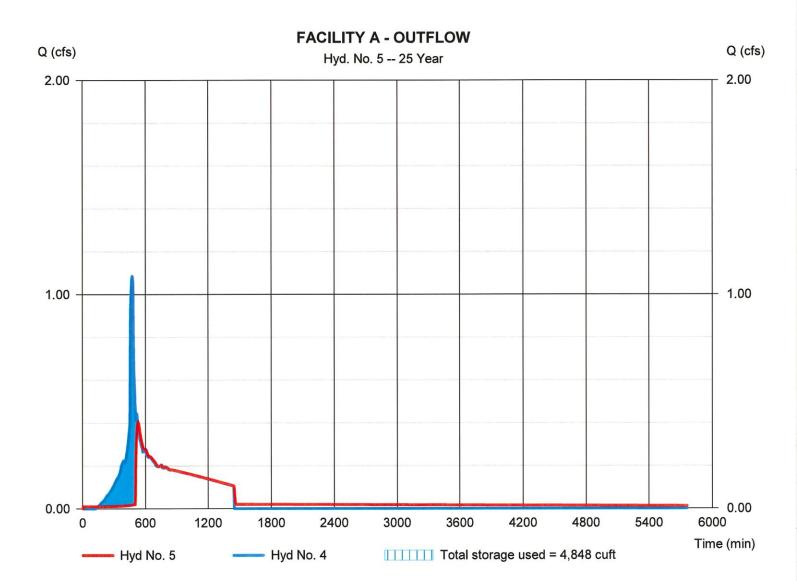
Hyd. No. 4

FACILITY A - INFLOW

Hydrograph type = Combine
Storm frequency = 25 yrs
Time interval = 2 min
Inflow hyds. = 1, 2, 3

Peak discharge = 1.086 cfs
Time to peak = 474 min
Hyd. volume = 15,237 cuft
Contrib. drain. area = 1.600 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

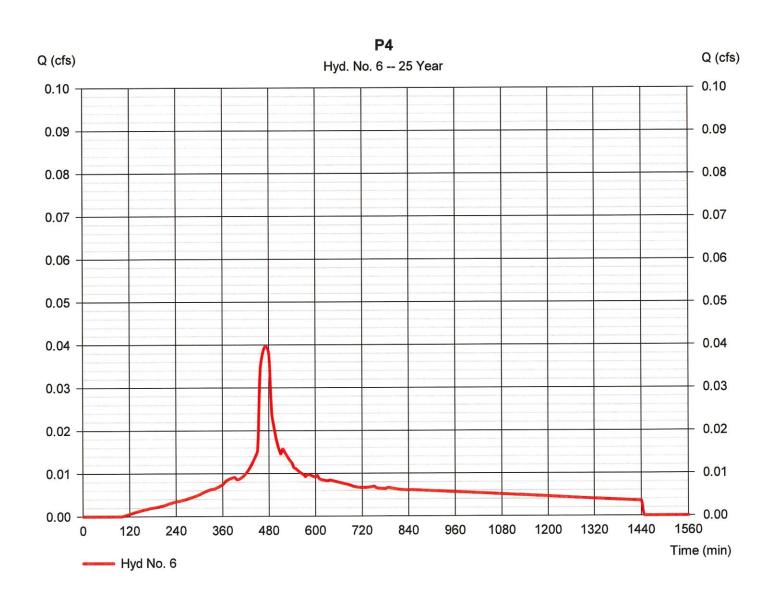

Tuesday, 02 / 26 / 2019

Hyd. No. 5

FACILITY A - OUTFLOW

= Reservoir Peak discharge = 0.405 cfsHydrograph type Storm frequency = 25 yrs Time to peak = 526 min Time interval = 2 min Hyd. volume = 14,795 cuftInflow hyd. No. = 4 - FACILITY A - INFLOW Max. Elevation $= 167.91 \, \text{ft}$ = BMP A Max. Storage = 4,848 cuft Reservoir name

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

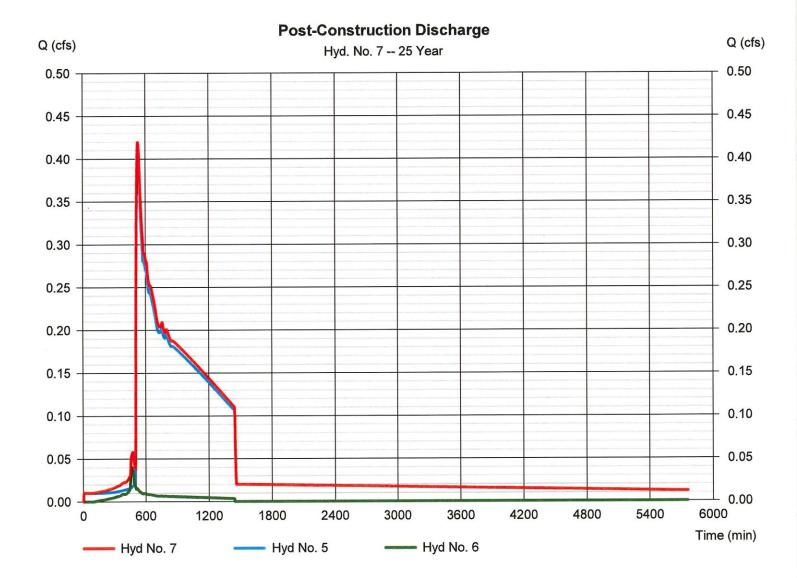
Tuesday, 02 / 26 / 2019

Hyd. No. 6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.040 cfs
Storm frequency	= 25 yrs	Time to peak	= 472 min
Time interval	= 2 min	Hyd. volume	= 548 cuft
Drainage area	= 0.050 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(0.040 x 98) + (0.010 x 74)] / 0.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Tuesday, 02 / 26 / 2019

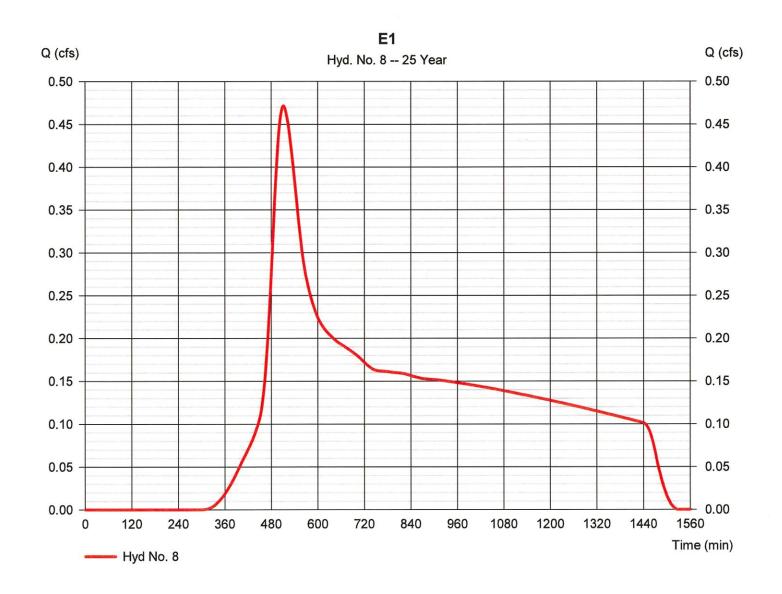
Hyd. No. 7

Post-Construction Discharge

Hydrograph type = Combine
Storm frequency = 25 yrs
Time interval = 2 min
Inflow hyds. = 5, 6

Peak discharge = 0.420 cfs
Time to peak = 526 min
Hyd. volume = 15,343 cuft
Contrib. drain. area = 0.050 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Tuesday, 02 / 26 / 2019

Hyd. No. 8

E1

Hydrograph type = SCS Runoff Peak discharge = 0.472 cfsStorm frequency = 25 yrsTime to peak = 510 min Hyd. volume = 10,708 cuft Time interval = 2 min Curve number Drainage area = 1.640 ac= 77* = 0.0 % Hydraulic length = 0 ftBasin Slope Tc method = TR55 Time of conc. (Tc) $= 54.40 \, \text{min}$ Total precip. = 4.00 inDistribution = Type IA Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(1.440 x 74) + (0.200 x 98)] / 1.640

Stormwater Dr	ainage	Report
---------------	--------	--------

Appendix 3: Conveyance Calcs

Pipe Conveyance Calculations

MINIMUM PIPE SLOPES & CAPACITIES

Project:

Riverland Subdivision

Client:

Del Boca Vista, LLC

Job No.: Design:

DBVC0000006

Check:

A. Rappé

Date:

02/26/19

Rev:

Storm = SBUH Runoff (25-yr) Distribution = NRCS 24-hr Type IA

Default 'n' = 0.013

Pipe Sizing (via Manning's equation, full flow)										
Upstream Node	Downstream Node	Q1 NRCS TYPE 1A	Slope	Dia. (in)	n	Q2 Cap.	V	Che	Checks	
		(cfs)	%	(in)		(cfs)	(fps)	Q ₂ >Q ₁	V>=	
CB01	DI01	1.086	0.44	12	0.013	2.36	3.01	OK	Oł	
OCS01	MH01	0.405	0.44	12	0.013	2.36	3.01	ОК	OI	
MH01	MH02	0.405	0.44	12	0.013	2.36	3.01	OK	OI	
CB02	MH03	0.040	0.44	12	0.013	2.36	3.01	OK	0	
	CB01 OCS01 MH01	Upstream Node Downstream Node CB01 DI01 OCS01 MH01 MH01 MH02	Upstream Node Downstream Node Q1 NRCS TYPE 1A CB01 DI01 1.086 OCS01 MH01 0.405 MH01 MH02 0.405	Upstream Node Downstream Node Q1 NRCS TYPE 1A Slope (cfs) % CB01 DI01 1.086 0.44 OCS01 MH01 0.405 0.44 MH01 MH02 0.405 0.44	Upstream Node Downstream Node Q1 NRCS TYPE 1A Slope (in) CB01 DI01 1.086 0.44 12 OCS01 MH01 0.405 0.44 12 MH01 MH02 0.405 0.44 12	Upstream Node Downstream Node Q1 NRCS TYPE 1A Slope Dia. (in) n CB01 DI01 1.086 0.44 12 0.013 OCS01 MH01 0.405 0.44 12 0.013 MH01 MH02 0.405 0.44 12 0.013	Upstream Node Downstream Node Q1 NRCS TYPE 1A Slope Dia. (in) n Q2 Cap. CB01 DI01 1.086 0.44 12 0.013 2.36 OCS01 MH01 0.405 0.44 12 0.013 2.36 MH01 MH02 0.405 0.44 12 0.013 2.36	Upstream Node Downstream Node Q1 NRCS TYPE 1A Slope Dia. (in) n Q2 Cap. V CB01 DI01 1.086 0.44 12 0.013 2.36 3.01 OCS01 MH01 0.405 0.44 12 0.013 2.36 3.01 MH01 MH02 0.405 0.44 12 0.013 2.36 3.01	Upstream Node Downstream Node Q1 NRCS TYPE 1A Slope Dia. (in) n Q2 Cap. V CB01 DI01 1.086 0.44 12 0.013 2.36 3.01 OK OCS01 MH01 0.405 0.44 12 0.013 2.36 3.01 OK MH01 MH02 0.405 0.44 12 0.013 2.36 3.01 OK	

Stormwater	Drainage	Report
atomiwater	Dialiaut	Neudit

Appendix 4: Soil Properties

Hydrologic Soil Group—Yamhill County, Oregon (Riverlands Subdivision)

MAP LEGEND MAP INFORMATION Area of Interest (AOI) The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) 1:24.000. C/D . Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Not rated or not available Enlargement of maps beyond the scale of mapping can cause ___ A misunderstanding of the detail of mapping and accuracy of soil Water Features line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В scale. Transportation B/D +++ Please rely on the bar scale on each map sheet for map С measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) D Major Roads Not rated or not available Local Roads Maps from the Web Soil Survey are based on the Web Mercator Soil Rating Lines projection, which preserves direction and shape but distorts Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more A/D accurate calculations of distance or area are required. В This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Yamhill County, Oregon Survey Area Data: Version 6, Sep 18, 2018 C C/D Soil map units are labeled (as space allows) for map scales D Not rated or not available Date(s) aerial images were photographed: Aug 19, 2015—Sep Soil Rating Points The orthophoto or other base map on which the soil lines were Α compiled and digitized probably differs from the background A/D . imagery displayed on these maps. As a result, some minor В shifting of map unit boundaries may be evident. B/D .

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
2300A	Aloha silt loam, 0 to 3 percent slopes	C/D	1.7	100.0%
Totals for Area of Interest			1.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher