PLANNING COMMISSION STAFF REPORT CRESTVIEW CROSSING PLANNED UNIT DEVELOPMENT AND CONDITIONAL USE PERMIT

HEARING DATE:
FILE NO:
REQUEST:

LOCATION: $\quad 4505$ E Portland Road and abutting property without a street address
TAX LOTS: Yamhill County tax lots 3216-01100 and 3216AC-13800
PROPERTY SIZE:
APPLICANT: Andrew Tull of 3J Consulting, Inc.
OWNER:
ZONE:

PLAN DISTRICT: COM (commercial), LDR (low density residential), MDR (medium density residential)

OVERLAYS: Airport Conical Surface

Attachments:

Order 2018-10 with
Exhibit "A": Findings
Exhibit "B": Conditions
Attachments

1. Application Material
2. Agency Comments
3. Public Comments
4. Joint Permit Application
5. Submittals by Applicant after July 25, 2018 (Density, Private vs. Publuc WalkwaysPreliminary Plat, Phasing Plan)
6. 5 Party Agreement

Location Map

A. DESCRIPTION OF APPLICATION:

The applicant is proposing a mixture of commercial development, single-family homes, cottage style single-family homes, affordable housing and multi-family homes. Residential use will include 18 single-family homes on large lots, 230 cottage homes, and 51multi-family homes with modifications to the dimensional requirements of the base zones dimensional requirements. One 4.4 -acre lot will be created to allow for future commercial development (Attachment 1).

The applicant is proposing both active and passive opens space areas. There will be a network of open spaces, wetlands and a network of linked pedestrian paths. The paths will provide connections for the residents to open spaces, a neighborhood park and wetlands.

Both public and private streets will be utilized through the PUD process. Several off-street parking areas are proposed and on-street parking will also be provided on the public streets.

The applicant has reviewed the City of Newberg Affordable Housing Action Plan and is proposing an affordable housing component that would provide twelve single family detached homes at reduced prices and deed restrictions designed to create perpetual affordability. The twelve homes will be marketed at rates affordable to those home buyers earning less than the
median family income as described within the City's Housing Action Plan's definition of affordable housing. The City's Affordable Housing Action Plan defines affordable housing as when a family spends no more than 30% of their income for housing. The applicant has stated that "at closing, buyers will be required to sign covenants agreeing to limit the price of any future sale to a rate of appreciation which is tied to either the Area Median Family Income rate or another acceptable index of income." Further, the applicant has stated that they "plan on working with the Housing Authority of Yamhill County and the City's Affordable Housing Ad Hoc Committee to refine the covenants which will be recorded with the sale of these units and to eventually find parties which may qualify for the purchase of affordable houses. The proposed affordable homes will require owner occupation and will be constructed at various locations throughout the development."

B. SITE INFORMATION:

1. Location: 4505 E. Portland Road and abutting tax lot 3216AC-13800
2. Size: 33.13 Acres
3. Topography: Sloping topography, generally slopes downward from the northwest to the southeast.
4. Current Land Uses: vacant, single family house, a barn and several small structures (animal coops/pens or storage sheds) buildings and unmaintained orchards
5. Natural Features: wetlands
6. Adjacent Land Uses:
a. North: Unincorporated Yamhill County, Oxberg Lake Estates with lots 1 acre and larger
b. East: Single family house, vacant
c. South: E Portland Road, Klimek Homes subdivision, Providence Newberg Medical Center
d. West: Spring Meadow Park, Spring Meadow Subdivision
7. Access and Transportation: Access will be provided from the south by E Portland Road and E Crestview Drive from the north.
8. Utilities:
a. Sanitary Sewer: The City's GIS shows there is a 24 -inch public sewer line which is available for extension to the north to serve the Crestview Crossing PUD. The line is located approximately 700-feet south of E Portland Road at the south end of NE Klimek Lane.
b. Water: The City's GIS shows there is a 10 -inch public water line in E Portland Road which is available for extension to the north, and an 8-inch public water
"Working Together For A Better Community-Serious About Service"
line in E Crestview Drive which is available for extension to the south.
The City's GIS also shows an 10-inch non-potable water line along E Portland Road that terminates just east of the property near NE Harmony Lane.
c. Storm: The City's GIS shows there is a 15 -inch public stormwater line available for connection to the northern terminus of E Crestview Drive, and a 24 -inch public stormwater line culvert under E Portland Road.
d. Overhead lines: There are no existing overhead lines. All new service lines are required to be undergrounded.
e. Wetlands: There are existing wetlands within the boundary of the Crestview Crossing PUD. The applicant will be required to follow state/federal processes to delineate wetlands and apply for a joint permit application (JPA).

Zoning Map

Aerial Photo

C. PROCESS: The planned unit development request is a Type III application and follows the procedures in Newberg Development Code 15.100.050. The Planning Commission will hold a quasi-judicial hearing on the application. The Commission is to make a decision on the application based on the criteria listed in the attached findings. The Planning Commission's decision is final unless appealed. Important dates related to this application are as follows:

1. $07 / 05 / 18: \quad$ The Community Development Director deemed the application complete.
2. $07 / 12 / 18: \quad$ The applicant mailed notice to the property owners within 500 feet of the site.
3. $07 / 12 / 18: \quad$ The applicant posted notice on the site.
4. $07 / 18 / 18: \quad$ The Oregonian newspaper published notice of the Planning Commission hearing.
5. $07 / 16 / 18 \quad$ City staff posted notice of the Planning Commission hearing in 4 public places.
6. $08 / 09 / 18: \quad$ The Planning Commission will hold a quasi-judicial hearing to consider the application.
D. AGENCY COMMENTS: The application was routed to several public agencies for review and comment. Comments and recommendations from city departments have been incorporated into the findings and conditions. As of the writing of this report, the city received the following external agency comments (Attachment 2):
7. PGE
8. Oregon Department of State Lands (email)
9. ODOT
E. PUBLIC COMMENTS: As of the writing of this report, the city has received ten public comments. Two of the comments expressed concern for the number of trees proposed for removal. The other eight generally expressed concern regarding degradation of livability due to noise, not wanting a Lake Oswego based Developer building the development, trespassing, traffic, movement of the planned roundabout further south, violation of the 5 party agreement with Oxberg Lake Estates, need for a barrier between Oxberg Lake Estates and the large lots proposed by the Crestview Crossing PUD, wanting to utilize all the wetlands as a park, filling of wetlands and maintaining the water quality of the Oxberg Lake Estates aquifer which the Oxberg Lake Estates draws potable water from for their homes. All public comments received in time are included in Attachment 3.

F. ANALYSIS:

Issues

Wetlands: There are five wetlands located within the confines of the subject property. Subject property means both Yamhill County tax lot 01100 and 13800. The applicant did not provide detailed information pertaining to the wetlands. This information was obtained from the Oregon Department of State Lands website. In an email dated July 26, 2018, Ms. Jevra Brown, Aquatic Resource Planner for Oregon Department of State Lands (Attachment 4) notified City staff that two wetland delineation applications had expired and one application, Joint Permit Application (JPA) No.WD2013-0148, administratively closed application 57027-RF, 58464-RF application on extension through August 31, 2018. The aforementioned application was for a different layout that had a larger commercial component proposed as part of the development. On July 30, 2018, an email was received from Mr. Dan Cary, Aquatic Resource Coordinator Columbia and Clatsop Counties for the Oregon Department of State Lands which stated "I am told by the applicant that there is a new revised application coming but I have not seen it. I am not reviewing any application at this time. They are in an extension of my permit decision deadline until August 31, 2018. They will likely need to request another extension to
maintain this file number since I still haven't received a new application. From the informal plans I have seen the project has changed significantly and it will go back out for public review and restart the clock for the whole process when I get a complete application. That is all I have."

The following is a description of the existing wetlands taken directly from the Joint Permit Application NO. WD2013-0148 (Attachment 2).

- Wetland A (A1, A2) $(288,785$ sf) was primarily a PEM/slope wetland with areas of PSS and PFO. A 1, 4471f perennial drainage was located within and directly adjacent to the wetland with an area of 6,589 sf. combined wetland/ water area was 6.7 acres ($295,374 \mathrm{sf}$).
- Wetland B, at 189 sf (0.004 acre) was a PFO/depressional wetland located in the northwest corner of the site.
- The other two wetlands are isolated and located in the eastern portion of the property which is planted to small trees for a tree farm. These wetlands were delineated in 2007 and although no hydrology was indicated in 2013 their presence was based on vegetation and soils criteria. Wetland C is $13,147 \mathrm{sf}(0$. 3 acres) and classified as palustrine emergent slope wetland. The dominant vegetation in the emergent portion is meadow foxtail (Alopecurus pratensis) and bentgrass (Agrostis stolonifera). Wetland D is another isolated wetland (469sf) immediately below the first.

Drawings: The Land Use plan set, dated June 6, 2018, were not printed to scale so no precise measurements could be made of such dimensional requirements as driving lanes within proposed parking lots. Due to time constraints these additional submittals are included as attachments but have not been thoroughly reviewed (Attachment 6). The City conducts a completeness review that is not detailed to find issues such as drawings not being to scale. A completeness check is done to determine if an applicant has submitted the required materials but not the quality of those materials.

Late Submittals: The applicant has made several late submittals that there is not enough time to send out for review by all internal and external review agencies.

- Public vs Private Sidewalks and Pathways (requested by staff due to not being clearly delineated within the narrative or drawings dated June 6, 2018).
- Letter dated June 24, 2018 describing phasing (submitted by applicant, received July 26, 2018 via email attachment)
- Phasing Plan (submitted by applicant)
- Tentative Plat that removes attached product from the plan in favor of all detached homes. (submitted by applicant)

In terms of phasing the applicant is requesting that "the City grant the developer a ten (10) year window for the construction of the infrastructure shown within the plan's phases with opportunities for up to five (5) one (1) year extensions following the approval of the preliminary plat. While the Applicant does not intend to wait for ten (10) years to allow for the construction of the proposed improvements, the flexibility afforded by the ten (10) year schedule with the requested extensions will allow for the project's various
components to be sensitive to changing market conditions."
Public Utility Easements (PUEs): The applicant is proposing 8 foot wide PUEs along the private street frontages. PGE has stated that they will not accept the use of PUEs under 10 feet wide.
G. PRELIMINARY STAFF RECOMMENDATION: The preliminary staff recommendation is made in the absence of public hearing testimony, and may be modified subsequent to the close of the public hearing. At this writing, staff recommends the following motion:

Planning Commission open the public hearing, take public testimony, keep the record open and continue the hearing until September 13, 2018 in order for and supplental material to be routed for review and for the applicant to submit additional information.

An Order Approving PUD18-0001/CUP18-0004 for the Crestview Crossing PUD and Conditional Use Permit to Allow Residential Use in the C-2 Commercial Zoning District and Create 250 Lots for Single Family, Multi-family and Commercial Use at 4505 E
 Portland Road (Yamhill County Tax Lot 3216-01100) and on Yamhill County Tax Lot 3216AC-13800.

RECITALS

1. CG Commercial LLC and VPCF Crestview LLC submitted an application for preliminary plan approval of a planned unit development for 250 lots and conditional use permit to allow residential use on C-2 commercially zoned property at 4505 E Portland Road (Yamhill County Tax Lot 3216-01100) and Yamhill County Tax Lot 3216AC-13800.
2. After proper notice, the Newberg Planning Commission held a hearing on August 9, 2018 to consider the application. The Commission considered public testimony, kept the hearing open and continued the hearing to September 13, 2018 based on a lack of information needed to assess the proposed PUD and conditional use permit.
3. The Newberg Planning Commission finds that the application meets the applicable criteria as shown in the findings shown in Exhibit "A".

The Newberg Planning Commission orders as follows:

1. Conditional Use Permit Application CUP18-0004 is hereby approved, subject to the conditions contained in Exhibit "B". Exhibit "B" is hereby adopted and by this reference incorporated.
2. The planned unit development preliminary plan application PUD18-0001 is hereby approved, subject to the conditions contained in Exhibit "B". Exhibit "B" is hereby adopted and by this reference incorporated.
3. The findings shown in Exhibit "A" are hereby adopted. Exhibit "A" is hereby adopted and by this reference incorporated.
4. This order shall be effective August 24, 2018 unless appealed prior to that date.
5. This order shall expire one year after the effective date above if the applicant does not apply for final plan approval by that time, unless an extension is granted per Newberg Development Code 15.240.020.
6. The conditional permit shall expire one years after the effective date above if the applicant does not apply for final plan approval by the time, unless an extension as granted per Newberg

Development Code 15.225.100.
7. The phasing plan shall expire ten years after the effective date above with the possibility of five one year extensions as granted per 15.240.020(C).

Adopted by the Newberg Planning Commission this 13th day of September, 2018.
ATTEST:

Planning Commission Chair
Planning Commission Secretary
List of Exhibits:
Exhibit "A": Findings
Exhibit "B": Conditions

Exhibit "A" to Planning Commission Order 2018-10
 Findings -File PUD18-0001/CUP18-0004
 Crestview Crossing PUD

I. Applicable Planned Unit Development Criteria: Newberg Development Code 15.240

Requested Conditional Use Permit: The applicant is requesting that C-2 zoned property be used for single family and multifamily residential uses.

> 15.225 .060 General conditional use permit criteria - Type III.
> A conditional use permit may be granted through a Type III procedure only if the proposal conforms to all the following criteria:

Abstract

A. The location, size, design and operating characteristics of the proposed development are such that it can be made reasonably compatible with and have minimal impact on the livability or appropriate development of abutting properties and the surrounding neighborhood, with consideration to be given to harmony in scale, bulk, coverage and density; to the availability of public facilities and utilities; to the generation of traffic and the capacity of surrounding streets, and to any other relevant impact of the development.

Finding: The proposal is within the Newberg Urban Growth Boundary where urban density is encouraged. Oxberg Lake Estates subdivision is located to the north and is located in unincorporated Yamhill County with lot sizes of 1 acre and larger. Along the northern property line the applicant has proposed 18 larger lots ranging from 8,105 square feet to 10,492 square feet as a buffer to the Oxberg Lake Estates subdivision. To the west is Spring Meadow Park and Spring Meadow subdivision with lots approximating 8,000 square feet. The applicant has proposed smaller lots ranging from 1,508 square feet to 2,307 square feet along the western property line. Two larger lots in the Spring Meadow subdivision will directly abut smaller lots 245 through 248 in the proposed development. The bulk of the smaller lots 215 through 244 will abut Spring Meadow Park, which will provide a natural buffer for the larger lots to the west located in Spring Meadow subdivision to the west of the Park. Two other lots in Spring Meadow subdivision will abut proposed larger lot 1 and public Street "C". To the south is E Portland Road, smaller lots 203 through 214, commercial lot 250 and multiple family lot 249 . To the west there is one existing single family home that is located approximately 263 feet from the east property line of the proposed development. The site plan shows one large lot (lot 18), smaller lots 19 through 30, proposed Public Streets " B " and " C " and two multfamily buildings located in the southeastern portion of the site.

The height of the proposed buildings meets the requirements of the NDC and should relate well to human scale. The bulk of the proposed development is somewhat out of character with the surrounding area due to the reduced size of the proposed lots and reduced setbacks. Lot and parking coverage cannot be accessed with respect to the surrounding subdivisions and lots due a lack of data provided by the applicant. The landscaping and screening is adequate for most of the surrounding
lots with the exception of 1812 Leo Lane, tax lot 12100 , located in Spring Meadow subdivision. The property in Spring Meadow subdivision will abut proposed lots 245 through 248. It should be pointed out that the surrounding subdivisions were developed before the adoption of the current development code, when larger lots and lower density was common. Due to a lack of supporting information provided by the applicant, this criterion cannot be adequately evaluated.

Adequate public facilities and utilities are available to serve the development. The applicant has provided a Transportation Impact Analysis (TIA) dated June 2018. The TIA makes several recommendations pertaining to Providence Drive/E Crestview Drive/E Portland Road intersection and site circulation/site access operations that have been incorporated into the findings in Exhibit "A" and conditions of approval in Exhibit "B".

City staff engineers have reviewed the proposed development for the availability of sanitary sewer, water and stormwater facilities and services. Sanitary sewer, water and stormwater services are available to serve the development. Conditions of approval have been drafted by City staff, which ensure that if any upgrades or additional services are needed then the applicant will construct them per City requirements. Sanitary sewer, water and stormwater requirements are discussed in other sections of this report to further support the availability of facilities, services and any needed upgrades as stated in the conditions of approval.

In 2006, the City of Newberg, Yamhill County, Oxberg Lake Homeowners Association, JT Smith Companies, Ken and Joan Austin and Meadowood Development, LLC. entered into an agreement commonly known as the "Five Party Agreement". This agreement pertains to transportation issues within and surrounding area of the Crestview Crossing project area and needed improvements agreed upon by those signatories of the agreement. (Attachment XX)

Because detailed information pertaining to lot and parking was not provided by the applicant, this section of the NDC cannot be fully assessed.

B. The location, design, and site planning of the proposed development will provide a convenient and functional living, working, shopping or civic environment, and will be as attractive as the nature of the use and its location and setting warrants.

Finding: The proposed development will be accessed via E Portland Road from the south and E Crestview Drive from the north. With direct access to E Portland Road, the proposed development will have easy access to the Portland Metro area, Downtown Newberg, grocery stores, recreational uses, medical facilities, offices and industrial uses. When the proposed commercial lot is developed there will be direct access for residents within the development and for those within the surrounding area. The possible additional population will potentially spend additional dollars within the community and have the opportunity to work and live within the City of Newberg. The property owner is utilizing planners, engineers, architects and landscape architects to design the project. These professionals have produced designs and site planning for the subject property. Because of the access from the proposed development to potential employers, shopping, downtown and other community
amenities and the property owner using professionals to design and provide site planning for the subject property, this criterion is met.
C. The proposed development will be consistent with this code. [Ord. 2451, 12-2-96. Code 2001 § 151.210.]

Finding: The applicant has provided responses to Newberg Development Code sections, a set of land use plans, various technical reports and public notification of the public hearing. The land use plans were not to scale so assessing dimensional measurements such as parking lot driving lane width could not be accomplished. City planning staff cannot determine compliance with this criteria because not all required material has been submitted.

Recommendation: City staff recommends approval of the Conditional Use Permit to allow residential use on C-2 zoned property because the NDC criteria listed in Section 15.225.060 have been met.

II. Chapter 15.240 PD PLANNED UNIT DEVELOPMENT REGULATIONS

15.240.020 General provisions.
A. Ownership. Except as provided herein, the area included in a proposed planned unit development must be in single ownership or under the development control of a joint application of owners or option holders of the property involved.

Finding: Yamhill County tax lot 13800 is owned by GC Commercial, LLC. and tax lot 01100 is owned by VPCF Crestview, LLC. The person signing the City's Application for the two LLCs is Jeff Smith. This criterion is met.
B. Processing Steps - Type III. Prior to issuance of a building permit, planned unit development applications must be approved through a Type III procedure and using the following steps:

1. Step One - Preliminary Plans. Consideration of applications in terms of on-site and off-site factors to assure the flexibility afforded by planned unit development regulations is used to preserve natural amenities; create an attractive, safe, efficient, and stable environment; and assure reasonable compatibility with the surrounding area. Preliminary review necessarily involves consideration of the off-site impact of the proposed design, including building height and location.

Finding: On July 5, 2018, the applicants' submittal was deemed complete by City staff. The applicant has provided technical reports evaluating the on-site and off-site impacts of the proposed development. The proposed development would remove 923 of 1,045 total trees within the site. The City of Newberg does not have an urban forestry program and the development code only provides for tree preservation within Stream Corridor overlay areas. There are no noted Stream Corridor areas within the confines of the subject property. The applicant has provided elevation drawings
illustrating the proposed façades of buildings, which appear to be aesthetically pleasing. The applicant submitted a TIA to assess impacts and proposed recommendations to mitigate the additional number of automobile trips projected to be generated by the development of the subject property. A landscaping plan has been submitted that meets the requirements of the NDC. The applicant has made an effort to locate larger lots on the northern border of the subject property where they will abut larger lots of the Oxberg Lake Estates subdivision that is located in unincorporated Yamhill County. Most of the smaller lot higher density area along the western boundary of the subject property will abut Spring Meadow Park. The multifamily buildings will be located north of E Portland Road and approximately 263 feet from the closest house to the east. A network of paths and sidewalks provide pedestrians safe access throughout the development and the proposed park and preserved wetland area.

This criterion is met.
> 2. Step Two - Final Plans. Consideration of detailed plans to assure substantial conformance with preliminary plans as approved or conditionally approved. Final plans need not include detailed construction drawings as subsequently required for a building permit.

Finding: Not applicable for the first step in the PUD review process.
C. Phasing. If approved at the time of preliminary plan consideration, final plan applications may be submitted in phases. If preliminary plans encompassing only a portion of a site under single ownership are submitted, they must be accompanied by a statement and be sufficiently detailed to prove that the entire area can be developed and used in accordance with city standards, policies, plans and ordinances.

Finding: On Thursday July 26, 2018, the City received a phasing plan (Attachment 7). City staff urged the applicant to submit the phasing plan and any other materials to the City as soon as possible. Due to the late submittal the phasing plan has not had adequate time to be reviewed by internal departments or external agencies.

The applicant is proposing the following phasing:

- Phase 1: This phase will include improvements to the site's frontage along E Portland Road and the installation of underground utility connections necessary to provide service to the site.
- Phase 1a: This phase will include the extension of E Crestview Drive through the site and the construction of roadways and lots located east of the E Crestview Drive extension to public road D. This phase will also include the stormwater facility located south of public road B.
- Phase 2: This phase will include the installation of the roadways, infrastructure and lots which are to be located west of the E Crestview extension. Crestview Crossing - Alternate Plat and Phasing July 24, 2018
- Phase 3: This phase will include the lots located east of public road D to the property's eastern property boundary.
- Phases B and C will be constructed after the construction of Phases 1 and 1 A and may be constructed independently of the subdivision lots and by other entities or assigns.

Due to the size of the plan and the complexity of the various components within the development, the Applicant ha requested that the City grant the developer a ten (10) year window for the construction of the infrastructure shown within the plan's phases with opportunities for up to five (5) one (1) year extensions following the approval of the preliminary plat. While the Applicant does not intend to wait for ten (10) years to allow for the construction of the proposed improvements, the flexibility afforded by the ten (10) year schedule with the requested extensions will allow for the project's various components to be sensitive to changing market conditions."

Because this phasing plan was submitted late, both internal city departments and external review agencies have not had time to review the proposed phasing plan. City staff cannot state definitively if this criterion is met due to a lack of time to review the phasing plan.

F. Density. Except as provided in NMC 15.302 .040 relating to subdistricts, dwelling unit density

 provisions for residential planned unit developments shall be as follows:
1. Maximum Density.

a. Except as provided in adopted refinement plans, the maximum allowable density for any project shall be as follows:

District	Density Points
$R-1$	175 density points per gross acre, as calculated in subsection $(F)(1)(b)$ of this section
$R-2$	310 density points per gross acre, as calculated in subsection $(F)(1)(b)$ of this section
$R-3$	640 density points per gross acre, as calculated in subsection $(F)(1)(b)$ of this section
$R P$	310 density points per gross acre, as calculated in subsection $(F)(1)(b)$ of this section
$C-1$	As per required findings
$C-2$	As per required findings

District	Density Points
C-3	As per required findings

b. Density point calculations in the following table are correlated to dwellings based on the number of bedrooms, which for these purposes is defined as an enclosed room which is commonly used or capable of conversion to use as sleeping quarters.
Accordingly, family rooms, dens, libraries, studies, studios, and other similar rooms shall be considered bedrooms if they meet the above definitions, are separated by walls or doors from other areas of the dwelling and are accessible to a bathroom without passing through another bedroom. Density points may be reduced at the applicant's discretion by 25 percent for deed-restricted affordable dwelling units as follows:

Density Point Table		
Dwelling Type	Density Points: Standard Dwelling	
Studio and efficiency	12	9
One-bedroom	14	11
Two-bedroom	21	16
Three-bedroom	28	21
Four or more bedrooms	35	26

The density points in the right-hand column are applicable to income-restricted affordable dwelling units, provided the dwelling units meet the affordability criteria under NMC 15.242.030 regarding affordable housing requirements for developments using the flexible development standards.
2. Approved Density. The number of dwelling units allowable shall be determined by the hearing authority in accordance with the standards set forth in these regulations.
The hearing authority may change density subsequent to preliminary plan approval only if the reduction is necessary to comply with required findings for preliminary plan approval or if conditions of preliminary plan approval cannot otherwise be satisfied.

3. Easement Calculations. Density calculations may include areas in easements if the applicant clearly demonstrates that such areas will benefit residents of the proposed planned unit development.
 4. Dedications. Density calculations may include areas dedicated to the public for recreation or open space.
 5. Cumulative Density. When approved in phases, cumulative density shall not exceed the overall density per acre established at the time of preliminary plan approval.

Finding: The applicant has provided density calculations based on zoning and land area within a zone district to calculate the maximum allowable density. The R-1 total acreage of 4.31 acres yields 754.25 density points at 175 points per acres. The R-2 total acreage of 6.58 acres yields 4,211.2 density points at 640 points per acres. The C-2 total acreage of 22.24 acres yields $6,894.4$ density points at 310 points per acres. The total maximum density points earned based on zoning and land area is $11,859.85$ points.

Although the applicant is proposing an affordable housing component for the development, they did not provide data for the number of bedrooms for each unit so these calculations cannot be accurately determined. City staff multiplied 12 (income restricted units) by 26 points for the "four or more income-restricted affordable dwelling unit" for a total of 312 points. The data table provided by the applicant totaled the point column in the NDC instead of producing a point total based on total number of proposed bedrooms (Attachment 7). The applicant has stated in an email dated Friday July 27, 2018 the number of bedrooms being proposed for the development, which were then used for the density calculations (Attachment 7). There will be 27 one bedroom units, multiplied by 14 density points, which yields 378 points. There will be 24 two bedroom units, multiplied by 21 density points, which yields 504 points. There will be 80 three bedroom units, multiplied by 28 density points, which yields 2,240 points. There will be 168 four or more bedroom units, multiplied by 35 density points, which yields 5,880 points. Adding the total number of points produced by the number of bedrooms yields 9,314 points.

The applicants' narrative or other submitted material did not provide data for assessing the applicability of NMC 15.242 .030 so the flexible development standards are not part of these findings.

Compliance with these criteria cannot be clearly assessed due to not knowing how many bedrooms are proposed for the affordable housing units.
G. Buildings and Uses Permitted. Buildings and uses in planned unit developments are permitted as follows:

1. R-1, R-2, R-3 and RP Zones.
a. Buildings and uses permitted outright or conditionally in the use district in which the proposed planned unit development is located.
b. Accessory buildings and uses.
c. Duplexes.
"Working Together For A Better Community-Serious About Service"
d. Dwellings, single, manufactured, and multifamily.
e. Convenience commercial services which the applicant proves will be patronized mainly by the residents of the proposed planned unit development.

Finding: The applicant is proposing single family detached residential uses within the R-1 and R-2 portions of the subject property. This criterion is met because single-family and multifamily uses are permitted within the R-1 and R-2 zone districts.

2. C-1, C-2 and C-3 Zones.

a. When proposed as a combination residential-commercial planned unit development, uses and buildings as listed in subsection (G)(1) of this section and those listed as permitted outright or conditionally in the use district wherein the development will be located.

Finding: The applicant is proposing a combination residential-commercial planned unit development. All uses within the C-2 zoned property are permitted either conditionally for residential or as a permitted use for future commercial use. This criterion is met because all proposed uses are permitted either conditionally or by right as a permitted uses.
H. Professional Coordinator and Design Team. Professional coordinators and design teams shall comply with the following:

1. Services. A professional coordinator, licensed in the State of Oregon to practice architecture, landscape architecture or engineering, shall ensure that the required plans are prepared. Plans and services provided for the city and between the applicant and the coordinator shall include:
a. Preliminary design;
b. Design development;
c. Construction documents, except for single-family detached dwellings and duplexes in subdivisions; and
d. Administration of the construction contract, including, but not limited to, inspection and verification of compliance with approved plans.
2. Address and Attendance. The coordinator or the coordinator's professional representative shall maintain an Oregon address, unless this requirement is waived by the director. The coordinator or other member of the design team shall attend all public meetings at which the proposed planned unit development is discussed.
3. Design Team Designation. Except as provided herein, a design team, which includes an architect, a landscape architect, engineer, and land surveyor, shall be designated by the professional coordinator to prepare appropriate plans. Each team member must be licensed to practice the team member's profession in the State of Oregon.
4. Design Team Participation and Waiver. Unless waived by the director upon proof by the coordinator that the scope of the proposal does not require the services of all members at one
or more steps, the full design team shall participate in the preparation of plans at all three steps.
5. Design Team Change. Written notice of any change in design team personnel must be submitted to the director within three working days of the change.
6. Plan Certification. Certification of the services of the professionals responsible for particular drawings shall appear on drawings submitted for consideration and shall be signed and stamped with the registration seal issued by the State of Oregon for each professional so involved. To assure comprehensive review by the design team of all plans for compliance with these regulations, the dated cover sheet shall contain a statement of review endorsed with the signatures of all designated members of the design team.

Finding: The applicant narrative states that a professional engineer licensed by the State of Oregon has produced all required plans. Additionally, the land use plan sheets list a landscape architecture firm. A completeness check was conducted to verify that all required documents and plans were submitted. These criteria have been met.
I. Modification of Certain Regulations. Except as otherwise stated in these regulations, fence and wall provisions, general provisions pertaining to height, yards, area, lot width, frontage, depth and coverage, number of off-street parking spaces required, and regulations pertaining to setbacks specified in this code may be modified by the hearing authority, provided the proposed development will be in accordance with the purposes of this code and those regulations. Departures from the hearing authority upon a finding by the engineering director that the departures will not create hazardous conditions for vehicular or pedestrian traffic. Nothing contained in this subsection shall be interpreted as providing flexibility to regulations other than those specifically encompassed in this code.

Finding: The applicants' narrative requests modification for lot sizes, minimum lot dimensions, minimum lot frontages, maximum lot and parking area coverage and minimum setback standards for the R-1, R-2 and C-2 zoning districts. Lot coverage is discussed below under " J ". The following table details the requirements listed in the NDC and the dimensional modifications that the applicant is requesting.

	Min. front yard setback per NDC to house not garage	Proposed front yard setback by applicant	Minimum interior setback per NDC	Proposed minimum interior setback proposed by applicant	Minimum lot size per NDC	Proposed minimum lot size	Minimum lot width per the NDC	Proposed minimum lot width
R-1	15 feet	10 feet	5 feet	5 feet	5,000 sq.ft.	5,000 sq.ft.	35 feet	35 feet

R-2	15 feet	10 feet	5 feet	2.5 feet	3,000 sq.ft.	1,440 sq.ft.	25 feet	21.5 feet
C-2	10 feet	10 feet	10 feet	2.5 feet	5,000 sq.ft.	1,440 sq.ft.	n / a	21.5 feet

City of Newberg Staff Engineers have reviewed the development proposal and have not found hazardous conditions created for vehicular or pedestrian traffic if all conditions of approval are adhered to. This criterion is met because the proposed modifications to the Newberg Development Code do not create hazardous conditions for vehicular or pedestrian traffic.
J. Lot Coverage. Maximum permitted lot and parking area coverage as provided in this code shall not be exceeded unless specifically permitted by the hearing authority in accordance with these regulations.

Finding: The applicant has proposed an increase of lot and parking coverage up to 60 percent. The applicant initially submitted their application, June 6, 2018, when maximum lot coverage in the R-1 was 30 percent or 40 percent if all structures on the lot are one-story. Maximum lot coverage in the $\mathrm{R}-2$ is 50 percent for this application. The maximum combined parking and lot coverage is 60 percent lot for this application. The C-2 zoning district is not limited by a maximum parking or lot coverage. The applicant did not provide supporting data for their request so compliance with this criterion cannot be accessed.
K. Height. Unless determined by the hearing authority that intrusion of structures into the sun exposure plane will not adversely affect the occupants or potential occupants of adjacent properties, all buildings and structures shall be constructed within the area contained between lines illustrating the sun exposure plane (see Appendix A, Figure 8 and the definition of "sun exposure plane" in NMC 15.05.030). The hearing authority may further modify heights to:

1. Protect lines of sight and scenic vistas from greater encroachment than would occur as a result of conventional development.
2. Protect lines of sight and scenic vistas.
3. Enable the project to satisfy required findings for approval.

Finding: The applicant did not provide a sun exposure analysis or diagram. The applicant stated "Communities of this nature exist in several areas and sun exposure is not known to be a significant issue in other communities. Each unit will have access to the sun from the southern sky and will have opportunities to enjoy the benefit of the sun's light and warmth". However, without having an analysis and diagram as shown in Appendix A, Figure 8 of the NDC, verification of this criterion being met cannot be made. The applicant shall provide a sun exposure plan diagram meeting the requirements of NDC 15.240.020(K) and 15.05.030. If sun exposure is does meet the requirements of the NDC then the applicant must adjust their plans in order to meet this condition of approval. Because the applicant did not submit the supporting information required by the NDC, compliance with this criterion cannot be accessed.
L. Dedication, Improvement and Maintenance of Public Thoroughfares. Public thoroughfares shall be dedicated, improved and maintained as follows:

1. Streets and Walkways. Including, but not limited to, those necessary for proper development of adjacent properties. Construction standards that minimize maintenance and protect the public health and safety, and setbacks as specified in NMC 15.410.050, pertaining to special setback requirements to planned rights-of-way, shall be required.
2. Notwithstanding subsection $(L)(1)$ of this section, a private street may be approved if the following standards are satisfied.
a. An application for approval of a PUD with at least 50 dwelling units may include a private street and the request for a private street shall be supported by the evidence required by this section. The planning commission may approve a private street if it finds the applicant has demonstrated that the purpose statements in NMC 15.240.010(A) through (D) are satisfied by the evidence in subsections (L)(2)(a)(i) through (v) of this section.
i. A plan for managing on-street parking, maintenance and financing of maintenance of the private street, including a draft reserve study showing that the future homeowners association can financially maintain the private street; ii. A plan demonstrating that on- and off-street parking shall be sufficient for the expected parking needs and applicable codes;
iii. Proposed conditions, covenants and restrictions that include a requirement that the homeowners association shall be established in perpetuity and shall continually employ a community management association whose duties shall include assisting the homeowners association with the private street parking management and maintenance, including the enforcement of parking restrictions;
iv. Evidence that the private street is of sufficient width and construction to satisfy requirements of the fire marshal and city engineer; and
v. The PUD shall be a Class I planned community as defined in ORS Chapter 94.

Finding: The applicant is proposing a mixture of private and public streets. The NDC states that "at least 50 dwelling units may include a private street and the request for a private street shall be supported by the evidence required by this section". The applicant has stated they have met the requirements listed in NDC Section 15.240.020(L)(2)(a)(i, ii, iii, iv and v) as well as Section 15.240.010(A, B, C and D). The applicant has provided documentation that the development proposal meets the requirements listed in Section $15.240 .020(\mathrm{~L})(\mathrm{a})(\mathrm{i}$, ii, iii, iv and v) including:

- "a PUD proposes at least 50 dwelling units,
- has provided a plan for on-street parking, maintenance and financing of maintenance of the private street,
- demonstrates sufficient parking,
- includes CCRs addressing the private street,
- is constructed to proper standards, and
- the PUD is a Class I planned community as defined in ORS Ch. 94."

After a review of the applicants' submittal a plan for maintenance and financing of maintenance for the private streets and CCRs were not located. The applicant shall provide documentation for maintenance and financing of maintenance for the private streets.

The applicant further states their application meets the following purpose statements in NMC 15.240.010(A) through (D), which include:

- "encourage comprehensive planning in areas of sufficient size...
- provide flexibility in architectural design, placement and clustering of buildings, use of open space and outdoor living areas, and provision of circulation facilities, parking, storage and related site and design considerations
- promote an attractive, safe, efficient and stable environment... and
- provide for economy of shared services and facilities."

The city engineer is requiring sidewalks along private streets to be a minimum of five feet wide. The applicant is proposing a PUD which includes both public and private streets. The applicant is proposing private streets A-L with the following cross-section:

- 5-foot sidewalk*
- 0.5-foot rolled curb
- 24-26-foot travel lanes
- $\quad 0.5$-foot curb
- 5-foot sidewalk*
* Per private road cross-section shown on sheet C300.

The applicant has indicated in parts of the narrative that private walkways are to be 4 -feet wide, but the cross-section of C300 show sidewalks along private streets as 5-feet wide, Information regarding travel lane widths for private streets was updated by the applicant per an email sent on Friday July 27, 2018 by Andrew Tull. The email indicates that all private streets will have at least 26 -feet of access. In some cases, access drives will be 24 -feet in width with mountable curbs and sidewalks built to withstand wheel-loads. Private streets without walkways will have 26 -feet of pavement.
Because the applicant has been unclear on the intended width of walkways along private streets, the applicant shall follow the city engineer requirement for sidewalks along private streets to be 5 -foot wide matching the applicant's cross-section detail on sheet C300.
Because the applicant has been unclear about their intended parking locations on private streets, the applicant shall follow requirements outlined in a letter TVF\&R provided on June 5, 2018 which indicated the following:

- $\quad \underline{20-26 ~ f e e t ~ r o a d ~ w i d t h ~-~ n o ~ p a r k i n g ~ o n ~ e i t h e r ~ s i d e ~ o f ~ r o a d w a y ~}$

Through their submitted materials, the applicant has demonstrated compliance with Section 15.240.010 (A) through (D) of the NDC.

Because the applicant did not provide a copy of the CC\&Rs compliance with these criteria cannot be accessed.

Additional requirements for public improvements are addressed later in this report.
b. If the PUD is established, the homeowners association shall provide an annual written report on the anniversary date of the final approval of the PUD approval to the community development director that includes the following:
i. The most recent reserve study.
ii. The name and contact information for the retained community management association.
iii. A report on the condition of the private street and any plans for maintenance of the private street.

Finding: As of the time this report was drafted, the applicant has not provided information detailing a home owners association or CC\&Rs for City staff to review. Compliance with this criterion cannot be assessed because we did not receive a copy of the CC\&Rs or information pertaining to a Home Owners Association.

3. Easements. As are necessary for the orderly extension of public utilities and bicycle and pedestrian access.

Finding: Easements are needed for the extension of public utilities and bicycle and pedestrian access. The applicant is showing 8 -foot public utility easements along private street frontages. Comments received from utilities state that 10 -foot public utility easements are required along all street frontages. Because the applicant's plans do not show an adequate public utility easement on private street frontages, the applicant is required to provide a 10 -foot public utility easement along street frontages.
M. Underground Utilities. Unless waived by the hearing authority, the developer shall locate all on-site utilities serving the proposed planned unit development underground in accordance with the policies, practices and rules of the serving utilities and the Public Utilities Commission.

Finding: On page 20 of the narrative the applicant has stated that all utilities will be placed underground. This criterion is met.
N. Usable Outdoor Living Area. All dwelling units shall be served by outdoor living areas as defined in this code. Unless waived by the hearing authority, the outdoor living area must equal at least 10 percent of the gross floor area of each unit. So long as outdoor living area is available to each dwelling unit, other outdoor living space may be offered for dedication to the city, in fee or easement, to be incorporated in a city-approved recreational facility. A portion or all of a dedicated area may be included in calculating density if permitted under these regulations.

Finding: On page 20 of the applicants' narrative states "all dwelling units are served by outdoor living areas equal to at least 10 percent of the gross floor area of each unit. The multifamily will utilize a combination of balconies and porches as well as common outdoor living areas located throughout the overall planned unit development." Floor plans for the multi-family units were not submitted so verification of this requirement cannot be made. Compliance with this criterion cannot be accessed because the applicant did not provide the data for staff to evaluate. The applicant shall submit drawings and data that clearly illustrate that each unit is served by outdoor living areas equal to at least 10 percent of the gross floor area for each residential unit. If any unit falls below the 10 percent outdoor living requirement then the applicant must revise their plans to provide the required outdoor living requirement. O. Site Modification. Unless otherwise provided in preliminary plan approval, vegetation, topography and other natural features of parcels proposed for development shall remain substantially unaltered pending final plan approval.

Finding: The applicant has submitted grading plans that have been reviewed by City staff engineers. The applicant is proposing to remove 923 of 1,042 trees, which is allowed under the current Newberg Development Code due to there not being an Urban Forestry Program in the City. The applicant is proposing significant modifications to wetlands including preservation, removal and mitigation. In an email dated July 26, 2018 (Attachment2) and received after 6:30 pm, Ms. Jevra Brown, Aquatic Resource Planner for Department of State Lands stated the following:
"Expired delineation WD2000-0260 for tax lot 1100
Expired delineation WD2006-0698 associated with administratively closed permits 40337-RF and 48735-RF for Crestview Crossing - Part I.
Crestview Crossing - Part 2 WD2013-0148, administratively closed application 57027-RF, 58464RF application on extension."

The applicant was informed of the expired wetlands permit issue on July 27, 2018. Because the applicant has several wetland within the confines of tax lot 1100 and delineations have been allowed to expire this criterion is not met.
P. Completion of Required Landscaping. If required landscaping cannot be completed prior to occupancy, or as otherwise required by a condition of approval, the director may require the applicant to post a performance bond of a sufficient amount and time to assure timely completion.

Finding: On page 21 of the applicants' narrative it states that "the applicant acknowledges the possibility of a performance bond being required to assure timely completion of any delayed landscaping." Because the applicant has acknowledged this section of the NDC this criterion is met.
Q. Design Standards. The proposed development shall meet the design requirements for multifamily residential projects identified in NMC 15.220.060. A minimum of 40 percent of the required points shall be obtained in each of the design categories. [Ord. 2822 § 1 (Exh. A), 2-5-18; Ord. 2763 § 1 (Exh. A §§ 9, 10), 9-16-13; Ord. 2730 § 1 (Exh. A § 9), 10-18-10; Ord. 2720 § 1(4), 11-2-09; Ord. 2505, 2-1-99; Ord. 2451, 12-2-96. Code 2001 § 151.226.]

Finding: This section of the NDC is discussed later in this staff report under Section 15.220.060.
15.240.030 Preliminary plan consideration - Step one.
B. Application. An application, with the required fee, for preliminary plan approval shall be made by the owner of the affected property, or the owner's authorized agent, on a form prescribed by and submitted to the director. Applications, accompanied by such additional copies as requested by the director for purposes of referral, shall contain or have attached sufficient information as prescribed by the director to allow processing and review in accordance with these regulations. As part of the application, the property owner requesting the planned development shall file a waiver stating that the owner will not file any demand against the city under Ballot Measure 49, approved November 6, 2007, that amended ORS Chapters 195 and 197 based on the city's decision on the planned development.

Finding: All required fees for the preliminary plan approval have been paid. Additionally, the applicant has provided a Measure 49 waiver. This criterion is met because required fees have been paid and a Measure 49 waiver has been submitted.
C. Type III Review and Decision Criteria. Preliminary plan consideration shall be reviewed through the Type III procedure. Decisions shall include review and recognition of the potential impact of the entire development, and preliminary approval shall include written affirmative findings that:

1. The proposed development is consistent with standards, plans, policies and ordinances adopted by the city; and

Finding: This application is being reviewed under a Type III process and the findings review and recognize potential impacts of the entire development. The proposed development has gone through a full review of City standards, plans, policies and ordinances to determine compliance. Conditions of approval (Exhibit "B") are provided later in this report and require the developer to address any issues that the preliminary PUD has that cause a shortfall in meeting City requirements. This criterion will be met with the adherence to all conditions of approval.
2. The proposed development's general design and character, including but not limited to anticipated building locations, bulk and height, location and distribution of recreation space,

parking, roads, access and other uses, will be reasonably compatible with appropriate development of abutting properties and the surrounding neighborhood; and

Finding: The applicant is proposing larger lot single-family detached homes along the northern property line, providing a buffer from the smaller lots proposed as part of the development from the larger lots located in the Oxberg Lake Estates subdivision. To the east is Spring Meadow Subdivision and Spring Meadow Park, where smaller lot higher density single family development is proposed. The higher density single family area near the east property line is buffered from Spring Meadow subdivision by Spring Meadow Park. The multifamily and smaller lots bordering the eastern property line of the subject property are approximately 263 feet from the single family home on the abutting lot to the east. Along the southern property line smaller single family lots and multifamily buildings abut E Portland Road. The proposed development provides a network of pathways and a centrally located park. Parking is provided on the single family lots, a parking lot for the multifamily buildings, on street parking on the public streets and visitor parking lots are located throughout the higher density single family areas. Both public and private streets are being proposed as part of the development.

The height of the proposed buildings meets the requirements of the NDC and should relate well to human scale. The bulk of the proposed development is somewhat out of character with the surrounding area due to the reduced size of the proposed lots and reduced setbacks. Lot and parking coverage cannot be accessed with respect to the surrounding subdivisions and lots due a lack of data provided by the applicant. The landscaping and screening is adequate for most of the surrounding lots with the exception of 1812 Leo Lane, tax lot 12100 , located in Spring Meadow subdivision. The property in Spring Meadow subdivision will abut proposed lots 245 through 248. It should be pointed out that the surrounding subdivisions were developed before the adoption of the current development code, when larger lots and lower density was common. Due to a lack of supporting information provided by the applicant, this criterion cannot be adequately evaluated.

This criterion cannot be assessed due to the applicant not providing all information required for analysis such as lot and parking coverage.
> 3. Public services and facilities are available to serve the proposed development. If such public services and facilities are not at present available, an affirmative finding may be made under this criterion if the evidence indicates that the public services and facilities will be available prior to need by reason of:
a. Public facility planning by the appropriate agencies; or
b. A commitment by the applicant to provide private services and facilities adequate to accommodate the projected demands of the project; or
c. Commitment by the applicant to provide for offsetting all added public costs or early commitment of public funds made necessary by the development; and

4. The provisions and conditions of this code have been met; and

"Working Together For A Better Community-Serious About Service"

Finding: City staff engineers have evaluated the available pubic services and facilities available to the subject property, have found that adequate public services and facilities exists or upgrades can be made in order to meet this section of the NDC. The conditions of approval cover any needed upgrades to public services and facilities. The applicant has made several late submittals that have not been reviewed by internal City of Newberg departments or outside agencies due to a lack of time. However, because all required materials needed to evaluate compliance with the NDC have not been submitted by the applicant compliance cannot be assessed.

5. Proposed buildings, roads, and other uses are designed and sited to ensure preservation of features, and other unique or worthwhile natural features and to prevent soil erosion or flood hazard; and

Finding: The design and location of the buildings, roads and other uses has been done in a way to preserve a portion of one of the wetlands located on the property. The applicant has provided a grading plan showing soil erosion mitigation measures that will be taken. According to the City's GIS, there are no flood hazards within the confines of the subject property. This criterion is met.

6. There will be adequate on-site provisions for utility services, emergency vehicular access, and, where appropriate, public transportation facilities; and

Finding: City Staff Engineers have evaluated the application for adequate utility services and have found existing services to be adequate. PGE stated that they will not accept an 8 foot wide Public Utility Easements (PUEs) for placing their equipment and lines. PGE requires 10 foot wide PUEs. The applicant has indicated they've worked with Tualatin Valley Fire \& Rescue (TVF\&R) and a letter was submitted as part of their application. TVF\&R stated that no on-street parking is permitted on the private streets, it doesn't appear that the applicant is proposing parallel parking on the private streets but they are illustrating several parking lots showing 90 degree parking. Sheet C230 of the plan set illustrates a fire access plan. No transportation facilities are located onsite or planned per the applicants' submittal. The applicant stated that "if the opportunity arises in the future, public transportation facilities" could be provided. Because PGE has required 10 foot wide PUEs, this criterion is not met.

7. Sufficient usable recreation facilities, outdoor living area, open space, and parking areas will be conveniently and safely accessible for use by residents of the proposed development; and

Finding: The applicant is proposing both active and passive open space recreational areas for use by the residents. The applicant has stated in their findings that "the proposed design includes a civic use park which has been envisioned to provide space for community events as well as a space for featured local vendors. A smaller neighborhood park is connected to the proposed development through a network of multi-use pathways which provide pedestrian circulation and recreation throughout the site. The proposal includes multiple open spaces, most of which include a trail system. The multi-family housing has common outdoor living areas, as well as balconies and patios
for some individual units. The single-family housing has outdoor living areas adjacent to the homes." The single family homes will have onsite parking, the multifamily buildings have direct access to a parking lot, on-street parking is provided on the public streets and visitor parking lots are provided in several areas throughout the development. This criterion is met.
> 8. Proposed buildings, structures, and uses will be arranged, designed, and constructed so as to take into consideration the surrounding area in terms of access, building scale, bulk, design, setbacks, heights, coverage, landscaping and screening, and to assure reasonable privacy for residents of the development and surrounding properties.

Finding: The applicant has stated that the "...site has been designed reflect the surrounding area and to provide a reasonable level of privacy for residents of the development and surrounding properties. Large lot single-family detached dwellings are proposed along the northern property line, separating this development from another large lot residential development, easing the transition from lower density to higher. The site is buffered from the residential developments to the west by the park that is adjacent to the site. The site as a whole is designed to provide safe and convenient access." There is sufficient buffering for the surrounding neighborhoods either through like sized lots or separation by distance from the smaller lots and multifamily lots. The access to the site will be from E Crestview Drive from the north and E Portland Road from the south. Building scale refers to building elements and details as they proportionally relate to each other and to humans. The height of the proposed buildings meets the requirements of the NDC and should relate well to human scale. The bulk of the proposed development is somewhat out of character with the surrounding area due to the reduced size of the proposed lots and reduced setbacks. Lot and parking coverage cannot be accessed with respect to the surrounding subdivisions and lots due a lack of data provided by the applicant. The landscaping and screening is adequate for most of the surrounding lots with the exception of 1812 Leo Lane, tax lot 12100, located in Spring Meadow subdivision. The property in Spring Meadow subdivision will abut proposed lots 245 through 248 . It should be pointed out that the surrounding subdivisions were developed before the adoption of the current development code, when larger lots and lower density was common. Due to a lack of supporting information provided by the applicant, this criterion cannot be adequately evaluated.
D. Conditions. Applications may be approved subject to conditions necessary to fulfill the purpose and provisions of these regulations. [Ord. 2822 § 1 (Exh. A), 2-5-18; Ord. 2693 § 1 (Exh. A(6)), 3-3-08; Ord. 2612, 12-6-04; Ord. 2451, 12-2-96. Code 2001 § 151.227.]

Finding: Exhibit "B" lists conditions of approval that are necessary in order fulfill the purpose and provisions of these regulations within the NDC. If the applicant adheres to all conditions of approval this criterion will be met.

III. 15.220.060 Additional requirements for multifamily residential projects.

The purpose of this section is to ensure that residential projects containing three or more units meet minimum standards for good design, provide a healthy and attractive environment for those
who live there, and are compatible with surrounding development. As part of the site design review process, an applicant for a new multifamily residential project must demonstrate that some of the following site and building design elements, each of which has a point value, have been incorporated into the design of the project. At least 14 points are required for attached singlefamily projects of any size and smaller multifamily projects with six or fewer units and at least 20 points are required for multifamily projects with seven or more units. For more information and illustrations of each element, refer to the Newberg Residential Development Design Guidelines (July 1997).

A. Site Design Elements.

1. Consolidate green space to increase visual impact and functional utility. This applies to larger projects which collectively have a significant amount of open space areas which can be consolidated into children's play areas, gardens, and/or dog-walking areas (three points). 2. Preserve existing natural features, including topography, water features, and/or native vegetation (three points).
2. Use the front setback to build a street edge by orienting building(s) toward the street with a relatively shallow front yard (12 to 15 feet for two-story buildings) to create a more "pedestrian-friendly" environment (three points).
3. Place parking lots to the sides and/or back of projects so that front yard areas can be used for landscaping and other "pedestrian-friendly" amenities (three points).
4. Create "outdoor" rooms in larger projects by grouping buildings to create well-defined outdoor spaces (two points).
5. Provide good-quality landscaping. Provide coordinated site landscaping sufficient to give the site its own distinctive character, including the preservation of existing landscaping and use of native species (two points).
6. Landscape at the edges of parking lots to minimize visual impacts upon the street and surrounding properties (two points).
7. Use street trees and vegetative screens at the front property line to soften visual impacts from the street and provide shade (one point).
8. Use site furnishings to enhance open space. Provide communal amenities such as benches, playground equipment, and fountains to enhance the outdoor environment (one point).
9. Keep fences neighborly by keeping them low, placing them back from the sidewalk, and using compatible building materials (one point).
10. Use entry accents such as distinctive building or paving materials to mark major entries to multifamily buildings or to individual units (one point).
11. Use appropriate outdoor lighting which enhances the nighttime safety and security of pedestrians without causing glare in nearby buildings (one point).
B. Building Design Elements.
12. Orient buildings toward the street. For attached single-family and smaller multifamily projects, this means orienting individual entries and porches to the street. In larger projects with internal circulation and grounds, this means that at least 10 percent of the units should have main entries which face the street rather than be oriented toward the interior (three points).
13. Respect the scale and patterns of nearby buildings by reflecting the architectural styles, building details, materials, and scale of existing buildings (three points).
14. Break up large buildings into bays by varying planes at least every 50 feet (three points).
15. Provide variation in repeated units in both single-family attached and large multifamily projects so that these projects have recognizable identities. Elements such as color; porches, balconies, and windows; railings; and building materials and form, either alone or in combination, can be used to create this variety (three points).
16. Building Materials. Use some or all of the following materials in new buildings: wood or wood-like siding applied horizontally or vertically as board and batten; shingles, as roofing, or on upper portions of exterior walls and gable ends; brick at the base of walls and chimneys; wood or wood-like sash windows; and wood or wood-like trim (one point for each material described above).
17. Incorporate architectural elements of one of the city's historical styles (Queen Anne, Dutch colonial revival, colonial revival, or bungalow style) into the design to reinforce the city's cultural identity. Typical design elements which should be considered include, but are not limited to, "crippled hip" roofs, Palladian-style windows, roof eave brackets, dormer windows, and decorative trim boards (two points).
18. Keep car shelters secondary to the building by placing them to the side or back of units and/or using architectural designs, materials, and landscaping to buffer visual impacts from the street (two points).
19. Provide a front porch at every main entry as this is both compatible with the city's historic building pattern and helps to create an attractive, "pedestrian-friendly" streetscape (two points).
20. Use sloped roofs at a pitch of 3:12 or steeper. Gable and hip roof forms are preferable (two points). [Ord. 2763 § 1 (Exh. A § 8), 9-16-13; Ord. 2505, 2-1-99. Code 2001 § 151.195.]

Finding: The table below illustrates the possible points and points earned for site design and building design elements. This section of the NDC states that at least 14 points are required for attached single-family projects of any size and smaller multifamily projects with six or fewer units and at least 20 points are required for multifamily projects with seven or more units. This multifamily design criteria listed in the NDC is met because the applicant has demonstrated they have obtained at least 28 combined points for site design and building design.

Design Review	Possible Points	Points Earned
Site Design Elements		
Consolidate green space	3	3
Preserve existing natural features	3	0
Use front setback to build a street edge	3	0
Place parking lots on sides or back of projects	3	3
Create 'outdoor rooms"	2	0
Provide good quality landscaping	2	2
Landscape at edges of parking lots	2	2
Use street trees and vegetative screens	1	1
Use site furnishings to enhance open space	1	0
Keep fences 'neighborly"	1	0
Use entry accents	1	1
Use appropriate outdoor lighting	1	1
Building Design Elements	3	0
Orient buildings toward the street	3	3
Respect the scale and patterns of nearby buildings	3	3
Break up large building planes into bays	3	0
Provide variation in repeated units	1 each	
Building materials:		
a) wood or wood-like siding		
b) shingles on roof or upper portions		
c) brick at base of walls or chimneys		
d) wood or wood-like sash windows		
e) wood or wood-like trim		

15.220.030 Site design review requirements.

14. Traffic Study. A traffic study shall be submitted for any project that generates in excess of 40 trips per p.m. peak hour. This requirement may be waived by the director when a determination is made that a previous traffic study adequately addresses the proposal and/or when off-site and frontage improvements have already been completed which adequately mitigate any traffic impacts and/or the proposed use is not in a location which is adjacent to an intersection which is functioning at a poor level of service. A traffic study may be required by the director for projects below 40 trips per p.m. peak hour where the use is located immediately adjacent to an intersection functioning at a poor level of service. The traffic study shall be conducted according to the City of Newberg design standards. [Ord. 2619, 5-16-05; Ord. 2451, 12-2-96. Code 2001 § 151.192.]

Finding: A traffic study was submitted with the land use application for the Crestview Crossing PUD dated June 2018. Based on the analysis, the 260 single-family homes and 48 apartment units within the Crestview Crossing PUD were evaluated and it was estimated to create 4,126 additional trips each day; 213 will occur in the AM peak hour (7am-9am) and 285 trips will occur in the PM peak hour ($4 \mathrm{pm}-6 \mathrm{pm}$). It should be noted that the applicant's narrative uses a different number of homes, as it states 18 single-family homes, 230 cottage homes, and 51 multi-family homes. This means that the traffic analysis over stated the number of single family homes (260 homes in TIA vs. 248 homes in the applicant's narrative) and understated the number of apartments (48 apartments in the TIA vs. 51 apartments in the applicant's narrative). Eight study intersections were evaluated to determine the impact on the adjacent transportation system.

The study identified the following recommendations to mitigate traffic impacts at the Providence Drive/E Crestview Drive/E Portland Road intersection from the development. No other traffic impacts were identified.

- The new north leg of the Providence Drive/E Crestview Drive/E Portland Road intersection should be configured as a four-lane section with one northbound lane and three southbound lanes (left turn lane, through movement, and right turn lane). At least 250 -feet of southbound left-turn lane storage and 150 -feet of southbound rightturn lane storage should be provided to accommodate the $95^{\text {th }}$ percentile queue lengths.
- The existing south leg of the Providence Drive/E Crestview Drive/E Portland Road intersection should be restriped to a four-lane section with one southbound lane, and three northbound lanes (left turn lane, through movement, and right turn lane).
- Based on the $95^{\text {th }}$ percentile queuing analysis:
- A westbound right turn lane should be constructed with at least 300-feet of storage
- A eastbound left turn lane should be striped to provide at least 150 -feet of storage
- The signal phasing of the Providence Drive/E Crestview Drive/E Portland Road intersection should be operated with permissive left turn movements on the north and south approaches with fully protected left turn movements on the east and west approaches.

Because the applicant has submitted a TIA that meets City requirements this criterion is met.

15.440.010 Required off-street parking.

A. Off-street parking shall be provided on the development site for all R-1, C-1, M-1, M-2 and M-3 zones. In all other zones, the required parking shall be on the development site or within 400 feet of the development site which the parking is required to serve. All required parking must be under the same ownership as the development site served except through special covenant agreements as approved by the city attorney, which bind the parking to the development site.
B. Off-street parking is not required in the C-3 district, except for:

1. Dwelling units meeting the requirements noted in NMC 15.305.020.
"Working Together For A Better Community-Serious About Service"
2. New development which is either immediately adjacent to a residential district or separated by nothing but an alley.
C. Within the C-4 district, the minimum number of required off-street parking spaces shall be 50 percent of the number required by NMC 15.440.030, except that no reduction is permitted for residential uses.
D. All commercial, office, or industrial developments that have more than 20 off-street parking spaces and that have designated employee parking must provide at least one preferential carpool/vanpool parking space. The preferential carpool/vanpool parking space(s) must be located close to a building entrance. [Ord. 2810 § 2 (Exhs. B, C), 12-19-16; Ord. 2763 § 1 (Exh. A § 15), 9-16-13; Ord. 2564, 4-15-02; Ord. 2561, 4-1-02; Ord. 2451, 12-2-96. Code 2001 § 151.610.] Penalty: See NMC 15.05.120.
15.440.020 Parking area and service drive design.
A. All public or private parking areas, parking spaces, or garages shall be designed, laid out and constructed in accordance with the minimum standards as set forth in NMC 15.440.070.
B. Groups of three or more parking spaces, except those in conjunction with single-family or twofamily dwellings on a single lot, shall be served by a service drive so that no backward movement or other maneuvering of a vehicle within a street, other than an alley, will be required. Service drives shall be designed and constructed to facilitate the flow of traffic, provide maximum safety in traffic access and egress and maximum safety of pedestrian and vehicular traffic on the site, but in no case shall two-way and one-way service drives be less than 20 feet and 12 feet, respectively. Service drives shall be improved in accordance with the minimum standards as set forth in NMC 15.440.060.
C. Gates. A private drive or private street serving as primary access to more than one dwelling unit shall not be gated to limit access, except as approved by variance.
D. In the AI airport industrial district and AR airport residential district, taxiways may be used as part of the service drive design where an overall site plan is submitted that shows how the circulation of aircraft and vehicles are safely accommodated, where security fences are located, if required, and is approved by the fire marshal, planning director, and public works director. The following submittal must be made:
3. A drawing of the area to be developed, including the probable location, height, and description of structures to be constructed; the location and description of a security fence or gate to secure the aircraft operations areas of off-airport property from the other nonsecured pedestrian/auto/truck areas of on-airport property; the proposed location of the proposed taxiway access in accordance with FAA specifications (refer to Federal Aviation Administration Advisory Circular No. 150/5300-13 regarding airport design, and AC/537010B regarding construction standards for specifications that should be used as a guideline); and the identification of the vehicular traffic pattern area clearly separated from aircraft traffic. Once specific buildings have been designed, FAA Form 7460-1, Notice of Proposed Construction or Alteration, must be submitted to the City of Newberg, the private airport owner, and the FAA for airspace review. [Ord. 2670, 5-7-07; Ord. 2647, 6-5-06; Ord. 2451, 12-2-96. Code 2001 § 151.611.]

Penalty: See NMC 15.05.120.

15.440.030 Parking spaces required.

A.	Use	B.	Minimum Parking Spaces Required
1.	Residential Types		
2.	Dwelling, multifamily and multiple single-family dwellings on a single lot	3.	
4.	Studio or one-bedroom unit	8.	1 per dwelling unit
5.	Two-bedroom unit	9.	1.5 per dwelling unit
6.	Three- and four-bedroom unit	10.	2 per dwelling unit
7.	Five- or more bedroom unit	11.	0.75 spaces per bedroom
12.	- Unassigned spaces	13.	If a development is required to have more than 10 spaces on a lot, then it must provide some unassigned spaces. At least 15 percent of the total required parking spaces must be unassigned and be located for convenient use by all occupants of the development. The location shall be approved by the director.
14.	- Visitor spaces	15.	If a development is required to have more than 10 spaces on a lot, then it must provide at least 0.2 visitor spaces per dwelling unit.
16.	- On-street parking credit	17.	On-street parking spaces may be counted toward the minimum number of required spaces for developments required to have more than 10 spaces on a lot. The on-street spaces must be directly adjoining and on the same side of the street as the subject property, must be legal spaces that meet all city standards, and cannot be counted if they could be removed by planned future street widening or a bike lane on the street.
18.	- Available transit service	19.	At the review body's discretion, affordable housing projects may reduce the required off-street parking by 10 percent if there is an adequate continuous pedestrian route no more than 1,500 feet in length from the development to transit service with an average of less than one hour regular service intervals

A.	Use	B.	Minimum Parking Spaces Required
			during commuting periods or where the development provides its own transit. A developer may qualify for this parking reduction if improvements on a proposed pedestrian route are made by the developer, thereby rendering it an adequate continuous route.
20.	Commercial neighborhood district (C-1)	21.	1 for each dwelling
22.	Dwelling, single-family or twofamily	23.	2 for each dwelling unit on a single lot
24.	Fraternities, sororities, cooperatives and dormitories	25.	1 for each three occupants for which sleeping facilities are provided
26.	Hotels, motels, motor hotels, etc.	27.	1 for each guest room
28.	Rooming or boarding houses	29.	1 for each guest room
30.	Special needs housing	31.	1 space per 3 beds or actual parking needs as demonstrated through a parking analysis.
32.	Institutional Types		
33.	Churches, clubs, lodges	34.	1 for every 4 fixed seats or every 8 feet of bench length or every 28 sq . ft. where no permanent seats or benches are maintained - in main auditorium (sanctuary or place of worship)
35.	Continuing care retirement community not including nursing care	36.	1 space per living unit
37.	Day care facility	38.	5 spaces per each 1,000 gross sq. ft.
39.	Hospitals (including accessory retail wholly contained within a hospital building)	40.	2 spaces for each 1,000 gross sq. ft .
41.	Libraries, museums, art galleries	42.	1 for each 250 sq. ft. of gross floor area
43.	Medical/dental offices and laboratories	44.	3.5 spaces for each 1,000 gross sq. ft .
45.	Nursing homes, homes for the aged, group care homes, asylums, etc.	46.	1 for each 3 beds
47.	Schools	48.	Colleges - "commuter" type, 1 for every full-

A.	Use	B.	Minimum Parking Spaces Required
			time equivalent student (plus $1 / 2$ of the requirements for accessory buildings, i.e., 1.-E* and 3.-G(1))**
49.	Schools		Colleges - "resident" type, 1 for every 3 fulltime equivalent students (plus $1 / 2$ of the requirements for accessory buildings, i.e., 1.-E* and 3.-G(1))**
51.	Schools	52.	Elementary or junior high, 1-1/2 for each teaching station plus 4 for every classroom, or 1 for every 42 sq. ft . of seating area where there are no fixed seats in an auditorium or assembly area
53.	Schools	54.	High schools, 1-1/2 for each teaching station, plus 8 for every classroom, or 1 for every 28 sq. ft . of seating area where there are no fixed seats in an auditorium or assembly area
55.	Schools		Colleges - commercial or business, 1 for every 3 classroom seats (plus $1 / 2$ of the requirements for accessory buildings, i.e., 1.-E* and 3.$\mathrm{G}(1))^{* *}$
57.	Welfare or correctional institutions	58.	1 for each 5 beds
59.	Commercial Types		
60.	Barber and beauty shops	61.	1 for each 75 sq. ft. of gross floor area
62.	Bowling alleys	63.	6 for each bowling lane
64.	Establishments or enterprises of a recreational or an entertainment nature:		
65.	Establishments for the sale and consumption on the premises of food and beverages with a driveup window		1 for each 75 sq. ft. of gross floor area
67.	Establishments for the sale and consumption on the premises of food and beverages without a drive-up window	68.	1 for each 100 sq. ft. of gross floor area
69.	Participating type, e.g., skating rinks, dance halls	70.	1 for each 75 sq. ft. of gross floor area

A.	Use	B.	Minimum Parking Spaces Required
71.	Spectator type, e.g., auditoriums, assembly halls, theaters, stadiums, places of public assembly	72.	1 parking space for each 4 seats
73.	Office buildings, business and professional offices	74.	1 for every 400 sq. ft. of gross floor area
75.	Pharmacies	76.	1 for each 150 sq. ft. of gross floor area
77.	Retail establishments, except as otherwise specified herein	78.	1 for each 300 sq. ft. of gross floor area
79.	Retail stores handling bulky merchandise, household furniture, or appliance repair	80.	1 for each 600 sq. ft. of gross floor area
81.	Industrial Types		
82.	Except as specifically mentioned herein, industrial uses listed as permitted in the M districts: M-1, M-2, M-3, and M-4	83.	1 for each 500 sq. ft. of gross floor area
84.	Aircraft storage hangars up to 3,600 sq. ft. each enclosed hangar area	85.	None (parking occurs in hangar)
86.	Aircraft storage hangars over 3,600 sq. ft. each enclosed hangar area	87.	1 for every 700 sq. ft. of hangar area over 3,600 sq. ft.
88.	Aircraft hangars intended for repair and maintenance operations	89.	1 for each 5,000 sq. ft. of hangar, plus 1 for each 500 sq. ft. of shop area, plus 1 for each 400 sq. ft. of office area
90.	Laboratories and research facilities	91.	1 for each 300 sq. ft. of gross floor area

Notes:

* "1-E" refers to fraternities, sororities, cooperatives and dormitories that require one parking space for each three occupants for whom sleeping facilities are provided.
** "3.-G(1)" refers to establishments or enterprises of a recreational or an entertainment nature (spectator type, e.g., auditoriums, assembly halls, theaters, stadiums, places of public assembly) that require one parking space for each four seats.

1. [Ord. 2763 § 1 (Exh. A § 16), 9-16-13; Ord. 2730 ${ }^{1}$ § 1 (Exh. A (13)), 10-18-10; Ord. 2720 § 1(19), 11-2-09; Ord. 2710 § 1, 3-2-09; Ord. 2647, 6-5-06; Ord. 2550, 5-21-01; Ord. 2451, 12-2-96. Code 2001 § 151.612.]
Penalty: See NMC 15.05.120.
5.440.040 Parking requirements for uses not specified.

The parking space requirements for buildings and uses not set forth herein shall be determined by the director through a Type I procedure. Such determination shall be based upon the requirements for the most comparable building or use specified herein. [Ord. 2451, 12-2-96. Code 2001 § 151.613.]
15.440.050 Common facilities for mixed uses.
A. In the case of mixed uses, the total requirements for off-street parking spaces shall be the sum of the requirements for the various uses. Off-street parking facilities for one use shall not be considered as providing parking facilities for any other use except as provided below.
B. Joint Uses of Parking Facilities. The director may, upon application, authorize the joint use of parking facilities required by said uses and any other parking facility; provided, that:

1. The applicant shows that there is no substantial conflict in the principal operating hours of the building or use for which the joint use of parking facilities is proposed.
2. The parking facility for which joint use is proposed is no further than 400 feet from the building or use required to have provided parking.
3. The parties concerned in the joint use of off-street parking facilities shall evidence agreement for such joint use by a legal instrument approved by the city attorney as to form and content. Such instrument, when approved as conforming to the provisions of the ordinance, shall be recorded in the office of the county recorder and copies of the instrument filed with the director.
C. Commercial establishments within 200 feet of a commercial public parking lot may reduce the required number of parking spaces by 50 percent. [Ord. 2451, 12-2-96. Code 2001 § 151.614.]
15.440.060 Parking area and service drive improvements.

All public or private parking areas, outdoor vehicle sales areas, and service drives shall be improved according to the following:
A. All parking areas and service drives shall have surfacing of asphaltic concrete or Portland cement concrete or other hard surfacing such as brick or concrete pavers. Other durable and dust-free surfacing materials may be approved by the directorfor infrequently used parking areas.

All parking areas and service drives shall be graded so as not to drain stormwater over the public sidewalk or onto any abutting public or private property.
B. All parking areas shall be designed not to encroach on public streets, alleys, and other rights-of-way. Parking areas shall not be placed in the area between the curb and sidewalk or, if there is no sidewalk, in the public right-of-way between the curb and the property line. The director may issue a permit for exceptions for unusual circumstances where the design maintains safety and aesthetics.
C. All parking areas, except those required in conjunction with a single-family or two-family dwelling, shall provide a substantial bumper which will prevent cars from encroachment on abutting private and public property.
D. All parking areas, including service drives, except those required in conjunction with singlefamily or two-family dwellings, shall be screened in accordance with NMC 15.420.010(B).
E. Any lights provided to illuminate any public or private parking area or vehicle sales area shall be so arranged as to reflect the light away from any abutting or adjacent residential district.
F. All service drives and parking spaces shall be substantially marked and comply with NMC 15.440.070.
G. Parking areas for residential uses shall not be located in a required front yard, except as follows:

1. Attached or detached single-family or two-family: parking is authorized in a front yard on a service drive which provides access to an improved parking area outside the front yard.
2. Three- or four-family: parking is authorized in a front yard on a service drive which is adjacent to a door at least seven feet wide intended and used for entrance of a vehicle (see Appendix A, Figure 12).
H. A reduction in size of the parking stall may be allowed for up to a maximum of 30 percent of the total number of spaces to allow for compact cars. For high turnover uses, such as convenience stores or fast-food restaurants, at the discretion of the director, all stalls will be required to be fullsized.
I. Affordable housing projects may use a tandem parking design, subject to approval of the community development director.
J. Portions of off-street parking areas may be developed or redeveloped for transit-related facilities and uses such as transit shelters or park-and-ride lots, subject to meeting all other applicable standards, including retaining the required minimum number of parking spaces. [Ord. 2810 § 2
(Exhs. B, C), 12-19-16; Ord. 2730 § 1 (Exh. A (14)), 10-18-10; Ord. 2628, 1-3-06; Ord. 2505, 2-199; Ord. 2451, 12-2-96. Code 2001 § 151.615.]
15.440.090 Purpose.

Cycling is a healthy activity for travel and recreation. In addition, by maximizing bicycle travel, the community can reduce negative effects of automobile travel, such as congestion and pollution. To maximize bicycle travel, developments must provide effective support facilities. At a minimum, developments need to provide a secure place for employees, customers, and residents to park their bicycles. [Ord. 2564, 4-15-02; Ord. 2518, 9-21-99. Code 2001 § 151.625.1.]
15.440.100 Facility requirements.

Bicycle parking facilities shall be provided for the uses shown in the following table. Fractional space requirements shall be rounded up to the next whole number.

Use	Minimum Number of Bicycle Parking Spaces Required
New multiple dwellings, including additions creating additional dwelling units	One bicycle parking space for every four dwelling units
New commercial, industrial, office, and institutional developments, including additions that total 4,000 square feet or more	One bicycle parking space for every 10,000 square feet of gross floor area. In C-4 districts, two bicycle parking spaces, or one per 5,000 square feet of building area, must be provided, whichever is greater
Transit transfer stations and park and ride lots	One bicycle parking space for every 20 vehicle parking spaces
Parks	Two bicycle parking

Use	Minimum Number of Bicycle Parking Spaces Required
	spaces within 50 feet of each developed play-ground, ball field, or shelter

[Ord. 2564, 4-15-02; Ord. 2518, 9-21-99. Code 2001 § 151.625.2.]
15.440.110 Design.
A. Bicycle parking facilities shall consist of one or more of the following:
A. 1. A firmly secured loop, bar, rack, or similar facility that accommodates locking the bicycle frame and both wheels using a cable or U-shaped lock.
B. 2. An enclosed locker.
C. 3. A designated area within the ground floor of a building, garage, or storage area. Such area shall be clearly designated for bicycle parking.
D. 4. Other facility designs approved by the director.
B. All bicycle parking spaces shall be at least six feet long and two and one-half feet wide. Spaces shall not obstruct pedestrian travel.
C. All spaces shall be located within 50 feet of a building entrance of the development.
D. Required bicycle parking facilities may be located in the public right-of-way adjacent to a development subject to approval of the authority responsible for maintenance of that right-of-way. [Ord. 2518, 9-21-99. Code 2001 § 151.625.3.]
15.440.080 Off-street loading.
A. Buildings to be built or substantially altered which receive and distribute materials and merchandise by trucks shall provide and maintain off-street loading berths in sufficient number and size to adequately handle the needs of the particular use.

1. The following standards shall be used in establishing the minimum number of berths required:

Gross Floor

Area of
the Building in
Square Feet
Up to 10,000
No. of Berths

10,000 and over
C. $\quad 1$
2. A loading berth shall contain a space 10 feet wide and 35 feet long and have a vertical clearance of 14 feet. Where the vehicles generally used for loading and unloading exceed these dimensions, the required length of these berths shall be increased.
3. Additional off-street loading requirements within the C-4 district are described in NMC 15.352.040(H)(7).
4. Where a facility includes an aircraft hangar, the off-street loading requirement is not required since loading may occur through the hangar doors.
B. The following provisions shall apply to off-street loading facilities:

1. The provision and maintenance of off-street loading space is a continuing obligation of the property owner. No building permit shall be issued until plans are presented that show property that is and will remain available for exclusive use as off-street loading space. The subsequent use of property for which the building permit is issued shall be conditional upon the unqualified continuance and availability of the amount of loading space required by this code. Should the owner or occupant of any building change the use to which the building is put, thereby increasing off-street loading requirements, it shall be unlawful and a violation of this code to begin or maintain such altered use until such time as the increased off-street loading requirements are met.
2. Owners of two or more buildings may agree to utilize jointly the same loading spaces when the hours of operation do not overlap; provided, that satisfactory legal evidence is presented to the city attorney in the form of deeds, leases or contracts to establish the joint use.
3. A plan drawn to scale, indicating how the off-street loading requirements are to be fulfilled, shall accompany an application for a building permit.

4. Design Requirements for Loading Areas.

96. a. Areas used for standing and maneuvering of vehicles shall have durable and dustless surfaces of asphaltic concrete or portland cement concrete, maintained adequately for all-weather use and so drained as to avoid flow of water across the sidewalks.
97. b. Loading areas adjacent to residential zones designed to minimize disturbance of residents.
98. c. Artificial lighting which may be provided shall be so deflected as not to shine or create glare in any residential zone or on any adjacent dwelling.
99. d. Access aisles shall be of sufficient width for all vehicular turning and maneuvering.
100. e. Vision clearance standards as identified in NMC 15.410.060 shall apply. [Ord. 2647, 6-5-06; Ord. 2564, 4-15-02; Ord. 2451, 12-2-96. Code 2001 § 151.617.]

Penalty: See NMC 15.05.120.
Article II. Bicycle Parking
15.440.090 Purpose.

Cycling is a healthy activity for travel and recreation. In addition, by maximizing bicycle travel, the community can reduce negative effects of automobile travel, such as congestion and pollution. To maximize bicycle travel, developments must provide effective support facilities. At a minimum, developments need to provide a secure place for employees, customers, and residents to park their bicycles. [Ord. 2564, 4-15-02; Ord. 2518, 9-21-99. Code 2001 § 151.625.1.]
15.440.100 Facility requirements.

Bicycle parking facilities shall be provided for the uses shown in the following table. Fractional space requirements shall be rounded up to the next whole number.

	Use of Bicycle Parking Spaces Required
New multiple dwellings, including additions creating additional dwelling units	One bicycle parking space for every four dwelling units
New commercial, industrial, office, and institutional developments,	One bicycle parking space for every $10,000 ~ s q u a r e ~ f e e t ~$ of gross floor area.

Use	Minimum Number of Bicycle Parking Spaces Required			
including additions that total 4,000 square feet or more	In C-4 districts, two bicycle parking spaces, or one per 5,000 square feet of building area, must be provided, whichever is greater			
Transit transfer stations and park and ride lots	One bicycle parking space for every 20 vehicle parking spaces			
Parks	Two bicycle parking spaces within 50 feet			
of each developed				
play-ground, ball				
field, or shelter		$	$	(
:---				

[Ord. 2564, 4-15-02; Ord. 2518, 9-21-99. Code 2001 § 151.625.2.]

15.440.110 Design.

A. Bicycle parking facilities shall consist of one or more of the following:

1. A firmly secured loop, bar, rack, or similar facility that accommodates locking the bicycle frame and both wheels using a cable or U-shaped lock.
2. An enclosed locker.
3. A designated area within the ground floor of a building, garage, or storage area. Such area shall be clearly designated for bicycle parking.
4. Other facility designs approved by the director.
B. All bicycle parking spaces shall be at least six feet long and two and one-half feet wide. Spaces shall not obstruct pedestrian travel.
C. All spaces shall be located within 50 feet of a building entrance of the development.
D. Required bicycle parking facilities may be located in the public right-of-way adjacent to a development subject to approval of the authority responsible for maintenance of that right-of-way. [Ord. 2518, 9-21-99. Code 2001 § 151.625.3.]

Finding: The applicants' submittal has not been evaluated for conformance with Section 15.440.010 through 15.440 .110 because of not having scaled drawings and other missing information.
15.440.140 Private walkway design.

A. All required private walkways shall meet the applicable building code and Americans with Disabilities Act requirements.

B. Required private walkways shall be a minimum of four feet wide.
C. Required private walkways shall be constructed of portland cement concrete or brick.
D. Crosswalks crossing service drives shall, at a minimum, be painted on the asphalt or clearly marked with contrasting paving materials or humps/raised crossings. If painted striping is used, it should consist of thermoplastic striping or similar type of durable application.
E. At a minimum, required private walkways shall connect each main pedestrian building entrance to each abutting public street and to each other.
F. The review body may require on-site walks to connect to development on adjoining sites.
G. The review body may modify these requirements where, in its opinion, the development provides adequate on-site pedestrian circulation, or where lot dimensions, existing building layout, or topography preclude compliance with these standards. [Ord. 2619, 5-16-05; Ord. 2513, 8-2-99. Code 2001 § 151.620.3.]

Finding: The applicant is proposing private walkways throughout the PUD, which connect multifamily residential units to E Portland Road, are located throughout the wetland/natural areas, and connect to Spring Meadow Park to the west. The applicant has indicated that "walkways will be a minimum of 4 -feet in width and will be constructed of Portland cement concrete. Crosswalks will be provided on the site to delineate the shift from public streets to private streets. Crosswalks will be painted/clearly striped in conformance with these requirements." The applicant did not indicate in the narrative that private walkways will meet the applicable building code and Americans with Disabilities Act requirements, or that private walkways are connecting each main pedestrian building entrance to each abutting public street and to each other. Because the applicant is not addressing all private walkway design requirements, the applicant will be required to meet the applicable building code and Americans with Disabilities Act requirements for private walkways, and develop a plan where private walkways are connecting each main pedestrian building entrance to each abutting public street and to each other.

These criteria will be met if the aforementioned conditions of approval are met.

IV. Chapter 15.505 PUBLIC IMPROVEMENTS STANDARDS

Abstract

5.505.010 Purpose.

This chapter provides standards for public infrastructure and utilities installed with new development, consistent with the policies of the City of Newberg comprehensive plan and adopted city master plans. The standards are intended to minimize disturbance to natural features, promote energy conservation and efficiency, minimize and maintain development impacts on surrounding properties and neighborhoods, and ensure timely completion of adequate public facilities to serve new development. [Ord. 2810 § 2 (Exhs. B, C), 12-19-16.]

15.505.020 Applicability.

The provision and utilization of public facilities and services within the City of Newberg shall apply to all land developments in accordance with this chapter. No development shall be approved unless the following improvements are provided for prior to occupancy or operation, unless future provision is assured in accordance with NMC 15.505.030(E).
A. Public Works Design and Construction Standards. The design and construction of all improvements within existing and proposed rights-of-way and easements, all improvements to be maintained by the city, and all improvements for which cityapproval is required shall comply with the requirements of the most recently adopted Newberg public works design and construction standards.

Finding: The preliminary plans show an extension of E Crestview Drive (Major Collector) to the south connecting to E Portland Road (Major Arterial). Frontage improvements along E Portland Road are also shown. Internal to the PUD, Public Street B is designated as a minor collector, and Public Street C and Public Street D are designated as local streets. Additionally, Private Streets A-L provide circulation and property access throughout the PUD. Other public improvements not limited to water, wastewater and stormwater infrastructure are also included in the applicant's plans. Because these improvements require City approval they shall comply with the City of Newberg Public Works Design and Construction Standards. A number of these improvements also require approval from other agencies. Public utility infrastructure improvements not limited to street improvements, public walkways, water, non-potable water, wastewater, and stormwater will require completed permits from partner agencies to authorize different work tasks. Issuance of required permits for wetland delineation/mitigation, construction, etc. not limited to the agencies of Yamhill County, the State of Oregon, and the Federal Government will be required prior to the City of Newberg issuing a Public Improvement Permit.

This criterion will be met if the conditions of approval are adhered to.
B. Street Improvements. All projects subject to a Type II design review, partition, or subdivision approval must construct street improvements necessary to serve the development.

Finding: The preliminary plans show an extension of E Crestview Drive to the south connecting to E Portland Road. Frontage improvements along E Portland Road are also shown. Internal to the PUD, Public Street B is designated as a minor collector, and Public Street C and Public Street D are designated as local streets. Additionally, Private Streets A-L provide circulation and property access throughout the PUD.

This criterion will be met if all street improvements necessary to serve the development are constructed.
C. Water. All developments, lots, and parcels within the City of Newberg shall be served by the municipal water system as specified in Chapter 13.15 NMC.

Finding: There is an existing 10 -inch public water line on E Portland Road, which is available for extension to the north to serve the development. There is an existing 8-inch public water line on E Crestview Drive which is available for extension to the south to serve the development.

There is an existing 10-inch non-potable water line on E Portland Road east of the development near N Harmony Lane that is available for extension to the north to serve the development.

Preliminary plans show both public and private streets having water lines, and public streets having non-potable water lines. This criterion is met.

D. Wastewater. All developments, lots, and parcels within the City of Newberg shall be served by the municipal wastewater system as specified in Chapter 13.10 NMC.

Finding: There is an existing 24 -inch public wastewater line approximately 700 -feet south of E Portland Road, which is available for extension to the north to serve the E Crestview Crossing PUD. Preliminary plans show both public and private streets having wastewater lines. This criterion is met.
E. Stormwater. All developments, lots, and parcels within the City of Newberg shall manage stormwater runoff as specified in Chapters 13.20 and 13.25 NMC.

Finding: Preliminary plans show stormwater drainage for the development connecting to proposed Tract B, Tract C, and Tract E stormwater facilities. Additionally plans show connection to the existing 15 -inch stormwater pipe to the north and the 24 -inch public stormwater line that connections under E Portland Road. This requirement is met.

This criterion will be met if the aforementioned condition of approval is adhered to.

F. Utility Easements. Utility easements shall be provided as necessary and required by the review body to provide needed facilities for present or future development of the area.

Finding: The applicant has submitted preliminary plans that indicate some utility easements. All public utilities shall be located within a public utility easement or right-of-way. The applicant has not
submitted construction plans so it cannot be determined if this requirement has been met.
G. City Approval of Public Improvements Required. No building permit may be issued until all required public facility improvements are in place and approved by the director, or are otherwise bonded for in a manner approved by the review authority, in conformance with the provisions of this code and the Newberg Public Works Design and Construction Standards. [Ord. 2810 § 2 (Exhs. B, C), 12-19-16.]
15.505.030 Street standards.
A. Purpose. The purpose of this section is to:

1. Provide for safe, efficient, and convenient multi-modal transportation within the City of Newberg.
2. Provide adequate access to all proposed and anticipated developments in the City of Newberg. For purposes of this section, "adequate access" means direct routes of travel between destinations; such destinations may include residential neighborhoods, parks, schools, shopping areas, and employment centers.
3. Provide adequate area in all public rights-of-way for sidewalks, wastewater and water lines, stormwater facilities, natural gas lines, power lines, and other utilities commonly and appropriately placed in such rights-of-way. For purposes of this section, "adequate area" means space sufficient to provide all required public services to standards defined in this code and in the Newberg public works design and construction standards.
B. Applicability. The provisions of this section apply to:
4. The creation, dedication, and/or construction of all public streets, bike facilities, or pedestrian facilities in all subdivisions, partitions, or other developments in the City of Newberg.
5. The extension or widening of existing public street rights-of-way, easements, or street improvements including those which may be proposed by an individual or the city, or which may be required by the city in association with other development approvals.
6. The construction or modification of any utilities, pedestrian facilities, or bike facilities in public rights-of-way or easements.
7. The designation of planter strips. Street trees are required subject to Chapter 15.420 NMC.
8. Developments outside the city that tie into or take access from city streets.
C. Layout of Streets, Alleys, Bikeways, and Walkways. Streets, alleys, bikeways, and walkways shall be laid out and constructed as shown in the Newberg transportation system plan. In areas where the transportation system plan or future street plans do not show specific transportation improvements, roads and streets shall be laid out so as to conform to previously approved subdivisions, partitions, and other developments for adjoining properties, unless it is found in the public interest to modify these patterns. Transportation improvements shall conform to the
standards within the Newberg Municipal Code, the Newberg public works design and construction standards, the Newberg transportation system plan, and other adopted city plans.
D. Construction of New Streets. Where new streets are necessary to serve a new development, subdivision, or partition, right-of-way dedication and full street improvements shall be required. Three-quarter streets may be approved in lieu of full street improvements when the city finds it to be practical to require the completion of the other one-quarter street improvement when the adjoining property is developed; in such cases, three-quarter street improvements may be allowed by the city only where all of the following criteria are met:
9. The land abutting the opposite side of the new street is undeveloped and not part of the new development; and
10. The adjoining land abutting the opposite side of the street is within the city limits and the urban growth boundary.

Finding: The applicant is proposing to extend E Crestview Drive, a major collector, from its northern terminus to E Portland Road. The applicant has proposed a cross-section on sheet C200 that varies and does not match the City's cross-section for a major collector roadway which requires a minimum of 60 -feet of right of way:

- 1-foot from back of walk to right-of-way
- 5-foot sidewalk
- 5.5-foot planter
- 0.5-foot curb
- 6-foot bike lane
- 12-foot travel lane
- 12-foot travel lane
- 6-foot bike lane
- 0.5-foot curb
- 5.5-foot planter
- 5-foot sidewalk
- 1-foot from back of walk to right-of-way

Because the applicant has not shown E Crestview Drive matching a major collector standard, the roadway is to consist of the following: 1 -foot from back of walk to right-of-way, 5 -foot sidewalk, 5.5 -foot planter, 0.5 -foot curb, 6 -foot bike lane, 12 -foot travel lane, 12 -foot travel lane, 6 -foot bike lane, 0.5 -foot curb, 5.5 -foot planter, 5 -foot sidewalk, 1 -foot from back of walk to right-of-way. The applicant is required to dedicate sufficient right-of-way (minimum of 60-feet) to construct E Crestview Drive, to construct a roundabout meeting FHWA Standards at the E Crestview Drive/Public Street B intersection, and to construct improvements related to modifying the traffic signal at the E Crestview Drive/Providence Drive/E Portland Road intersection meeting City of Newberg, Yamhill County, and Oregon Department of Transportation requirements.

The applicant is showing Public Street B designated as a minor collector running east-west through the PUD. The applicant has proposed a cross-section on sheet C200 that does not clearly articulate the dedication of roadway space. The following cross-section meets the City's standard for a minor collector and requires 64 -feet of right of way:

- 1-foot from back of walk to right-of-way
- 5-foot sidewalk
- 5.5-foot planter
- 0.5-foot curb
- 8-foot parking lane
- 12-foot travel lane with sharrow
- 12-foot travel lane with sharrow
- 8-foot parking lane
- 0.5-foot curb
- 5.5-foot planter
- 5-foot sidewalk
- 1-foot from back of walk to right-of-way

Because the applicant has not clearly indicated that allocation of space in the public right-of-way for Public Street B, the street is to consist of the following: 1-foot from back of walk to right-of-way, 5foot sidewalk, 5.5 -foot planter, 0.5 -foot curb, 8 -foot parking lane, 12 -foot travel lane with sharrow, 12 -foot travel lane with sharrow, 8 -foot parking lane, 0.5 -foot curb, 5.5 -foot planter, 5 -foot sidewalk, 1 -foot from back of walk to right-of-way. The applicant is required to dedicate sufficient right-ofway (minimum of 64-feet) to construct Public Street B.

The applicant is showing Public Street C and Public Street D designated as local residential streets. The applicant has proposed a cross-section on sheet C200 that does not match the City's
Transportation System Plan based on a local road functional classification. The following crosssection meets the City's standard for a local residential street and requires 56 -feet of right of way:

- 1-foot from back of walk to right-of-way
- 5-foot sidewalk
- 5.5-foot planter
- 0.5-foot curb
- 7-foot parking lane
- 9-foot travel lane
- 9-foot travel lane
- 7-foot parking lane
- 0.5-foot curb
- 5.5-foot planter
- 5-foot sidewalk
- 1-foot from back of walk to right-of-way

Because that applicant has proposed a roadway cross-section that does not match the City's Transportation System Plan for a local road, the applicant must revise plans to show Public Street C and Public Street D consisting of the following: 1-foot from back of walk to right-of-way, 5-foot sidewalk, 5.5 -foot planter, 0.5 -foot curb, 7 -foot parking lane, 9 -foot travel lane, 9 -foot travel lane, 7 foot parking lane, 0.5 -foot curb, 5.5 -foot planter, 5 -foot sidewalk, 1 -foot from back of walk to right-of-way. The applicant is required to dedicate sufficient right-of-way (minimum of 56-feet) to construct the listed streets.

These criteria cannot be accurately assessed until the City receives plans that meet the aforementioned conditions of approval.

E. Improvements to Existing Streets.

1. All projects subject to partition, subdivision, or Type II design review approval shall dedicate right-of-way sufficient to improve the street to the width specified in subsection (G) of this section.

Finding: E Portland Road is designated as a major arterial and is an ODOT owned facility that boarders the southern edge of the property. The applicant is proposing to construct frontage improvements along their property frontage and is showing a dedication 4.5 -feet of right-of-way just east of the E Crestview Drive/E Portland Road intersection in order to construct a right-turn lane. The following cross-section meets the City's standard for a major arterial street and requires 98 -feet of right of way:

- 1-foot from back of walk to right-of-way
- 5-foot sidewalk
- 5.5 -foot planter
- 0.5 -foot curb
- 6-foot bike lane
- 12-foot travel lane
- 12-foot travel lane
- 14-foot TWLTL travel lane
- 12-foot travel lane
- 12-foot travel lane
- 6-foot bike lane
- 0.5-foot curb
- 5.5 -foot planter
- 5-foot sidewalk
- 1-foot from back of walk to right-of-way

As noted in the applicants traffic study a westbound right-turn lane is needed at the E Crestview Drive/E Portland Road intersection. Based on the submitted plans, it is unclear if 4.5 -feet is all of the right-of-way that will be required by the Oregon Department of Transportation for the right turn lane construction. Because right-of-way dedication will need to be verified through the detailed design process which is unknown at this time, the applicant will be required to dedicated additional right-of-way necessary to meet requirements set forth by the Oregon Department of Transportation to meet Highway Design Manual standards to construct the westbound right-turn lane.

This criterion will be met with the adherence to the aforementioned condition of approval.
2. All projects subject to partition, subdivision, or Type II design review approval must construct a minimum of a three-quarter street improvement to all existing streets adjacent to, within, or necessary to serve the development. The director may waive or modify this requirement where the applicant demonstrates that the condition of existing streets to serve the development meets city standards and is in satisfactory condition to handle the projected traffic loads from the development. Where a development has frontage on both sides of an existing street, full street improvements are required.
3. In lieu of the street improvement requirements outlined in NMC 15.505.040(B), the review authority may elect to accept from the applicant monies to be placed in a fund dedicated to the future reconstruction of the subject street(s). The amount of money deposited with the city shall be 100 percent of the estimated cost of the required street improvements (including any associated utility improvements), and 10 percent of the estimated cost for inflation. Cost estimates used for this purpose shall be based on preliminary design of the constructed street provided by the applicant's engineer and shall be approved by the director.
F. Improvements Relating to Impacts. Improvements required as a condition of development approval shall be roughly proportional to the impact of the development on public facilities and services. The review body must make findings in the development approval that indicate how the required improvements are roughly proportional to the impact. Development may not occur until required transportation facilities are in place or guaranteed, in conformance with the provisions of this code. If required transportation facilities cannot be put in place or be guaranteed, then the review body shall deny the requested land use application.

Finding: A traffic study was submitted with the land use application for the Crestview Crossing PUD dated June 2018. Based on the analysis, the 260 single-family homes and 48 apartment units within the Crestview Crossing PUD were evaluated and it was estimated to create 4,126 additional trips each day; 213 will occur in the AM peak hour (7am-9am) and 285 trips will occur in the PM peak hour ($4 \mathrm{pm}-6 \mathrm{pm}$). This means that the traffic analysis over stated the number of single family homes (260 homes in TIA vs. 248 homes in the applicant's narrative) and understated the number of apartments (48 apartments in the TIA vs. 51 apartments in the applicant's narrative). Eight study
intersections were evaluated to determine the impact on the adjacent transportation system. Because the TIA identified mitigation measures the following shall occur:

The traffic study identified the following recommendations to mitigate traffic impacts of the proposed development at the Providence Drive/E Crestview Drive/E Portland Road intersection, and the applicant shall construct and be fiscally responsible for these roadway improvements:

- The new north leg of the intersection should be configured as a four-lane section with one northbound lane and three southbound lanes (left turn lane, through movement, and right turn lane). At lease 250 -feet of southbound left-turn lane storage and 150feet of southbound right-turn lane storage should be provided to accommodate the $95^{\text {th }}$ percentile queue lengths.
- The existing south leg of the intersection should be restriped to a four-lane section with one southbound lane, and three northbound lanes (left turn lane, through movement, and right turn lane).
- Based on the $95^{\text {th }}$ percentile queuing analysis:
- A westbound right turn lane should be constructed with at least 300-feet of storage
- A eastbound left turn lane should be striped to provide at least 150 -feet of storage
- The signal phasing of the intersection should be operated with permissive left turn movements on the north and south approaches with fully protected left turn movements on the east and west approaches.

The Oregon Department of Transportation (ODOT) has reviewed the traffic study and provided comments. Because the applicant has not addressed all of ODOT's traffic study requirements, the comments on the traffic study identified by ODOT shall be adequately addressed and approved by ODOT as noted in the memo dated July 19, 2018 signed by Dan Fricke, Region 2 Senior Planner.

ODOT has identified the following Roadway Improvements and Signal Modifications at the Providence Drive/E Crestview Drive/E Portland Road intersection:

Roadway Improvements:
The following roadway improvements have been identified

- Installation of a westbound right-turn deceleration lane on E Portland Road approaching E Crestview Drive
- At the northeast corner of the E Portland Road/E Crestview Drive intersection, the sidewalk will need to connect to the highway shoulder with an "End of Walk" ADA compliant connection (ODOT Standard Drawing RD 754).
- The crosswalk on the east leg of the intersection (across E Portland Road) must be reinstalled along with appropriate modifications to the traffic signal (signal modifications are addressed in more detail below)
- The required roadway and signal improvements will trigger the need to assess all curb ramps and push buttons at E Portland Road/E Crestview Drive. Any non-compliant curb ramps shall be remediated to meet State ADA standards.

Prior to the issuance of the first grading or building permit, the applicant shall submit plans and specifications for all improvements/construction within ODOT right-of-way for review and approval by ODOT District 3 and issuance of a permit to construct within ODOT right-of-way. ODOT shall certify that all construction activities have been completed pursuant to the approved plans and specifications prior to the issuance of the first certificate of use and occupancy, or the city's equivalent.

Signal Modifications:
It is likely that the entire signal installation will need to be replaced to accommodate the E Crestview Drive leg being added to the existing intersection. The following is a list of the minimum modifications that are anticipated to be necessary:

- The existing signal poles on the north side of the intersection will need to be replaced to accommodate the new E Crestview Drive
- A new mast arm will be needed in the southwest quadrant of the intersection to signalize the new E Crestview Drive leg.
- New pedestrian signal and push-button pedestal for the pedestrian crossing on the east leg of the intersection.
- New detection will be needed depending on how new ADA ramps affect crosswalk locations (note that Region 2 is using radar detection)

Prior to issuance of the first grading or building permit, the applicant shall submit signal modification plans for the review of the ODOT Region 2 Traffic Engineer and the review and approval of the State Traffic Engineer. ODOT shall certify that all required signal modifications have been completed and the signal operational prior to the issuance of the first certificate of use and occupancy, or the city's equivalent.

This criterion will be met if the conditions of approval are adhered to.

G. Street Width and Design Standards.

1. Design Standards. All streets shall conform with the standards contained in Table 15.505.030 (G). Where a range of values is listed, the director shall determine the width based on a consideration of the total street section width needed, existing street widths, and existing development patterns. Preference shall be given to the higher value. Where values may be
modified by the director, the overall width shall be determined using the standards under subsections (G)(2) through (10) of this section.

Table 15.505.030(G) Street Design Standards

Type of Street	Right-of- Way Width	Curb-toCurb Pavement Width	Motor Vehicle Travel Lanes	Median Type	Striped Bike Lane (Both Sides)	On-Street Parking
Arterial Streets						
Expressway**	ODOT	ODOT	ODOT	ODOT	ODOT	ODOT
Major arterial	95-100 feet	74 feet	4 lanes	TWLTL or median*	Yes	No*
Minor arterial	69-80 feet	48 feet	2 lanes	TWLTL or median*	Yes	No*
Collectors						
Major	57-80 feet	36 feet	2 lanes	None**	Yes	No *
Minor	61-65 feet	40 feet	2 lanes	None*	Yes*	Yes*
Local Streets						
Local residential	54-60 feet	32 feet	2 lanes	None	No	Yes
Limited residential, parking both sides	44-50 feet	28 feet	2 lanes	None	No	Yes
Limited residential, parking one side	40-46 feet	26 feet	2 lanes	None	No	One side
Local commercial/ industrial	55-65 feet	34 feet	2 lanes	None**	No*	Yes*

* May be modified with approval of the director. Modification will change overall curb-to-curb and right-ofway width. Where a center turn lane is not required, a landscaped median shall be provided instead, with turning pockets as necessary to preserve roadway functions.
** All standards shall be per ODOT expressway standards.

2. Motor Vehicle Travel Lanes. Collector and arterial streets shall have a minimum width of 12 feet.

Finding: The submitted plans show 12-foot travel lanes on E Portland Road (major arterial), E Crestview Drive (major collector), and Public Street B (minor collector). This criterion is met.

3. Bike Lanes. Striped bike lanes shall be a minimum of six feet wide. Bike lanes shall be provided where shown in the Newberg transportation system plan.

Finding: The submitted plans show space available for a 6-foot bike lane on E Crestview Drive, and Public Street B. The applicant is showing the westbound bike lane on E Portland Road as 5-feet wide, this does not meet the City's standard. Because the applicant's proposal does not meet the City's standard, the applicant is required to install a 6-foot bike lane along E Portland Road to match the City's Transportation System Plan cross-section. This criterion will be met with the adherence to the aforementioned condition of approval.

4. Parking Lanes. Where on-street parking is allowed on collector and arterial streets, the parking lane shall be a minimum of eight feet wide.

Finding: The submitted show space for an 8-foot on-street parking lane on Public Street B, which is classified as a minor collector. The applicant is not proposing on-street parking along E Crestview Drive. This criterion is met.

5. Center Turn Lanes. Where a center turn lane is provided, it shall be a minimum of 12 feet wide.

Finding: The applicant's preliminary plans show a southbound and northbound left turn lane at the E Crestview Drive/E Portland Road intersection. Because the applicant's submitted plans are not to scale and do not indicate the width of center turn lanes, the City will require the southbound and northbound center turn lanes at the E Crestview Drive/E Portland Drive intersection to be a minimum of 12-feet wide.

This criterion will be verified to have been met with the submittal of scaled plans.
7. Sidewalks. Sidewalks shall be provided on both sides of all public streets. Minimum width is five feet.

Finding: The submitted plans show 5-foot sidewalks along both sides of E Crestview Drive, Public Street B, Public Street C, and Public Street D. The City requires 5 -foot sidewalks along all public streets where a planter strip is utilized, and 6-foot sidewalks in areas utilizing a curb-tight sidewalk. ODOT has different sidewalk width requirements and the applicant is showing a 6-foot sidewalk along E Portland Road. Because the applicant's plans do not clearly show directional ADA curb ramps which are integral to the sidewalk, the applicant will be required to install directional ADA curb ramps at the corners of all public street/public street intersection locations, and at public street/private street intersection locations. The final design of all roads within the PUD will be
reviewed and approved as part of the Public Improvement Permit. This criterion will be met with the adherence to the aforementioned condition of approval.
> 8. Planter Strips. Except where infeasible, a planter strip shall be provided between the sidewalk and the curb line, with a minimum width of five feet. This strip shall be landscaped in accordance with the standards in NMC 15.420.020. Curb-side sidewalks may be allowed on limited residential streets. Where curb-side sidewalks are allowed, the following shall be provided:
> a. Additional reinforcement is done to the sidewalk section at corners.
> b. Sidewalk width is six feet.

Finding: The submitted plans show planter strips on E Portland Road, E Crestview Drive, Public Street B, Public Street C, and Public Street D. Planter strips are not provided on private streets. The planter strips on public streets are required to be 5.5 -feet wide. Where a planter strip is not provided, the public sidewalk is required to be 6 -feet wide. These criteria will be met if the conditions of approval are adhered to.
> 10. Intersections and Street Design. The street design standards in the Newberg public works design and construction standards shall apply to all public streets, alleys, bike facilities, and sidewalks in the city.

Finding: Preliminary plans indicate that the applicant will be able to meet requirements of the Public Works Design and Construction Standards. Because final plans have not been developed to review if all the City's Public Works Design and Construction Standards have been met, the final design of E Portland Road, E Crestview Drive, Public Street B, Public Street C, and Public Street D will need to comply with City's Public Works Design and Construction Standards and applicable ODOT standards. The applicant will be required to obtain a Public Improvement Permit and meet the City's Transportation System Plan and Public Works Design and Construction Standards for the proposed roadway improvements. This condition of approval will be verified to have been met with the adherence to the aforementioned condition of approval.
K. Future Extension of Streets. All new streets required for a subdivision, partition, or a project requiring site design review shall be constructed to be "to and through": through the development and to the edges of the project site to serve adjacent properties for future development.

Finding: Preliminary plans show Public Street B and Public Street C with east-west alignments with the potential to extend further to the east. This criterion is met.
M. Street Names and Street Signs. Streets that are in alignment with existing named streets shall bear the names of such existing streets. Names for new streets not in alignment with existing streets are subject to approval by the director and the fire chief and shall not
unnecessarily duplicate or resemble the name of any existing or platted street in the city. It shall be the responsibility of the land divider to provide street signs.

Finding: The applicant's plans do not show details for street name signs. Because the applicant has not shown street names and street name signs in the plans or indicated that they will be installed, the applicant is required to install street name signs at all intersections within the development including those intersections with private streets. This criterion will be met with the adherence to the aforementioned condition of approval.

N. Platting Standards for Alleys.

1. An alley may be required to be dedicated and constructed to provide adequate access for a development, as deemed necessary by the director.
2. The right-of-way width and paving design for alleys shall be not less than 20 feet wide.

Slope easements shall be dedicated in accordance with specifications adopted by the city council under NMC 15.505.010 et seq.
3. Where two alleys intersect, 10-foot corner cut-offs shall be provided.
4. Unless otherwise approved by the city engineer where topographical conditions will not reasonably permit, grades shall not exceed 12 percent on alleys, and centerline radii on curves shall be not less than 100 feet.
5. All provisions and requirements with respect to streets identified in this code shall apply to alleys the same in all respects as if the word "street" or "streets" therein appeared as the word "alley" or "alleys" respectively.

O. Platting Standards for Blocks.

1. Purpose. Streets and walkways can provide convenient travel within a neighborhood and can serve to connect people and land uses. Large, uninterrupted blocks can serve as a barrier to travel, especially walking and biking. Large blocks also can divide rather than unite neighborhoods. To promote connected neighborhoods and to shorten travel distances, the following minimum standards for block lengths are established.
2. Maximum Block Length and Perimeter. The maximum length and perimeters of blocks in the zones listed below shall be according to the following table. The review body for a subdivision, partition, conditional use permit, or a Type II design review may require installation of streets or walkways as necessary to meet the standards below.

Zone(s)	Maximum Block Length	Maximum Block Perimeter
$R-1$	800 feet	2,000 feet
$R-2, R-3, R P, I$	1,200 feet	3,000 feet

3. Exceptions.

a. If a public walkway is installed mid-block, the maximum block length and perimeter may be increased by 25 percent.
b. Where a proposed street divides a block, one of the resulting blocks may exceed the maximum block length and perimeter standards provided the average block length and perimeter of the two resulting blocks do not exceed these standards.
c. Blocks in excess of the above standards are allowed where access controlled streets, street access spacing standards, railroads, steep slopes, wetlands, water bodies, preexisting development, ownership patterns or similar circumstances restrict street and walkway location and design. In these cases, block length and perimeter shall be as small as practical. Where a street cannot be provided because of these circumstances but a public walkway is still feasible, a public walkway shall be provided.
d. Institutional campuses located in an R-1 zone may apply the standards for the institutional zone.
e. Where a block is in more than one zone, the standards of the majority of land in the proposed block shall apply.
f. Where a local street plan, concept master site development plan, or specific plan has been approved for an area, the block standards shall follow those approved in the plan. In approving such a plan, the review body shall follow the block standards listed above to the extent appropriate for the plan area.

Finding: Due to the applicants' plan sheets not being printed to scale, a precise measurement of block length and perimeter cannot be made. It appears that the block lengths and perimeters may meet this requirement but a definitive determination would be difficult. The applicant must meet all requirements listed in Section15.505.030 (N)(O) of the NDC. These criteria will be met with the aforementioned condition of approval being adhered to.
P. Private Streets. New private streets, as defined in NMC 15.05.030, shall not be created, except as allowed by NMC 15.240.020(L)(2).

Finding: Preliminary plans show public and private streets as part of a Planned Unit Development. See finding under NMC $15.240(\mathrm{~L})(2)$ for additional findings and conditions. Preliminary plans show concrete aprons/driveways providing a visual separation of private streets from public streets. This requirement is met.
R. Vehicular Access Standards.

1. Purpose. The purpose of these standards is to manage vehicle access to maintain traffic flow, safety, roadway capacity, and efficiency. They help to maintain an adequate level of service consistent with the functional classification of the street. Major roadways, including arterials and collectors, serve as the primary system for moving people and goods
within and through the city. Access is limited and managed on these roads to promote efficient through movement. Local streets and alleys provide access to individual properties. Access is managed on these roads to maintain safe maneuvering of vehicles in and out of properties and to allow safe through movements. If vehicular access and circulation are not properly designed, these roadways will be unable to accommodate the needs of development and serve their transportation function.
2. Access Spacing Standards. Public street intersection and driveway spacing shall follow the standards in Table 15.505.R below. The Oregon Department of Transportation (ODOT) has jurisdiction of some roadways within the Newberg city limits, and ODOT access standards will apply on those roadways.

Table 15.505.R. Access Spacing Standards

Roadway Functional Classification	Area ${ }^{\text {I }}$	Minimum Public Street Intersection Spacing (Feet) ${ }^{2}$	Driveway Setback from Intersecting Street ${ }^{3}$
Expressway	All	Refer to ODOT Access Spacing Standards	$N A$
Major arterial	Urban CBD	Refer to ODOT Access Spacing Standards	
Minor arterial	Urban CBD	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$
Major collector	All	400	150
Minor collector	All	300	100

1 "Urban" refers to intersections inside the city urban growth boundary outside the central business district (C-3 zone).
"CBD" refers to intersections within the central business district (C-3 zone).
"All" refers to all intersections within the Newberg urban growth boundary.
${ }^{2}$ Measured centerline to centerline.
${ }^{3}$ The setback is based on the higher classification of the intersecting streets. Measured from the curb line of the intersecting street to the beginning of the driveway, excluding flares. If the driveway setback listed above would preclude a lot from having at least one driveway, including shared driveways or driveways on adjoining streets, one driveway is allowed as far from the intersection as possible.

Finding: The applicant's plans show the driveways for Private Street G and Private Street H to the east of E Crestview Drive (major collector). The plans provided are not scalable and it appears that Private Street G and Private Street H do not meet spacing requirements from a Public Street intersection. Because the applicant is not meeting street spacing standards, Private Street G and Private Street H driveway setbacks need to be a minimum of 150 -feet from E Crestview Drive per

Table 15.505.R. Access Spacing Standards

Roadway Functional Classification	Area 1	Minimum Public Street Intersection Spacing (Feet) ${ }^{2}$	Driveway Setback from Intersecting Street ${ }^{3}$

Table 15.505.R Access Spacing Standards. This criteria will be met with the adherence to the aforementioned condition of approval.

3. Properties with Multiple Frontages. Where a property has frontage on more than one street, access shall be limited to the street with the lesser classification.

Finding: Several lots within the applicant's Planned Unit Development have frontages along more than one public/private street. Access shall be taken from the street with the lesser functional classification, and private streets are designated as having the lowest functional classification. This criterion will be met with the adherence to the aforementioned condition of approval.
> 4. Driveways. More than one driveway is permitted on a lot accessed from either a minor collector or local street as long as there is at least 40 feet of lot frontage separating each driveway approach. More than one driveway is permitted on a lot accessed from a major collector as long as there is at least 100 feet of lot frontage separating each driveway approach.

Finding: The applicant's plans show that Lot 249 has just over 400-feet of frontage along Public Street B (minor collector). Lot 249 has two driveways shown and the distance between the driveways is at least 100 -feet. This criterion is met.
5. Alley Access. Where a property has frontage on an alley and the only other frontages are on collector or arterial streets, access shall be taken from the alley only. The review body may allow creation of an alley for access to lots that do not otherwise have frontage on a public street provided all of the following are met:
a. The review body finds that creating a public street frontage is not feasible.
b. The alley access is for no more than six dwellings and no more than six lots.
c. The alley has through access to streets on both ends.
d. One additional parking space over those otherwise required is provided for each dwelling. Where feasible, this shall be provided as a public use parking space adjacent to the alley.

Finding: The applicant is proposing private streets and has not identified private access locations. Because access locations have not been identified, if a property has frontage on a private street and other frontages are on collector or arterial streets, access shall be taken from the private street only. This criterion will be met with the adherence to the aforementioned condition of approval.
6. Closure of Existing Accesses. Existing accesses that are not used as part of development or redevelopment of a property shall be closed and replaced with curbing, sidewalks, and landscaping, as appropriate.
7. Shared Driveways.
a. The number of driveways onto arterial streets shall be minimized by the use of shared driveways with adjoining lots where feasible. The city shall require shared driveways as a condition of land division or site design review, as applicable, for traffic safety and access management purposes. Where there is an abutting developable property, a shared driveway shall be provided as appropriate. When shared driveways are required, they shall be stubbed to adjacent developable parcels to indicate future extension. "Stub" means that a driveway temporarily ends at the property line, but may be accessed or extended in the future as the adjacent parcel develops. "Developable" means that a parcel is either vacant or it is likely to receive additional development (i.e., due to infill or redevelopment potential).
b. Access easements (i.e., for the benefit of affected properties) and maintenance agreements shall be recorded for all shared driveways, including pathways, at the time of final plat approval or as a condition of site development approval.
c. No more than four lots may access one shared driveway.
d. Shared driveways shall be posted as no parking fire lanes where required by the fire marshal.
e. Where three lots or three dwellings share one driveway, one additional parking space over those otherwise required shall be provided for each dwelling. Where feasible, this shall be provided as a common use parking space adjacent to the driveway.

Finding: The applicant is not proposing shared driveways as part of this development. This requirement is not applicable.
9. ODOT or Yamhill County Right-of-Way. Where a property abuts an ODOT or Yamhill County right-of-way, the applicant for any development project shall obtain an access permit from ODOT or Yamhill County.
T. Street Trees. Street trees shall be provided for all projects subject to Type II design review, partition, or subdivision. Street trees shall be installed in accordance with the provisions of NMC 15.420.010(B)(4).

Finding: Preliminary plans show street trees along public streets within the development. E Crestview Drive is classified a major collector, Public Street B is a minor collector, and Public Street C and Public Street D are local streets. It is unclear from the applicant's submittal if they are meeting the street tree requirement. Because it's unclear that the applicant is meeting the street tree requirement, the applicant will be required to provide street trees along all public streets that are
compliant with 15.420 .010 (B)(4)(a). This criterion will be verified to have been met when the applicant submits plans with sufficient detail to assess compliance.
U. Street Lights. All developments shall include underground electric service, light standards, wiring and lamps for street lights according to the specifications and standards of the Newberg public works design and construction standards. The developer shall install all such facilities and make the necessary arrangements with the serving electric utility as approved by the city. Upon the city's acceptance of the public improvements associated with the development, the street lighting system, exclusive of utility-owned service lines, shall be and become property of the city unless otherwise designated by the city through agreement with a private utility.

Finding: Preliminary plans show street lighting on both public and private streets. Because it's unclear if the applicant is meeting street lighting standards, the applicant will be required to submit construction plans that include street lighting needed to meet the specifications and standards of the City's Public Works Design and Construction Standards. This condition of approval will be met with the adherence to the aforementioned condition of approval.
15.505.040 Public utility standards.

C. General Standards.

1. The design and construction of all improvements within existing and proposed rights-ofway and easements, all improvements to be maintained by the city, and all improvements for which city approval is required shall conform to the Newberg public works design and construction standards and require a public improvements permit.
2. The location, design, installation and maintenance of all utility lines and facilities shall be carried out with minimum feasible disturbances of soil and site. Installation of all proposed public and private utilities shall be coordinated by the developer and be approved by the city to ensure the orderly extension of such utilities within public right-of-way and easements.

Finding: The applicant's narrative indicates that they plan to follow the City of Newberg Design and Construction Standards and ODOT construction standards for all public improvements depending on jurisdiction and will acquire the necessary permits to build those improvements. Because the applicant has not obtained all necessary permits for construction, the issuance of required permits not limited to the agencies of Yamhill County, the State of Oregon, and the Federal Government will be required prior to the City of Newberg issuing a Public Improvement Permit. These criteria will be met with the adherence to the aforementioned condition of approval.
D. Standards for Water Improvements. All development that has a need for water service shall install the facilities pursuant to the requirements of the city and all of the following standards. Installation of such facilities shall be coordinated with the extension or improvement of necessary wastewater and stormwater facilities, as applicable.

1. All developments shall be required to be linked to existing water facilities adequately sized to serve their intended area by the construction of water distribution lines, reservoirs and pumping stations which connect to such water service facilities. All
necessary easements required for the construction of these facilities shall be obtained by the developer and granted to the city pursuant to the requirements of the city.
2. Specific location, size and capacity of such facilities will be subject to the approval of the director with reference to the applicable water master plan. All water facilities shall conform with city pressure zones and shall be looped where necessary to provide adequate pressure and fire flows during peak demand at every point within the system in the development to which the water facilities will be connected. Installation costs shall remain entirely the developer's responsibility.

Finding: The applicant will be utilizing the existing water lines in E Crestview Drive and E Portland Road to provide public water lines through the PUD. The applicant will be utilizing the existing nonpotable water line in E Portland Road to provide non-potable water lines through the PUD. The applicant has not submitted fire flow calculations. Because the applicant has not submitted fire flow calculations, they will be required to submit fire flow calculations to show that the existing and proposed service is adequate prior to the issuance of the Public Improvement Permit. This criterion will be verified to have met with the adherence to the conditions of approval.

> 3. The design of the water facilities shall take into account provisions for the future extension beyond the development to serve adjacent properties, which, in the judgment of the city, cannot be feasibly served otherwise.

Finding: Preliminary plans indicate that Public Street B and Public Street C will continue east beyond the proposed development in the future. The applicant's plans do not take into account future extension beyond the development to serve adjacent properties. Because the applicant's plans do not take into account future street extensions beyond the development, a blow off assembly on the water lines at the eastern end of Street B and Street C will be required which allows for future extension beyond the development site. This criterion will be met with the adherence to the aforementioned condition of approval.

4. Design, construction and material standards shall be as specified by the director for the construction of such public water facilities in the city.

Finding: Preliminary plans indicate that the applicant will be able to meet requirements of the Public Works Design and Construction Standards. Submitted plans show water mains in both public and private streets, but do not show a water main size, the City's standard is an 8 -inch minimum water main. The applicant is also showing non-potable water lines in public streets. Fire hydrants will need to be located to meet the Fire Code requirements.

Because construction plans have not yet been submitted and reviewed to determine if this requirement is met, the applicant will need to submit construction plans and obtain a Public Improvement Permit to install the water system and non-potable water system pursuant to the requirements of the City's Public Works Design and Construction Standards. Utility designs and alignments will be reviewed as part of the Public Improvement Permit. Non-potable water lines are required in public streets and may be required in private streets to provide non-potable water to any landscaping area maintained by the PUD. This criterion will be met with the adherence to the aforementioned condition of approval.
E. Standards for Wastewater Improvements. All development that has a need for wastewater services shall install the facilities pursuant to the requirements of the city and all of the following standards. Installation of such facilities shall be coordinated with the extension or improvement of necessary water services and stormwater facilities, as applicable.

1. All septic tank systems and on-site sewage systems are prohibited. Existing septic systems must be abandoned or removed in accordance with Yamhill County standards.

Finding: Preliminary plans show an existing home located on the property and the applicant did not address if a septic system exists. Because it's possible that a septic system is present on the property and the applicant has not addressed this issue, the applicant is required to abandon or remove the septic system in accordance with Yamhill County Standards. The applicant will need to provide a certification from Yamhill County of the septic system abandonment/removal. This criterion will be met with the adherence to the aforementioned condition of approval.
2. All properties shall be provided with gravity service to the city wastewater system, except for lots that have unique topographic or other natural features that make gravity wastewater extension impractical as determined by the director. Where gravity service is impractical, the developer shall provide all necessary pumps/lift stations and other improvements, as determined by the director.
3. All developments shall be required to be linked to existing wastewater collection facilities adequately sized to serve their intended area by the construction of wastewater lines which connect to existing adequately sized wastewater facilities. All necessary easements required for the construction of these facilities shall be obtained by the developer and granted to the city pursuant to the requirements of the city.
4. Specific location, size and capacity of wastewater facilities will be subject to the approval of the director with reference to the applicable wastewater master plan. All wastewater facilities shall be sized to provide adequate capacity during peak flows from the entire area potentially served by such facilities. Installation costs shall remain entirely the developer's responsibility.

Finding: Preliminary plans indicate that the applicant will be able to meet requirements of the Public Works Design and Construction Standards. Submitted plans show sewer mains in both public and
private streets, but do not show a sewer main size, the City's standard is a minimum 8-inch sewer main. Service laterals for waste water service is to be provided to each lot; single residential service laterals require a 4 -inch pipe with cleanout, and split residential service laterals require a 6 -inch pipe with cleanout. Plans also show a connection to the existing sewer main approximately 700 -feet south of E Portland Road. The applicant has not adequately addressed capacity of the proposed wastewater line extension for the purpose of the development.

Because the applicant has not adequately addressed capacity needs of the proposed wastewater line extension, the applicant will be required to evaluate downstream impacts, including impacts to the Fernwood lift station, submit construction plans, and obtain a Public Improvement Permit to install the wastewater system pursuant to the requirements of the City's Design and Construction Standards. Utility designs and alignments will be reviewed as part of the Public Improvement Permit. These criteria will be met with the adherence to the aforementioned condition of approval.

6. The design of the wastewater facilities shall take into account provisions for the future extension beyond the development to serve upstream properties, which, in the judgment of the city, cannot be feasibly served otherwise.

Finding: Preliminary plans indicate Public Street B and Public Street C will continue east beyond the proposed development in the future. The applicant's plans do not address future street extensions. Because the applicant's plans do not take into account future street extensions beyond the development, a manhole will be required at the eastern end of the wastewater lines in both street B and street C which will allow for future extension beyond the development site. This criterion will be met with the adherence to the aforementioned condition of approval.

7. Design, construction and material standards shall be as specified by the director for the construction of such wastewater facilities in the city.

Finding: Preliminary plans indicate that the applicant will be able to meet requirements of the Public Works Design and Standards. Submitted plans show new sewer mains in both public and private streets throughout the PUD, minimum sewer mains are required to be 8 -inches. Service laterals for waste water service is to be provided to each lot; single residential service laterals require a 4 -inch pipe with cleanout, and split residential service laterals require a 6 -inch pipe with cleanout. Because construction plans have not yet been submitted and reviewed to determine if this requirement is met, the applicant will be required to submit construction plans and obtain a Public Improvement Permit to install the wastewater system pursuant to the requirements of the City's Public Works Design and Construction Standards. Utility designs and alignments will be reviewed as part of the Public Improvement Permit. This criterion will be met with the adherence to the aforementioned condition of approval.
F. Easements. Easements for public and private utilities shall be provided as deemed necessary by the city, special districts, and utility companies. Easements for special purpose uses shall be of a
width deemed appropriate by the responsible agency. Such easements shall be recorded on easement forms approved by the city and designated on the final plat of all subdivisions and partitions. Minimum required easement width and locations are as provided in the Newberg public works design and construction standards. [Ord. 2810 § 2 (Exhs. B, C), 12-19-16.]

Finding: The applicant has submitted preliminary plans that indicate some utility easements, however not all easements have been identified. Because the applicant has not indicated all utility easements, the applicant will be required to submit construction plans that include necessary utility easements meeting the specifications and standards of the City's Public Works Design and Construction Standards, but not necessarily limited to:

1) 10-foot utility easements along all street frontages, unless determined by the City Engineer as part of the Public Improvement Permit plan review to be not needed or not feasible due to site conditions.
2) 15 -foot utility easements along all public stormwater, sewer, water, and non-potable water lines where not located within the existing roadway right-of-way.
3) Public access easements for any private streets that are required to be used to access public infrastructure.
4) Public access easements for all private walkaways within the PUD.

This criterion will be met with the adherence to all the conditions of approval.
15.505.050 Stormwater system standards.
C. General Requirement. All stormwater runoff shall be conveyed to a public storm wastewater or natural drainage channel having adequate capacity to carry the flow without overflowing or otherwise causing damage to public and/or private property. The developer shall pay all costs associated with designing and constructing the facilities necessary to meet this requirement.

Finding: Preliminary plans show that all on-site stormwater is collected into a storm main and conveyed into stormwater facilities located in Tract B, Tract C, and Tract E. The applicant's materials indicate that stormwater tracts/facilities will be privately maintained, but is it unclear if the facilities can be adequately accessed. Stormwater tracts located in areas of wetlands are to be mitigated, and the City will not accept wetlands in stormwater tracts. Construction plans have not yet been submitted and reviewed to determine if the requirement is met.

Because the applicant has not submitted constriction plans, the applicant will be required to submit construction plans and obtain a Public Improvement Permit to install the stormwater system improvements pursuant to the requirements of the City's Public Works Design and Construction Standards which should include the following:

- Turn templates for maintenance vehicles accessing stormwater facilities shall be provided to verify that adequate site access exists.
- Permanent maintenance access via a paved road within 10 -feet of stormwater facility structures within the stormwater tracts is required.
- Any stormwater tract/facility treating private stormwater shall be owned and maintained by the PUD. Any stormwater tract/facility treating both public and private stormwater shall be owned and maintained by the PUD. Any stormwater tract/facility treating only public stormwater shall be owned and maintained by the City of Newberg.
- Preliminary plans show wetlands inside of stormwater tracts, because the City does not accept wetlands in stormwater tracks, the applicant will be required to remove any wetlands from stormwater tracts dedicated to the City.
- Public/private walkways when located adjacent to stormwater facilities must be located outside of the fenced stormwater facility and outside of maintenance access drives.
- A downstream analysis shall be completed, where the design Engineer visually investigates the downstream system for at least on-quarter mile downstream and reports any observed deficiencies per Public Works Design and Construction Standards.
- All stormwater mains are required to cross streets at right angles perpendicular to the street.

This criterion will be met with the adherence to the aforementioned conditions of approval.
D. Plan for Stormwater and Erosion Control. No construction of any facilities in a development included in subsection (B) of this section shall be permitted until an engineer registered in the State of Oregon prepares a stormwater report and erosion control plan for the project. This plan shall contain at a minimum:

1. The methods to be used to minimize the amount of runoff, sedimentation, and pollution created from the development both during and after construction.
2. Plans for the construction of stormwater facilities and any other facilities that depict line sizes, profiles, construction specifications, and other such information as is necessary for the city to review the adequacy of the stormwater plans.
3. Design calculations shall be submitted for all drainage facilities. These drainage calculations shall be included in the stormwater report and shall be stamped by a licensed professional engineer in the State of Oregon. Peak design discharges shall be computed based upon the design criteria outlined in the public works design and construction standards for the city.

Finding: Preliminary plans and a preliminary stormwater report for the proposed development have been submitted. This site is not currently paved. New impervious surfaces will be created and stormwater quality and quantity facilities will be required and the applicant has not obtained appropriate erosion control permitting. Because this project will disturb more than one acre and permitting has not been obtain, a 1200-C permit from DEQ will be required. The applicant will be required to submit a copy of the $1200-\mathrm{C}$ permit from DEQ. This criterion will be met with the adherence to the aforementioned condition of approval.

E. Development Standards. Development subject to this section shall be planned, designed, constructed, and maintained in compliance with the Newberg public works design and construction standards. [Ord. 2810 § 2 (Exhs. B, C), 12-19-16.]

Finding: Preliminary plans show that all on-site stormwater is collected and conveyed to on-site stormwater facilities. Construction plans for this stormwater systems have not yet been submitted. A stormwater final report will need to be submitted with the Public Improvement Permit and will be completely reviewed at that time. Because construction plans have not yet been submitted and reviewed to determine if this requirement has been met, the applicant will need to submit a stormwater report and construction plans meeting the City's Public Works Design and Construction Standards and obtain a Public Improvement Permit to install the stormwater system improvements. Utility designs and alignments will be reviewed as part of the Public Improvement Permit. This criterion will be verified to have been met with the adherence to the aforementioned condition of approval.

Conclusion: City of Newberg staff cannot definitively state that the requirements listed in the Newberg Development Code have been met due to not receiving enough detailed information and reasons stated throughout Exhibit "A" findings.

Exhibit "B" to Planning Commission Order 2018-10

Conditions -File PUD18-0001/CUP18-0004 Crestview Crossing PUD

A. The applicant must provide the following information for review and approval prior to construction of any improvements:

Streets, Sidewalks, Walkways and Street Trees

1. The applicant shall provide documentation for maintenance and financing of maintenance for the private streets.
2. The applicant shall follow the city engineer requirement for sidewalks along private streets to be 5 -foot wide matching the applicant's cross-section detail on sheet C300.
3. The applicant shall follow requirements outlined in a letter TVF\&R provided on June 5, 2018 which indicated the following:

- 20-26 feet road width - no parking on either side of roadway

4. The applicant will be required to meet the applicable building code and Americans with Disabilities Act requirements for private walkways, and develop a plan where private walkways are connecting each main pedestrian building entrance to each abutting public street and to each other.
5. The roadway is to consist of the following: 1-foot from back of walk to right-of-way, 5 -foot sidewalk, 5.5 -foot planter, 0.5 -foot curb, 6 -foot bike lane, 12 -foot travel lane, 12 -foot travel lane, 6 -foot bike lane, 0.5 -foot curb, 5.5 -foot planter, 5 -foot sidewalk, 1 -foot from back of walk to right-of-way. The applicant is required to dedicate sufficient right-of-way (minimum of 60 -feet) to construct E Crestview Drive, to construct a roundabout meeting FHWA Standards at the E Crestview Drive/Public Street B intersection, and to construct improvements related to modifying the traffic signal at the E Crestview Drive/Providence Drive/E Portland Road intersection meeting City of Newberg, Yamhill County, and Oregon Department of Transportation requirements.
6. The applicant must revise plans to show Public Street C and Public Street D consisting of the following: 1 -foot from back of walk to right-of-way, 5 -foot sidewalk, 5.5 -foot planter, 0.5foot curb, 7 -foot parking lane, 9 -foot travel lane, 9 -foot travel lane, 7 -foot parking lane, 0.5 foot curb, 5.5 -foot planter, 5 -foot sidewalk, 1 -foot from back of walk to right-of-way. The applicant is required to dedicate sufficient right-of-way (minimum of 56-feet) to construct the listed streets.
7. The street is to consist of the following: 1-foot from back of walk to right-of-way, 5-foot sidewalk, 5.5 -foot planter, 0.5 -foot curb, 8 -foot parking lane, 12 -foot travel lane with sharrow, 12 -foot travel lane with sharrow, 8 -foot parking lane, 0.5 -foot curb, 5.5 -foot planter,

5-foot sidewalk, 1-foot from back of walk to right-of-way. The applicant is required to dedicate sufficient right-of-way (minimum of 64-feet) to construct Public Street B.
8. The applicant will be required to dedicated additional right-of-way necessary to meet requirements set forth by the Oregon Department of Transportation to meet Highway Design Manual standards to construct the westbound right-turn lane.
9. The traffic study identified the following recommendations to mitigate traffic impacts of the proposed development at the Providence Drive/E Crestview Drive/E Portland Road intersection, and the applicant shall construct and be fiscally responsible for these roadway improvements:
a. The new north leg of the intersection should be configured as a four-lane section with one northbound lane and three southbound lanes (left turn lane, through movement, and right turn lane). At lease 250 -feet of southbound left-turn lane storage and 150feet of southbound right-turn lane storage should be provided to accommodate the 95th percentile queue lengths.
b. The existing south leg of the intersection should be restriped to a four-lane section with one southbound lane, and three northbound lanes (left turn lane, through movement, and right turn lane).
c. Based on the 95 th percentile queuing analysis:
i. A westbound right turn lane should be constructed with at least 300 -feet of storage
ii. A eastbound left turn lane should be striped to provide at least 150 -feet of storage
d. The signal phasing of the intersection should be operated with permissive left turn movements on the north and south approaches with fully protected left turn movements on the east and west approaches.
10. The comments on the traffic study identified by ODOT shall be adequately addressed and approved by ODOT as noted in the memo dated July 19, 2018 signed by Dan Fricke, Region 2 Senior Planner.
11. Prior to the issuance of the first grading or building permit, the applicant shall submit plans and specifications for all improvements/construction within ODOT right-of-way for review and approval by ODOT District 3 and issuance of a permit to construct within ODOT right-of-way. ODOT shall certify that all construction activities have been completed pursuant to the approved plans and specifications prior to the issuance of the first certificate of use and occupancy, or the city's equivalent.
12. Prior to issuance of the first grading or building permit, the applicant shall submit signal modification plans for the review of the ODOT Region 2 Traffic Engineer and the review and approval of the State Traffic Engineer. ODOT shall certify that all required signal
"Working Together For A Better Community-Serious About Service"
modifications have been completed and the signal operational prior to the issuance of the first certificate of use and occupancy, or the city's equivalent.
13. The applicant is required to install a 6-foot bike lane along E Portland Road to match the City's Transportation System Plan cross-section.
14. The City will require the southbound and northbound center turn lanes at the E Crestview Drive/E Portland Drive intersection to be a minimum of 12 -feet wide.
15. The applicant will be required to install directional ADA curb ramps at the corners of all public street/public street intersection locations, and at public street/private street intersection locations. The final design of all roads within the PUD will be reviewed and approved as part of the Public Improvement Permit.
16. The planter strips on public streets are required to be 5.5 -feet wide. Where a planter strip is not provided, the public sidewalk is required to be 6 -feet wide.
17. The final design of E Portland Road, E Crestview Drive, Public Street B, Public Street C, and Public Street D will need to comply with City's Public Works Design and Construction Standards and applicable ODOT standards. The applicant will be required to obtain a Public Improvement Permit and meet the City's Transportation System Plan and Public Works Design and Construction Standards for the proposed roadway improvements.
18. The applicant is required to install street name signs at all intersections within the development including those intersections with private streets.
19. The applicant must meet all requirements listed in Section 15.505.020 (N)(O) of the NDC.
20. Private Street G and Private Street H driveway setbacks need to be a minimum of 150 -feet from E Crestview Drive per Table 15.505.R Access Spacing Standards.
21. Access shall be taken from the street with the lesser functional classification, and private streets are designated as having the lowest functional classification.
22. If a property has frontage on a private street and other frontages are on collector or arterial streets, access shall be taken from the private street only.
23. The applicant will be required to provide street trees along all public streets that are compliant with $15.420 .010(\mathrm{~B})(4)(\mathrm{a})$.
24. The applicant will be required to submit construction plans that include street lighting needed to meet the specifications and standards of the City's Public Works Design and Construction Standards.

Water

25. A blow off assembly on the water lines at the eastern end of Street B and Street C will be required which allows for future extension beyond the development site.
26. The applicant will need to submit construction plans and obtain a Public Improvement Permit to install the water system and non-potable water system pursuant to the requirements of the City's Public Works Design and Construction Standards. Utility designs and alignments will be reviewed as part of the Public Improvement Permit. Non-potable water lines are required in public streets and may be required in private streets to provide non-potable water to any landscaping area maintained by the PUD.

Wastewater

27. The applicant is required to abandon or remove the septic system in accordance with Yamhill County Standards. The applicant will need to provide a certification from Yamhill County of the septic system abandonment/removal.
28. The applicant will be required to evaluate downstream impacts, including impacts to the Fernwood lift station, submit construction plans, and obtain a Public Improvement Permit to install the wastewater system pursuant to the requirements of the City's Design and Construction Standards. Utility designs and alignments will be reviewed as part of the Public Improvement Permit.
29. A manhole will be required at the eastern end of the wastewater lines in both street B and street C which will allow for future extension beyond the development site.
30. The applicant will be required to submit construction plans and obtain a Public Improvement Permit to install the wastewater system pursuant to the requirements of the City's Public Works Design and Construction Standards. Utility designs and alignments will be reviewed as part of the Public Improvement Permit.

Stormwater

31. The applicant will be required to submit construction plans and obtain a Public Improvement Permit to install the stormwater system improvements pursuant to the requirements of the City's Public Works Design and Construction Standards which should include the following:
32. Turn templates for maintenance vehicles accessing stormwater facilities shall be provided to verify that adequate site access exists.
33. Permanent maintenance access via a paved road within 10 -feet of stormwater facility structures within the stormwater tracts is required.
34. Any stormwater tract/facility treating private stormwater shall be owned and maintained by the PUD. Any stormwater tract/facility treating both public and private stormwater shall be owned and maintained by the PUD. Any stormwater tract/facility treating only public stormwater shall be owned and maintained by the City of Newberg.
35. Preliminary plans show wetlands inside of stormwater tracts, because the City does not accept wetlands in stormwater tracks, the applicant will be required to remove any wetlands from stormwater tracts dedicated to the City.
36. Public/private walkways when located adjacent to stormwater facilities must be located outside of the fenced stormwater facility and outside of maintenance access drives.
37. A downstream analysis shall be completed, where the design Engineer visually investigates the downstream system for at least on-quarter mile downstream and reports any observed deficiencies per Public Works Design and Construction Standards.
38. All stormwater mains are required to cross streets at right angles perpendicular to the street.
39. The applicant will need to submit a stormwater report and construction plans meeting the City's Public Works Design and Construction Standards and obtain a Public Improvement Permit to install the stormwater system improvements. Utility designs and alignments will be reviewed as part of the Public Improvement Permit.

Permits

40. The applicant has not submitted fire flow calculations, they will be required to submit fire flow calculations to show that the existing and proposed service is adequate prior to the issuance of the Public Improvement Permit.
41. Public utility infrastructure improvements not limited to street improvements, public walkways, water, non-potable water, wastewater, and stormwater will require completed permits from partner agencies to authorize different work tasks. Issuance of required permits for wetland delineation/mitigation, construction, etc. not limited to the agencies of Yamhill County, the State of Oregon, and the Federal Government will be required prior to the City of Newberg issuing a Public Improvement Permit.
42. The issuance of required permits not limited to the agencies of Yamhill County, the State of Oregon, and the Federal Government will be required prior to the City of Newberg issuing a Public Improvement Permit.
43. A $1200-\mathrm{C}$ permit from DEQ will be required. The applicant will be required to submit a copy of the $1200-\mathrm{C}$ permit from DEQ.

Building Designs

44. The applicant shall provide a sun exposure plan diagram meeting the requirements of NDC 15.240.020(K) and 15.05.030 during Step 2 Final Plans phase of the PUD review. If sun exposure is does meet the requirements of the NDC then the applicant must adjust their plans in order to meet this condition of approval.
45. The applicant shall submit drawings and data that clearly illustrate that each unit is served by outdoor living areas equal to at least 10 percent of the gross floor area for each residential unit. If any unit falls below the 10 percent outdoor living requirement then the applicant must revise their plans to provide the required outdoor living requirement.

Easements

46. The applicant is required to provide a 10 -foot public utility easement along all street frontages.
47. The applicant will be required to submit construction plans that include necessary utility easements meeting the specifications and standards of the City's Public Works Design and Construction Standards, but not necessarily limited to:
a. 10 -foot utility easements along all street frontages, unless determined by the City Engineer as part of the Public Improvement Permit plan review to be not needed or not feasible due to site conditions.
b. 15-foot utility easements along all public stormwater, sewer, water, and non-potable water lines where not located within the existing roadway right-of-way.
c. Public access easements for any private streets that are required to be used to access public infrastructure.
d. Public access easements for all private walkaways within the PUD.

Home Owners Association

48. The applicant must provide an annual written report meeting the requirements of Section 15.240.020(L)(2)(b) of the Newberg Development code.

Construction Plans:

49. Submit engineered construction plans for review and approval of all utilities and public street improvements. The plans must note the following:
a. Grading: Obtain a city grading permit prior to grading.
B. The applicant must complete the following prior to final plat approval.
50. Substantially Complete the Construction Improvements: Prior to final plat approval, the applicant must substantially complete the construction improvements and secure for them in accordance with city policy. Complete construction and call for a walk-through inspection with the Engineering Division (503-537-1273).
C. Final Plat Application: In accordance with NDC 15.240.040, submit the following for City review of the final plan application. Construction improvements should be substantially complete at this point.
51. Lapse of Approval. If the applicant fails to submit material required for consideration at the next step in accordance with the schedule approved at the previous step or, in the absence of a specified schedule, within one year of such approval, the application as approved at the previous step expires. If the applicant fails to obtain a building permit for construction in accordance with the schedule as previously approved, or in the absence of a specified schedule, within three years of a preliminary plan approval, preliminary and final plan approvals expire. Prior to
expiration of plan approval at any step, the hearing authority responsible for approval may, if requested, extend or modify the schedule, providing it is not detrimental to the public interest or contrary to the findings and provisions specified herein for planned unit developments. Unless the preliminary plan hearing authority provides to the contrary, expiration of final plan approval of any phase automatically renders all phases void that are not yet finally approved or upon which construction has not begun.

2. Application Materials:

a. Type I application form (found either at City Hall or on the website www.newbergoregon.gov in the Planning Forms section) with the appropriate fees.
b. A current title report (within 6 months old) for the property. Include copies of all existing easements and CC\&Rs that pertain to the property.
c. A written response to these Conditions of Approval that specifies how each condition has been met.
d. Two blue-line copies of the final partition plats for preliminary review by the City Engineering Division. Engineering will make red-line comments on these sheets for your surveyor/engineer to correct prior to printing final Mylar copies.
e. Any other documents required for review.
3. Documents Required: Provide the following documents for review and approval:
a. A bond for street tree planting in an amount to be approved by the Planning Division.
4. Final Mylar Copies of the Partition Plats: Submit final mylar copies of the corrected final partition plats (after red-line corrections have been made).
a. Three sets (one original and two copies), 18 inches by 24 inches in size, of the final partition plans drawn in black India ink in clear and legible form.
Original plats shall be in substantial conformity to the approved tentative plan and shall conform to the Yamhill County Surveyor's specifications and requirements.
5. Required Signatures: According to NDC 15.235.180, approval of a final partition plat must be acknowledged and signed by the following:
a. Planning and Building Director
b. The County Assessor
c. The County Surveyor
d. The City Recorder
6. Recording: Deliver the approved plat to the office of the County Clerk for recording. The County Clerk's office is located at 414 NE Evans St, McMinnville, OR 97128.
7. Copy returned to the City: Return an exact mylar copy of the recorded plat to the Director to complete the plat process. The land division will not be considered final until the copy is returned to the Director. No permits will be issued for any development on the property after the plat is signed until the copy is returned.

D. Development Notes:

1. Postal Service: The applicant shall submit plans to the Newberg Postmaster for approval of proposed mailbox delivery locations. Contact the Newberg Post Office for assistance at 503-554-8014.
2. PGE: PGE can provide electrical service to this project under terms of the current tariff which will involve developer expense and easements. Contact the Service \& Design Supervisor, PGE, at 503-463-4348.
3. Frontier: The developer must coordinate trench/conduit requirements with Frontier. Contact the Engineering Division, Frontier, at 541-269-3375.
4. Addresses: The Planning Division will assign addresses for the new lots. Planning Division staff will send out notice of the new addresses after they receive a mylar copy of the recorded final plat.

Attachment 1: Application Material

TYPE III APPLICATION - 2018 (QUASI-JUDICIAL REVIEW)

File \#: \qquad

TYPES - PLEASE CHECK ONE:

Annexation Comprehensive Plan Amendment (site specific) Zoning Amendment (site specific)
__ Historic Landmark Modification/alteration

Conditional Use Permit Type III Major Modification
χ Planned Unit Development Other: (Explain)

APPLICANT INFORMATION:

APPLICANT: Andrew Tull, 3J Consulting, Inc.
ADDRESS: 5075 SW Griffith Drive, Suite 150 Beaverton, Or 97005
EMAIL ADDRESS: Andrew.tull@3j-consulting.com
PHONE: 503-545-1907 MOBILE: \qquad FAX:
OWNER (if different from above): CG Commercial LLC \& VPCF Crestview LLC PHONE: 503-730-8620
ADDRESS: 5285 Meadows Drive, Suite 171 Lake Oswego, Oregon 97035
ENGINEER/SURVEYOR: Aaron Murphy, PE, 3J Consulting, Inc. _PHONE: 720-220-3915
ADDRESS: 5075 SW Griffith Drive, Suite 150 Beaverton, Or 97005
GENERAL INFORMATION:

PROJECT NAME: Crestview Crossing PROJECT LOCATION: 4505 E Portland Road
PROJECT DESCRIPTION/USE: Planned Unit Development and Conditional Use Permit MAP/TAX LOT NO. (ie. 3200 AB-400): 3 s2w16 -lots $13800 \& 1100$ ZONE: R1,R2,C2 SITE SIZE: $\frac{33.13}{}$ SQ. FT. \square ACRE \square COMP PLAN DESIGNATION: COM, MDR, LDR TOPOGRAPHY: Gentle CURRENT USE: Vacant SURROUNDING USES:

NORTH: Residential County Subdivision
EAST: Undeveloped Land

SOUTH: Providence Hospital
WEST: Residential Subdivision

SPECIFIC PROJECT CRITERIA AND REQUIREMENTS ARE ATTACHED

General Checklist: \square Fees \square Public Notice Information \square Current Title Report \square Written Criteria Response \square Owner Signature
For detailed checklists, applicable criteria for the written criteria response, and number of copies per application type, turn to:

Annexation ..p. 15
Comprehensive Plan / Zoning Map Amendment (site specific)p. 19
Conditional Use Permit .. 21
Historic Landmark Modification/Alteration ..p. 23
Planned Unit Development \qquad
\square
The above statements and information herein contained are in all respects true, complete, and/correct to the best of my knowledge and belief. Tentative plans must substantially conform to all standards, regulations, and procedures officially adopted by the City of Newberg. All owners must sign the application or submit letters of consent. Incomplete or missing information may delay the approval process.

Andrew Tull

Print Name

Print Name

[^0]
TYPE III APPLICATION - 2018 (QUASI-JUDICIAL REVIEW)

File \#: \qquad

TYPES - PLEASE CHECK ONE: Annexation
Comprehensive Plan Amendment (site specific)
Zoning Amendment (site specific)
_ Historic Landmark Modification/alteration

APPLICANT INFORMATION:

APPLICANT: Andrew Tull, 3J Consulting, Inc.
ADDRESS: 5075 SW Griffith Drive, Suite 150 Beaverton, Or 97005
EMAIL ADDRESS: Andrew.tull@3j-consulting.com
PHONE: 503-545-1907 MOBILE: \qquad FAX:
OWNER (if different from above): CG Commercial LLC \& VPCF Crestview LLC
ADDRESS: 5285 Meadows Drive, Suite 171 Lake Oswego, Oregon 97035
ENGINEER/SURVEYOR: Aaron Murphy, PE, 3J Consulting, Inc. PHONE: 503-730-8620

ADDRESS: 5075 SW Griffith Drive, Suite 150 Beaverton, Or 97005

GENERAL INFORMATION:

PROJECT NAME: Crestview Crossing
PROJECT LOCATION: 4505 E Portland Road
PROJECT DESCRIPTION/USE: Planned Unit Development and Conditional Use Permit
MAP/TAX LOT NO. (i.e. $3200 \mathrm{AB}-400$): 3 s2w16 lots 13800 \& 1100 ZONE: R1,R2,C2 SITE SIZE: 33.13 SQ. FT. \square ACRE \square
COMP PLAN DESIGNATION: COM, MDR, LDR
TOPOGRAPHY: Gentle
CURRENT USE: Vacant
SURROUNDING USES:
NORTH: Residential County Subdivision
EAST: Undeveloped Land
SOUTH: Providence Hospital

SPECIFIC PROJECT CRITERIA AND REQUIREMENTS ARE ATTACHED

Andrew Tull

Print Name

Attachments: General Information, Fee Schedule, Noticing Procedures, Planning Commission Schedule, Criteria, Checklists
Table of Contents
GENERAL INFORMATION 2
SITE INFORMATION 2
INTRODUCTION 3
APPLICANT'S REQUEST 3
SITE DESCRIPTION/SURROUNDING LAND USE 3
PROPOSAL 3
APPLICABLE CRITERIA 5
TITLE 15 DEVELOPMENT CODE 5
Division 15.200 Land Use Applications 5
15.225 Conditional Use Procedures 5
15.240 PD Planned Unit Development Regulations 9
Division 15.300 Zoning Districts 24
15.305 Zoning Use Table 24
15.356 Bypass Interchange (BI) Overlay 25
Division 15.400 Development Standards 25
15.405 Lot Requirements 25
15.410 Yard Setback Requirements 28
15.415 Building and Site Design Standards 32
15.420 Landscaping and Outdoor Areas 34
15.425 Exterior Lighting 41
15.430 Underground Utility Installation 43
15.440 Off-Street Parking, Bicycle Parking, and Private Walkways 43
Division 15.500 Public Improvement Standards 49
15.505 Public Improvements Standards 49
SUMMARY AND CONCLUSION 65
Attachments
Appendix A - Land Use Application
Appendix B - Pre-Application Notes
Appendix C - Notification Materials
Appendix D - Technical Reports
Appendix E - Land Use Plans

GENERAL INFORMATION

Property Owner and Applicant:	CG Commercial, LLC \& VPCF Crestview, LLC
	5285 Meadows Road, Suite 171
	Lake Oswego, OR 97035
	Contact: Jesse Nemec
	Phone: (503)-730-8620
	Email: jnemec@jtsmithco.com
Applicant's Representative:	3J Consulting, Inc.
	5075 SW Griffith Drive, Suite 150
	Beaverton, OR 97005
	Contact: Andrew Tull
	Phone: (503)-545-1907
	Email: andrew.tull@3j-consulting.com
Legal Representative:	Schwabe Williamson \& Wyatt
	PacWest Center
	1211 SW Fifth Avenue, Suite 1900
	Portland, OR 97204
	Contact: Michael C. Robinson
	Phone: (503)-796-3756
	Email: mrobinson@schwabe.com

SITE INFORMATION

Parcel Number:
Address:
Size:
Zoning Designations:
Existing Use:
Street Functional Classification:

Surrounding Zoning:

3216AC 13800 \&1100
OR 99W and Crestview Drive
33.13 acres

R-1, R-2, C-2

Vacant

OR-99W is classified as a Major Arterial and is an ODOT facility. Crestview Drive is classified as a Minor Arterial and is within the City's jurisdiction.
The properties to the west are located within the City of Newberg and are zoned Low Density Residential (R-1). The properties to the south are zoned City Institutional (I) and County VLDR-2.5. The properties to the north are located within Yamhill county and are zoned VLDR-1. The properties to the east are located within Yamhill County and are zoned EF-20.

INTRODUCTION

APPLICANT'S REQUEST

The Applicant seeks approval of an application for a Type III Planned Unit Development (PUD) and Conditional Use Permit (CUP). This narrative has been prepared to describe the proposed development and to document compliance with the relevant sections of Newberg's Development Code.

SITE DESCRIPTION/SURROUNDING LAND USE

The subject site is 33.13 acres in size and is located north of OR-99W, south of Crestview Drive. The property is located within the City and is Zoned C-2, R-2, and R-1. The site has sloping topography which generally slopes towards the southeastern end of the property. The site currently contains numerous wetlands that will be preserved or mitigated, in compliance with Department of State Lands and Army Corps of Engineers standards.

PROPOSAL

The proposed Planned Community will create a mixture of commercial development, single-family homes, cottage style single-family homes, affordable housing and multi-family homes. The proposed development includes 18 single-family homes on large lots, 230 cottage homes, and 51 multi-family homes with modifications to the base zone's dimensions as permitted through the PUD process. The project will include a 4.4-acre parcel which has been created to allow for future commercial development.

The proposed neighborhood will feature active and passive open space areas for use by the residents. The proposed design includes a network of open spaces and wetlands, a thoughtfully linked pedestrian circulation system, and several pedestrian amenities. A neighborhood park is connected to the proposed development through a network of multi-use pathways which provide pedestrian circulation and recreation throughout the site. The development will utilize a network of public and private streets, as well as alleyways which will provide for additional on-street parking. Additional parking for residents has been provided in several off-street parking areas.

The project will include an affordable housing component. While affordable housing is not a required component of a submission for a Planned Unit Development or a Conditional Use Permit, the City does have an Affordable Housing Action Plan which identifies a significant shortage of affordably priced homes within the City and the Applicant said it would include this element. In recognition of the City's needs for affordable housing options, the Applicant proposes to create five percent of the single family detached homes with price reductions and deed restrictions designed to create perpetual affordability.

Affordable Housing is defined within the City's Affordable Housing Action Plan as when a family spends no more than 30% of its income for housing. The twelve single family homes created as part of this program will initially be marketed at rates which make them eligible for families earning less than the median family incomes as described within the Housing Action Plan's definitions of affordable housing. At closing, buyers will be required to sign covenants agreeing to limit the price of any future sale to a rate of appreciation which is tied to either the Area Median Family Income rate or another acceptable index of income. The Applicant plans to work with the Housing Authority of Yamhill County and the City's Affordable Housing

3 CRESTVIEW CROSSING PUD \| 3J CONSULTING, INC.

Ad Hoc Committee to refine the covenants which will be recorded with the sale of these units and to eventually find parties which may qualify for the purchase of affordable houses. The proposed affordable homes will require owner occupation and will be constructed at various locations throughout the development.

APPLICABLE CRITERIA

The following sections of Newberg's and Development Code have been extracted as they have been deemed to be applicable to the proposal. Following each bold applicable criteria or design standard, the Applicant has provided a series of draft findings. The intent of providing code and detailed responses and findings is to document, with absolute certainty, that the proposed development has satisfied the approval criteria for a Planned Unit Development and a Conditional Use Permit.

TITLE 15 DEVELOPMENT CODE

Division 15.200 Land Use Applications

15.225 Conditional Use Procedures

15.225.010 Description and purpose.
A. It is recognized that certain types of uses require special consideration prior to their being permitted in a particular district. The reasons for requiring such special consideration involves, among other things, the size of the area required for the full development of such uses, the nature of the traffic problems incidental to operation of the use, the effect such uses have on any adjoining land uses and on the growth and development of the community as a whole.

Applicant's Facts The proposal includes residential development in a commercial zoning district, and Findings: requiring a conditional use permit. The applicable conditional use permit standards are addressed below.

This standard is met.
B. All uses permitted conditionally are declared to be possessing such unique and special characteristics as to make impractical their being included as outright uses in any of the various districts herein defined. The authority for the location and operation of the uses shall be subject to review and the issuance of a conditional use permit. The purpose of review shall be to determine that the characteristics of any such use shall be reasonably compatible with the type of uses permitted in surrounding areas, and for the further purpose of stipulating such conditions as may be reasonable so that the basic purposes of this code shall be served. Nothing construed herein shall be deemed to require the hearing body to grant a conditional use permit.

Applicant's Facts The development of residential housing in the C-2 (Commercial) zoning district and Findings: requires a conditional use permit. The Conditional Use Permit is used in this scenario to ensure that density, lot coverage, parking, vehicular access, pedestrian and bicycle connectivity, and other residential characteristics are developed to be compatible with surrounding land uses.

This standard is met.
15.225.020 Conditional use permit prerequisite to building.

5 CRESTVIEW CROSSING PUD \| 3J CONSULTING, INC.

No building permit shall be issued when a conditional use permit is required by the terms of this code unless a permit has been granted by the hearing body and then only in accordance with the terms and conditions of the conditional use permit. Conditional use permits may be temporary or permanent for any use or purpose for which such permits are required or permitted by provisions of this code.

Applicant's Facts This land use application proposes a permanent conditional use permit for and Findings: residential development in the $\mathrm{C}-2$ zoning district. Building permits have not been issued for this development.

This standard is met.

15.225.030 Application.

Application for a conditional use permit shall be accompanied by such information including, but not limited to, site and building plans, drawings and elevations, and operational data, as may be required by the director to allow proper evaluation of the proposal. The plan submittal requirements identified in NMC 15.220.030 and $\mathbf{1 5 . 4 4 5 . 1 9 0}$ shall be used as a guide. All proposals for conditional use permit shall be accompanied by a detailed project description which includes information such as the use, information relating to utilities, the number of employees, the hours of operation, traffic information, odor impacts, and other information needed to adequately describe the project.

Applicant's Facts The proposed Conditional Use Permit includes all information necessary for a and Findings: complete and thorough review.

This standard is met.

15.225.040 Concurrent design review.

If new buildings or structures are to be included as part of the application, the planning commission shall concurrently review the application for site design review in order to streamline the review process.

Applicant's Facts The proposed Conditional Use Permit includes a proposed Planned Unit and Findings: Development on the site with both single-family detached and multi-family housing. The review of the CUP is proposed concurrent with the PUD.

This standard is met.

15.225.050 Additional information.

In order to fully evaluate the proposal, additional information may be required. This includes but is not limited to traffic studies, noise studies, visual analysis, and other site impact studies as determined by the director or planning commission.

Applicant's Facts The proposal includes a traffic study and materials display boards. Noise studies and Findings: are not necessary based on the residential proposal.

6 CRESTVIEW CROSSING PUD | 3J CONSULTING, INC.

This standard is met.
15.225.060 General conditional use permit criteria - Type III.

A conditional use permit may be granted through a Type III procedure only if the proposal conforms to all the following criteria:
A. The location, size, design and operating characteristics of the proposed development are such that it can be made reasonably compatible with and have minimal impact on the livability or appropriate development of abutting properties and the surrounding neighborhood, with consideration to be given to harmony in scale, bulk, coverage and density; to the availability of public facilities and utilities; to the generation of traffic and the capacity of surrounding streets, and to any other relevant impact of the development.
B. The location, design, and site planning of the proposed development will provide a convenient and functional living, working, shopping or civic environment, and will be as attractive as the nature of the use and its location and setting warrants.
C. The proposed development will be consistent with this code.

Applicant's Facts The proposed residential development on this site will allow a gradual transition and Findings: from the residentially-developed properties to the north and west toward the 4.4acre retail commercial designated pad adjacent to Highway 99W. The large-lot single-family detached properties immediately adjacent to the site will be buffered by large-lot single-family detached homes. Higher-density single-family detached housing will be located central to the site and adjacent to the park on the western property boundary. The two proposed multi-family buildings are in the southeast corner of the site, adjacent to Highway 99W and near the proposed retail commercial area to be developed at a later date.

This "stair step" approach to lot size and density will serve to ensure harmony in scale, bulk, coverage and density while the multi-family near commercial will provide a convenient and functional living, working and shopping environment. All homes in the site have access via sidewalk to Spring Meadow Park and further into the City of Newberg, satisfying the requirement that the conditional use permit provide a convenient and functional civic environment.

As shown on the included design and materials boards, the proposed development includes a high level of residential design to reflect the location of the development at the eastern entry to the City of Newberg. Materials such as wood, stone, brick and northwest-style siding are all utilized to blend the site to both the natural and built surrounding areas.

Findings are made regarding all applicable sections of the Newberg Development Code throughout this narrative. As identified the findings of each individual code section, the proposed Planned Unit Development and Conditional Use Permit meet all applicable sections of the Newberg Development Code.

This standard has been met.

15.225.080 Conditions.

The hearing body shall designate conditions in connection with the conditional use permit deemed necessary to secure the purpose of this chapter and the general conditional use permit criteria and require the guarantees and evidence that such conditions will be complied with. Such conditions may include:
A. Regulation of uses.
B. Special yards, spaces
C. Fences and walls.
D. Surfacing of parking areas to city specifications.
E. Street dedications and improvements (or bonds).
F. Regulation of points of vehicular ingress and egress.
G. Regulation of signs.
H. Landscaping and maintenance of landscaping.
I. Maintenance of the grounds.
J. Regulation of noise, vibration, odors or other similar nuisances.
K. Regulation of time for certain activities.
L. Time period within which the proposed use shall be developed.
M. Duration of use.
N. Such other conditions as will make possible the development of the city in an orderly and efficient manner in conformity with the Newberg comprehensive plan and the Newberg development code.

Applicant's Facts The Conditional Use Permit is required for residential development within the C-2 and Findings: (Commercial) zoned portion of this site. The proposed residential development includes appropriate yards and spaces, parking areas, ingress and egress, landscaping, vehicular, pedestrian and bicycle connectivity and maintenance plans to ensure compliance with this Section of the Code. Additional conditions are not warranted to secure the purpose of the Conditional Use Permit chapter.

This standard is met.
15.225.090 Development in accord with plans.

Construction, site development, and landscaping shall be carried out in substantial accord with the plans, drawings, conditions, sketches, and other documents approved as part of a final decision on a conditional use permit.

Applicant's Facts It is feasible for the Applicant to carry out development of the site in substantial and Findings: accord with the plans, drawings, sketches and other documents approved as part of this final decision on the Conditional Use Permit.

This standard is met.
15.225.100 Conditional use permit must be exercised to be effective.

8 CRESTVIEW CROSSING PUD | 3J CONSULTING, INC.
A. A conditional use permit granted under this code shall be effective only when the exercise of the right granted thereunder shall be commenced within one year from the effective date of the decision. The director under a Type I procedure may grant an extension for up to six months if the applicant files a request in writing prior to the expiration of the approval and demonstrates compliance with the following:

1. The land use designation of the property has not been changed since the initial use permit approval; and
2. The applicable standards in this code which applied to the project have not changed.
B. In case such right is not exercised, or extension obtained, the conditional use permit decision shall be void. Any conditional use permit granted pursuant to this code is transferable to subsequent owners or contract purchasers of the property unless otherwise provided at the time of granting such permit.

Applicant's Facts The Applicant acknowledges that the Conditional Use Permit approval is valid for and Findings: one year if an extension is not requested. The Applicant intends to begin construction of the residential development on this site within one year of the approval date. If unforeseen delay is encountered, an extension request will be filed in writing prior to the expiration date.

This standard is met.
15.225.110 Preexisting uses now listed as a conditional use.

Where a use is legally established and continuing, but that use currently would require a conditional use permit, the use shall be considered as having a conditional use permit under the terms of the prior permit approval. Any nonconforming site development shall be subject to the provisions of Chapter 15.205 NMC.

Applicant's Facts This proposal does not include a preexisting use now listed as a conditional use and Findings: and, as such, this standard is not applicable.

15.240 PD Planned Unit Development Regulations

15.240.010 Purpose.

The city's planned unit development regulations are intended to:
A. Encourage comprehensive planning in areas of sufficient size to provide developments at least equal in the quality of their environment to traditional lot-by-lot development and that are reasonably compatible with the surrounding area; and
B. Provide flexibility in architectural design, placement and clustering of buildings, use of open space and outdoor living areas, and provision of circulation facilities, parking, storage and related site and design considerations; and
C. Promote an attractive, safe, efficient and stable environment which incorporates a compatible variety and mix of uses and dwelling types; and
D. Provide for economy of shared services and facilities; and

9 CRESTVIEW CROSSING PUD | 3J CONSULTING, INC.
E. Implement the density requirements of the comprehensive plan and zoning districts through the allocation of the number of permitted dwelling units based on the number of bedrooms provided.

Applicant's Facts The Applicant proposes a residential Planned Unit Development (PUD) meeting and Findings: the stated purposes of the PUD regulations. This site is of sufficient size as to warrant comprehensive planning rather than traditional lot-by-lot development. The Applicant proposes flexibility in placement and clustering of buildings, use of open space, circulation, parking and density to promote a safe, attractive, efficient and stable residential environment adjacent to a highway facility and a future commercial development.

This standard is met.
15.240.020 General provisions.
A. Ownership. Except as provided herein, the area included in a proposed planned unit development must be in single ownership or under the development control of a joint application of owners or option holders of the property involved.

Applicant's Facts The area included in the planned unit development is in single ownership. and Findings:

This standard is met.
B. Processing Steps - Type III. Prior to issuance of a building permit, planned unit development applications must be approved through a Type III procedure and using the following steps:

1. Step One - Preliminary Plans. Consideration of applications in terms of on-site and off-site factors to assure the flexibility afforded by planned unit development regulations is used to preserve natural amenities; create an attractive, safe, efficient, and stable environment; and assure reasonable compatibility with the surrounding area. Preliminary review necessarily involves consideration of the off-site impact of the proposed design, including building height and location.
2. Step Two - Final Plans. Consideration of detailed plans to assure substantial conformance with preliminary plans as approved or conditionally approved. Final plans need not include detailed construction drawings as subsequently required for a building permit.

Applicant's Facts The Applicant acknowledges the two-step process to PUD approval and submits and Findings: materials in support of Step One- Preliminary Plans.

This standard is met.
C. Phasing. If approved at the time of preliminary plan consideration, final plan applications may be submitted in phases. If preliminary plans encompassing only a portion of a site under single ownership are submitted, they must be accompanied by a statement and be sufficiently detailed to prove that the entire area can be developed and used in accordance with city standards, policies, plans and ordinances.

Applicant's Facts The Applicant acknowledges the process for phasing of final plan applications. and Findings:

This standard is met.
D. Lapse of Approval. If the applicant fails to submit material required for consideration at the next step in accordance with the schedule approved at the previous step or, in the absence of a specified schedule, within one year of such approval, the application as approved at the previous step expires. If the applicant fails to obtain a building permit for construction in accordance with the schedule as previously approved, or in the absence of a specified schedule, within three years of a preliminary plan approval, preliminary and final plan approvals expire. Prior to expiration of plan approval at any step, the hearing authority responsible for approval may, if requested, extend or modify the schedule, providing it is not detrimental to the public interest or contrary to the findings and provisions specified herein for planned unit developments. Unless the preliminary plan hearing authority provides to the contrary, expiration of final plan approval of any phase automatically renders all phases void that are not yet finally approved or upon which construction has not begun.

$$
\begin{array}{ll}
\text { Applicant's Facts } & \text { The Applicant acknowledges the process for lapse of PUD approval and intends to } \\
\text { and Findings: } & \text { follow through with development of the site based on the original approval } \\
\text { timeline. }
\end{array}
$$

This standard is met.
E. Resubmittal Following Expiration. Upon expiration of preliminary or final plan approval, a new application and fee must be submitted prior to reconsideration. Reconsideration shall be subject to the same procedures as an original application.

Applicant's Facts The Applicant acknowledges the process for resubmittal following expiration. and Findings:

This standard is met.
F. Density. Except as provided in NMC 15.302 .040 relating to subdistricts, dwelling unit density provisions for residential planned unit developments shall be as follows:

1. Maximum Density.
a. Except as provided in adopted refinement plans, the maximum allowable density for any project shall be as follows:

District	Density Points
R-1	175 density points per gross acre, as calculated in subsection (F)(1)(b) of this section
R-2	310 density points per gross acre, as calculated in subsection (F)(1)(b) of this section

R-3	640 density points per gross acre, as calculated in subsection (F)(1)(b) of this section
RP	310 density points per gross acre, as calculated in subsection (F)(1)(b) of this section
C-1	As per required findings
C-2	As per required findings
C-3	As per required findings

b. Density point calculations in the following table are correlated to dwellings based on the number of bedrooms, which for these purposes is defined as an enclosed room which is commonly used or capable of conversion to use as sleeping quarters. Accordingly, family rooms, dens, libraries, studies, studios, and other similar rooms shall be considered bedrooms if they meet the above definitions, are separated by walls or doors from other areas of the dwelling and are accessible to a bathroom without passing through another bedroom. Density points may be reduced at the applicant's discretion by $\mathbf{2 5}$ percent for deed-restricted affordable dwelling units as follows:

Density Point Table		
Dwelling Type	Density Points: Standard Dwelling	Density Points: Income- Restricted Affordable Dwelling Units
Studio and Efficiency	12	9
One-bedroom	14	11
Two-bedroom	21	16
Three-bedroom	28	21
Four or more bedroom	35	26

The density points in the right-hand column are applicable to income-restricted affordable dwelling units, provided the dwelling units meet the affordability criteria under NMC $\mathbf{1 5 . 2 4 2 . 0 3 0}$ regarding affordable housing requirements for developments using the flexible development standards.
2. Approved Density. The number of dwelling units allowable shall be determined by the hearing authority in accordance with the standards set forth in these regulations. The hearing authority may change density subsequent to preliminary plan approval only if the reduction is necessary to comply with required findings for preliminary plan approval or if conditions of preliminary plan approval cannot otherwise be satisfied.
3. Easement Calculations. Density calculations may include areas in easements if the applicant clearly demonstrates that such areas will benefit residents of the proposed planned unit development.
4. Dedications. Density calculations may include areas dedicated to the public for recreation or open space.
5. Cumulative Density. When approved in phases, cumulative density shall not exceed the overall density per acre established at the time of preliminary plan approval.

Applicant's Facts This narrative includes a Density Matrix, identifying the total number of density and Findings: points available to this site vs. the total number of density points necessary to develop the site as proposed. The C-2 zoning district is proposed at the same maximum allowable density as the R-3 zoning district, or 640 points per acre. The total number of density points available to this site, as detailed on the Density Matrix, is $11,859.85$. The total number and type of residential dwelling units proposed requires 9,085 density points, which is less than the number of points available to this site.

This standard is met.
G. Buildings and Uses Permitted. Buildings and uses in planned unit developments are permitted as follows:

1. R-1, R-2, R-3 and RP Zones.
a. Buildings and uses permitted outright or conditionally in the use district in which the proposed planned unit development is located.
b. Accessory buildings and uses.
c. Duplexes.
d. Dwellings, single, manufactured, and multifamily.
e. Convenience commercial services which the applicant proves will be patronized mainly by the residents of the proposed planned unit development.

Applicant's Facts The proposal includes single-family detached and multi-family residential uses and Findings: within the R-1 and R-2 portions of this site, both of which are permitted by subsection d. above.

This standard is met.
2. C-1, C-2 and C-3 Zones.
a. When proposed as a combination residential-commercial planned unit development, uses and buildings as listed in subsection (G)(1) of this section and those listed as permitted outright or conditionally in the use district wherein the development will be located.
b. When proposed as a residential or commercial planned unit development, uses and buildings as permitted outright or conditionally in the use district wherein the development will be located.

Applicant's Facts The proposed Planned Community will create a mixture of commercial and Findings: development, single-family homes, cottage style single-family homes, affordable housing and multi-family homes. All uses proposed are permitted either outright or conditionally for the C-2 portion of this property, in compliance with subsections a. and b. above.

This standard is met.
3. $\mathbf{M}-1, \mathbf{M}-2$ and $\mathbf{M}-3$ Zones. Uses and buildings as permitted outright or conditionally in the use district wherein the development will be located.
4. M-4 Zone. Uses and buildings as permitted outright or conditionally in the use district wherein the development will be located. Proposed sites, structures and uses must work together to support a common theme, product or industry. Applicants for an industrial planned development in M-4 must demonstrate conformance with any adopted master plan for the subject area and provide a plan describing how the proposed structures and uses will work together to support a common theme, product or industry. Prior to subdivision, covenants must limit occupancy to the types of industrial and related uses identified in the development plan.

Applicant's Facts No part of this site is located within the $\mathrm{M}-1, \mathrm{M}-2, \mathrm{M}-3$ or $\mathrm{M}-4$ zoning district and, and Findings: as such, this standard is not applicable.
H. Professional Coordinator and Design Team. Professional coordinators and design teams shall comply with the following:

1. Services. A professional coordinator, licensed in the State of Oregon to practice architecture, landscape architecture or engineering, shall ensure that the required plans are prepared. Plans and services provided for the city and between the applicant and the coordinator shall include:
a. Preliminary design;
b. Design development;
c. Construction documents, except for single-family detached dwellings and duplexes in subdivisions; and
d. Administration of the construction contract, including, but not limited to, inspection and verification of compliance with approved plans.
2. Address and Attendance. The coordinator or the coordinator's professional representative shall maintain an Oregon address, unless this requirement is waived by the director. The coordinator or other member of the design team shall attend all public meetings at which the proposed planned unit development is discussed.
3. Design Team Designation. Except as provided herein, a design team, which includes an architect, a landscape architect, engineer, and land surveyor, shall be designated by the professional coordinator to prepare appropriate plans. Each team member must be licensed to practice the team member's profession in the State of Oregon.
4. Design Team Participation and Waiver. Unless waived by the director upon proof by the coordinator that the scope of the proposal does not require the services of all members at one or more steps, the full design team shall participate in the preparation of plans at all three steps.
5. Design Team Change. Written notice of any change in design team personnel must be submitted to the director within three working days of the change.
6. Plan Certification. Certification of the services of the professionals responsible for particular drawings shall appear on drawings submitted for consideration and shall be signed and stamped with the registration seal issued by the State of Oregon for each professional so involved. To assure comprehensive review by the design team of all plans for compliance with these regulations, the dated cover sheet shall contain a statement of review endorsed with the signatures of all designated members of the design team.

Applicant's Facts This Planned Unit Development application includes all of the required plans and and Findings: documents. A professional engineer in the State of Oregon has ensured that all required plans are prepared, certified as necessary and submitted. The Applicant acknowledges the process for a design team change.

This standard is met.
I. Modification of Certain Regulations. Except as otherwise stated in these regulations, fence and wall provisions, general provisions pertaining to height, yards, area, lot width, frontage, depth and coverage, number of off-street parking spaces required, and regulations pertaining to setbacks specified in this code may be modified by the hearing authority, provided the proposed development will be in accordance with the purposes of this code and those regulations. Departures from the hearing authority upon a finding by the engineering director that the departures will not create hazardous conditions for vehicular or pedestrian traffic. Nothing contained in this subsection shall be interpreted as providing flexibility to regulations other than those specifically encompassed in this code.

Applicant's Facts This Planned Unit Development proposal seeks to modify the lot size standards of and Findings: the R-1, R-2 and C-2 zoning districts. The PUD further seeks to modify the minimum lot sizes, minimum lot dimensions, minimum lot frontages, maximum lot and parking area coverage and minimum setback standards. The proposed modifications are shown on the attached preliminary site plan and plat and are intended to allow for the development of smaller residential lots, allowing a lower price-point than homes built in similar zoning districts. The creativity in site design also allows for the provision of parks and open space facilities exceeding those of a typical subdivision. And finally, varying the standards allows for the construction of a street network exceeding that of a typical residential subdivision.

The proposed modifications are in accordance with the purposes of this code as they support the efficient development of land within the City Limits, provide functional, attractive housing for the residents of the City and include safe, convenient, efficient transportation design.

This standard is met.
J. Lot Coverage. Maximum permitted lot and parking area coverage as provided in this code shall not be exceeded unless specifically permitted by the hearing authority in accordance with these regulations.

$$
\begin{array}{ll}
\text { Applicant's Facts } & \begin{array}{l}
\text { The maximum permitted lot coverage is requested to be exceeded in conjunction } \\
\text { and Findings: }
\end{array} \begin{array}{l}
\text { with the Planned Unit Development request. The Applicant proposes a coverage } \\
\text { of up to } 60 \% \text { throughout the plan area. The smaller lot sizes allow for the provision } \\
\text { of a more affordable housing stock and the increased parking ensures an adequate }
\end{array} \\
\text { supply for residents and visitors. The Applicant requests these exceptions be } \\
\text { specifically permitted by the Planning Commission in reviewing the Planned Unit } \\
\text { Development and Conditional Use Permit request. }
\end{array}
$$

This standard is met.
K. Height. Unless determined by the hearing authority that intrusion of structures into the sun exposure plane will not adversely affect the occupants or potential occupants of adjacent properties, all buildings and structures shall be constructed within the area contained between lines illustrating the sun exposure plane (see Appendix A, Figure 8 and the definition of "sun exposure plane" in NMC 15.05.030). The hearing authority may further modify heights to:

1. Protect lines of sight and scenic vistas from greater encroachment than would occur as a result of conventional development.
2. Protect lines of sight and scenic vistas.
3. Enable the project to satisfy required findings for approval.

Applicant's Facts This proposed residential Planned Unit Development includes three story singleand Findings: family residential structures with reduced setbacks. This development type allows the developer to provide the housing at an approachable price point, complete the much-needed transportation system for the area and provide parks and open spaces for the residents of this and neighboring developments. Communities of this nature exist in several areas and sun exposure is not known to be a significant issue in other communities. Each unit will have access to the sun from the southern sky and will have opportunities to enjoy the benefit of the sun's light and warmth.

No modifications to the heights within the proposed development is necessary, nor are any protected lines of site to preserve scenic vistas.

This standard is met.
L. Dedication, Improvement and Maintenance of Public Thoroughfares. Public thoroughfares shall be dedicated, improved and maintained as follows:

1. Streets and Walkways. Including, but not limited to, those necessary for proper development of adjacent properties. Construction standards that minimize maintenance and protect the public health and safety, and setbacks as specified in NMC 15.410.050, pertaining to special setback requirements to planned rights-of-way, shall be required.
2. Notwithstanding subsection (L)(1) of this section, a private street may be approved if the following standards are satisfied.
a. An application for approval of a PUD with at least 50 dwelling units may include a private street and the request for a private street shall be supported by the evidence required by this section. The planning commission may approve a private street if it finds the applicant has demonstrated that the purpose statements in NMC 15.240.010(A) through (D) are satisfied by the evidence in subsections (L)(2)(a)(i) through (v) of this section.
i. A plan for managing on-street parking, maintenance and financing of maintenance of the private street, including a draft reserve study showing that the future homeowners association can financially maintain the private street;
ii. A plan demonstrating that on- and off-street parking shall be sufficient for the expected parking needs and applicable codes;
iii. Proposed conditions, covenants and restrictions that include a requirement that the homeowners association shall be established in perpetuity and shall continually employ a community management association whose duties shall include assisting the homeowners association with the private street parking management and maintenance, including the enforcement of parking restrictions;
iv. Evidence that the private street is of sufficient width and construction to satisfy requirements of the fire marshal and cityengineer; and
v. The PUD shall be a Class I planned community as defined in ORS Chapter 94.
b. If the PUD is established, the homeowners association shall provide an annual written report on the anniversary date of the final approval of the PUD approval to the community development director that includes the following:
i. The most recent reserve study.
ii. The name and contact information for the retained community management association.
iii. A report on the condition of the private street and any plans for maintenance of the private street.
3. Easements. As are necessary for the orderly extension of public utilities and bicycle and pedestrian access.

Applicant's Facts This proposed PUD includes a mixture of public and private streets. As identified and Findings: in subsection L. 2 above, private streets may be approved if:

- a PUD proposes at least 50 dwelling units,
- has provided a plan for on-street parking, maintenance and financing of maintenance of the private street,
- demonstrates sufficient parking,
- includes CCRs addressing the private street,
- is constructed to proper standards, and
- the PUD is a Class I planned community as defined in ORS Ch. 94.

The proposal meets all of the criteria for private streets identified above. The purpose statements in NMC 15.240.010(A) through (D) include:

- encourage comprehensive planning in areas of sufficient size...
- provide flexibility in architectural design, placement and clustering of buildings, use of open space and outdoor living areas, and provision of
circulation facilities, parking, storage and related site and design considerations
- promote an attractive, safe, efficient and stable environment...and
- provide for economy of shared services and facilities.

The proposed PUD is of a sufficient size to warrant comprehensive planning that is similar to traditional lot-by-lot developments in the same zoning and compatible with the surrounding environment. The inclusion of private streets makes it feasible to preserve more of the natural areas on the site. The housing design and placement, open space and outdoor living areas, circulation, parking and storage on this site are all designed to work together to form a cohesive neighborhood feel. The shared services and facilities within the development include the private streets, parking areas and open spaces. The adjacent commercial development that will be added in the future will allow for shared services as well.

All public streets are designed to City standards and proposed to be dedicated to the City.

The proposal includes all of the necessary materials to approve both the public and private streets.

This standard is met.
M. Underground Utilities. Unless waived by the hearing authority, the developer shall locate all onsite utilities serving the proposed planned unit development underground in accordance with the policies, practices and rules of the serving utilities and the Public Utilities Commission.

Applicant's Facts The proposal includes all on-site utilities located underground. and Findings:

This standard is met.
N. Usable Outdoor Living Area. All dwelling units shall be served by outdoor living areas as defined in this code. Unless waived by the hearing authority, the outdoor living area must equal at least 10 percent of the gross floor area of each unit. So long as outdoor living area is available to each dwelling unit, other outdoor living space may be offered for dedication to the city, in fee or easement, to be incorporated in a city-approved recreational facility. A portion or all of a dedicated area may be included in calculating density if permitted under these regulations.

Applicant's Facts All dwelling units are served by outdoor living areas equal to at least 10 percent and Findings: of the gross floor area of each unit. The single-family units will have outdoor living on individual lots. The multi-family will utilize a combination of balconies and porches as well as common outdoor living areas located throughout the overall planned unit development.

This standard is met.
O. Site Modification. Unless otherwise provided in preliminary plan approval, vegetation, topography and other natural features of parcels proposed for development shall remain substantially unaltered pending final plan approval.

Applicant's Facts This site contains several wetlands which will be a combination of preserved on and Findings: site and mitigated off-site. The permitting for this is occurring separate from the land use review. This is the only substantial change to the natural features of the site.

This standard is met.
P. Completion of Required Landscaping. If required landscaping cannot be completed prior to occupancy, or as otherwise required by a condition of approval, the director may require the applicant to post a performance bond of a sufficient amount and time to assure timely completion.

Applicant's Facts The Applicant acknowledges the possibility of a performance bond being required and Findings: to assure timely completion of any delayed landscaping.

This standard is met.
Q. Design Standards. The proposed development shall meet the design requirements for multifamily residential projects identified in NMC 15.220.060. A minimum of 40 percent of the required points shall be obtained in each of the design categories.

Applicant's Facts There are 23 possible site design points and 23 possible building design points, and Findings: therefore, this project must obtain 9 each site design and building design points (40% of each).

Site Design:
Consolidated green space: 3 points
Parking lot to the back of project when viewed from 99W: 3 points
Good-quality coordinated site landscaping: 2 points
Landscaped Edges of Parking Lots: 2 points
Street trees: 1 point
Entry Accents to mark major entries to multi-family buildings: 1 point
Appropriate Outdoor Lighting: 1 point
Total Site Design Points: 13

Building Design:
Respect scale and patterns of nearby buildings by reflecting architectural styles, building details, materials and scale of existing buildings: 3 points Break up large buildings into bays/vary planes at least every 50 feet: 3 points
Provide variation in repeated units using color, porches, balconies, windows, railings, building materials and form, alone or in combination: 3 points

Building materials: Wood or wood-like siding applied horizontally or vertically as board and batten at entry ways; shingles, as roofing; wood or wood-like sash windows; and wood or wood-like trim: 4 points
A porch at every main entry: 2 points
Total Building Design Points: 15
This standard is met as described above.
15.240.030 Preliminary plan consideration - Step one.
A. Preapplication Conference. Prior to filing an application for preliminary plan consideration, the applicant or coordinator may request through the director a preapplication conference to discuss the feasibility of the proposed planned unit development and determine the processing requirements.

Applicant's Facts The Applicant attended a pre-application conference with the City on March 14, and Findings: 2018.

This standard is met.
B. Application. An application, with the required fee, for preliminary plan approval shall be made by the owner of the affected property, or the owner's authorized agent, on a form prescribed by and submitted to the director. Applications, accompanied by such additional copies as requested by the director for purposes of referral, shall contain or have attached sufficient information as prescribed by the director to allow processing and review in accordance with these regulations. As part of the application, the property owner requesting the planned development shall file a waiver stating that the owner will not file any demand against the city under Ballot Measure 49, approved November 6, 2007, that amended ORS Chapters 195 and 197 based on the city's decision on the planned development.

Applicant's Facts This land use application includes all required fees, forms and documentation for and Findings: review of the Planned Unit Development and Conditional Use requests.

This standard is met.
C. Type III Review and Decision Criteria. Preliminary plan consideration shall be reviewed through the Type III procedure. Decisions shall include review and recognition of the potential impact of the entire development, and preliminary approval shall include written affirmative findings that:

1. The proposed development is consistent with standards, plans, policies and ordinances adopted by the city; and

Applicant's Facts As described in this narrative, the proposed development is consistent with and Findings: standards, plans, policies and ordinances adopted by the City.

This standard is met.
2. The proposed development's general design and character, including but not limited to anticipated building locations, bulk and height, location and distribution of recreation space, parking, roads, access and other uses, will be reasonably compatible with appropriate development of abutting properties and the surrounding neighborhood; and

Applicant's Facts As discussed previously, the proposed PUD includes larger lot single-family and Findings: detached homes along the northern property line, separating this development from a single-family detached development. Lot sizes will then decrease as one heads south into the site, with two multi-family residential buildings constructed in the southeast corner of the site. The homes on the site will all be designed and constructed so as to provide a cohesive design and character to the entire development. The distribution of recreation space, parking, roads, access and other uses is reasonably compatible with the appropriate development of abutting properties and the surrounding neighborhood.

This standard is met.
3. Public services and facilities are available to serve the proposed development. If such public services and facilities are not at present available, an affirmative finding may be made under this criterion if the evidence indicates that the public services and facilities will be available prior to need by reason of:
a. Public facility planning by the appropriate agencies; or
b. A commitment by the applicant to provide private services and facilities adequate to accommodate the projected demands of the project; or
c. Commitment by the applicant to provide for offsetting all added public costs or early commitment of public funds made necessary by the development; and

Applicant's Facts Public services and facilities are either available to serve the proposed and Findings: development or can be reasonably conditioned to be installed and provided. The public improvement plans included with the land use submittal demonstrate full public facilities will be provided, including water, sanitary sewer, storm sewer, electricity and natural gas. Public services are currently available to serve this site, including police, fire, garbage/recycling and US Mail.

This standard is met.
4. The provisions and conditions of this code have been met; and

Applicant's Facts As discussed in detail in this narrative, the provisions and conditions of this code and Findings: have been met.

This standard is met.
5. Proposed buildings, roads, and other uses are designed and sited to ensure preservation of features, and other unique or worthwhile natural features and to prevent soil erosion or flood hazard; and

Applicant's Facts The buildings, roads and other site features are located so as to preserve several and Findings: wetlands and natural features and to prevent soil erosion or flood hazard.

This standard is met.
6. There will be adequate on-site provisions for utility services, emergency vehicular access, and, where appropriate, public transportation facilities; and

Applicant's Facts The site is well provisioned for utility services, emergency vehicular access and, if and Findings: the opportunity arises in the future, public transportation facilities. The public roadways are designed to public street standards and the private streets are designed to provide vehicular access. The application includes a letter from Tualatin Valley Fire \& Rescue indicating that the private streets are adequate for emergency vehicle access.

This standard is met.
7. Sufficient usable recreation facilities, outdoor living area, open space, and parking areas will be conveniently and safely accessible for use by residents of the proposed development; and

Applicant's Facts The proposed neighborhood will feature active and passive open space areas for and Findings: use by the residents. The proposed design includes a civic use park which has been envisioned to provide space for community events as well as a space for featured local vendors. A smaller neighborhood park is connected to the proposed development through a network of multi-use pathways which provide pedestrian circulation and recreation throughout the site. The proposal includes multiple open spaces, most of which include a trail system within. The multi-family housing has common outdoor living areas, as well as balconies and patios for some individual units. The single-family housing has outdoor living areas adjacent to the homes.

This standard is met.
8. Proposed buildings, structures, and uses will be arranged, designed, and constructed so as to take into consideration the surrounding area in terms of access, building scale, bulk, design, setbacks, heights, coverage, landscaping and screening, and to assure reasonable privacy for residents of the development and surrounding properties.

Applicant's Facts This site has been designed reflect the surrounding area and to provide a and Findings:
reasonable level of privacy for residents of the development and surrounding
properties. Large lot single-family detached dwellings are proposed along the northern property line, separating this development from another large lot residential development, easing the transition from lower density to higher. The site is buffered from the residential developments to the west by the park that is adjacent to the site. The site as a whole is designed to provide safe and convenient access. The building scale, bulk, design, setbacks, heights, coverage, landscaping and screening are designed to provide harmony within the site while respecting and reflecting design patterns utilized in other nearby developments.

This standard is met.
D. Conditions. Applications may be approved subject to conditions necessary to fulfill the purpose and provisions of these regulations.

Applicant's Facts The Applicant acknowledges the possibility of conditions imposed to fulfill the and Findings: purpose and provisions of the PUD regulations. However, based on the findings identified in this narrative, the Applicant finds the proposal in full compliance with the PUD standards.

This standard is met.
15.240.040 Final plan consideration - Step two.
A. Application. An application, with the required fee, for final plan approval shall be submitted in accordance with the provisions of this code, and must be in compliance with all conditions imposed and schedules previously prescribed.
B. Referral. Referral of final plans and supportive material shall be provided to appropriate agencies and departments.
C. Decision Type I Procedure. The final plan consideration shall be reviewed through the Type I procedure. Upon receipt of the application and fee, final plans and required supportive material, the director shall approve, conditionally approve or deny the application for final plan approval. The decision of the director to approve or deny the application shall be based on written findings of compliance or noncompliance with approved preliminary plans and city standards, plans, policies and ordinances. Minor variations from approved preliminary plans may be permitted if consistent with the general character of the approved preliminary plans.
D. Conditions. Applications may be approved subject to such conditions as are necessary to fulfill the purpose and provisions of this code.

1. Preparation and Signatures. A duly notarized performance agreement binding the applicant, and the applicant's successors in interest, assuring construction and performance in accordance with the approved final plans shall be prepared by the city and executed by the applicant and city prior to issuance of a building permit.
2. Return. Unless an executed copy of the agreement is returned to the director within $\mathbf{6 0}$ days of its delivery to the applicant, final plan approval shall expire, necessitating the reapplication for final plan reapproval.
3. Filing. The director shall file a memorandum of the performance agreement with the Yamhill County recorder.
4. Improvement Petitions and Dedications. Improvement petitions and all documents required with respect to dedications and easements shall be submitted prior to completion of the agreement.
5. Project Changes. The director may permit project changes subsequent to execution of the agreement upon finding the changes substantially conform to final approved plans and comply with city standards, plans, policies and ordinances. Other modifications are subject to reapplication at the appropriate step.
6. Compliance. Compliance with this section is a prerequisite to the issuance of a building permit.

Applicant's Facts The Applicant acknowledges the process for Step Two of a PUD review. and Findings:

This standard is met.

Division 15.300 Zoning Districts

15.305 Zoning Use Table

Use	R-1	R-2	C-2
Residential Uses			
Dwelling, single- family detached	$\mathbf{P (2)}$	\mathbf{P}	$\mathbf{C (4)}$
Dwelling, multifamily	\mathbf{C}	\mathbf{P}	$\mathbf{C (4)}$
Parks and Open Spaces	P	P	
Open Space	P	P	\mathbf{P}
Park			

Notes.

(2) Limited to one per lot as a permitted use. More than one per lot allowed only through a conditional use permit or planned unit development, subject to density limits of NMC 15.405.010(B).
(4) The permitted density shall be stated on the conditional use permit.

Applicant's Facts The proposed residential development requires a conditional use permit because and Findings: a part of the site, including the area proposed for multi-family residential, is within the $\mathrm{C}-2$ zoning district. Single-family residential development is permitted in the R-1 and R-2 zones. The Planned Unit Development proposes residential
development, both single-family and multi-family, on all areas of the site (zoned R-1, R-2 and C-2).

As this application includes a conditional use permit application, this standard is met.

15.356 Bypass Interchange (BI) Overlay

Applicant's Facts The frontage of this site is adjacent to the Bypass Interchange (BI) Overlay. While and Findings: the provisions of the BI Overlay may apply to this site, the provisions only speak to permitted, conditional and prohibited uses. Residential development is a permitted use in the R-1 and R-2 zoning districts and a conditional use in the C-2 zoning district. Residential development is not prohibited in the BI Overlay.

This standard is met.

Division 15.400 Development Standards

15.405 Lot Requirements

15.405.010 Lot area - Lot areas per dwelling unit.
A. In the following districts, each lot or development site shall have an area as shown below except as otherwise permitted by this code:

1. In the $\mathbf{R - 1}$ district, each lot or development site shall have a minimum area of $\mathbf{5 , 0 0 0}$ square feet or as may be established by a subdistrict. The average size of lots in a subdivision intended for single-family development shall not exceed $\mathbf{1 0 , 0 0 0}$ square feet.
2. In the R-2, R-3, and RP districts, each lot or development site shall have a minimum area of 3,000 square feet or as may be established by a subdistrict. In the R-2 and R-P districts, the average size of lots in a subdivision intended for single-family development shall not exceed 5,000 square feet.
3. In the AI, AR, C-1, C-2, and C-3 districts, each lot or development site shall have a minimum area of 5,000 square feet or as may be established by a subdistrict.
4. In the $\mathbf{M}-1, \mathrm{M}-2$ and $\mathrm{M}-3$ districts, each lot or development site shall have a minimum area of 20,000 square feet.
5. Institutional districts shall have a minimum size of five contiguous acres in order to create a large enough campus to support institutional uses; however, additions to the district may be made in increments of any size.
6. Within the commercial zoning district(s) of the riverfront overlay subdistrict, there is no minimum lot size required, provided the other standards of this code can be met.

Applicant's Facts This application includes a Planned Unit Development (PUD) that proposes and Findings: reduced lot sizes. The standards for a PUD are discussed previously in this narrative.

This standard is met.
B. Lot or Development Site Area per Dwelling Unit.

1. In the R-1 district, there shall be a minimum of 5,000 square feet per dwelling unit.
2. In the $R-2, A R$, and $R-P$ districts, there shall be a minimum of 3,000 square feet of lot or development site area per dwelling unit. In the R-2 and R-P districts, lots or development sites in excess of $\mathbf{1 5 , 0 0 0}$ square feet used for multiple single-family, duplex or multifamily dwellings shall be developed at a minimum of one dwelling per 5,000 square feet lot area.
3. In the R-3 district, there shall be a minimum of 1,500 square feet of lot or development site area per dwelling unit. Lots or development sites in excess of $\mathbf{1 5 , 0 0 0}$ square feet used for multiple single-family, duplex or multifamily dwellings shall be developed at a minimum of one dwelling per 2,500 square feet lot area.
C. In calculating lot area for this section, lot area does not include land within public or private streets. In calculating lot area for maximum lot area/minimum density requirements, lot area does not include land within stream corridors, land reserved for public parks or open spaces, commons buildings, land for preservation of natural, scenic, or historic resources, land on slopes exceeding 15 percent or for avoidance of identified natural hazards, land in shared access easements, public walkways, or entirely used for utilities, land held in reserve in accordance with a future development plan, or land for uses not appurtenant to the residence.
D. Lot size averaging is allowed for any subdivision. Some lots may be under the minimum lot size required in the zone where the subdivision is located, as long as the average size of all lots is at least the minimum lot size.

Applicant's Facts This application includes a Planned Unit Development (PUD) that proposes and Findings: reduced lots (development site areas). The standards for a PUD are discussed previously in this narrative.

This standard is met.

15.405.020 Lot area exceptions.

The following shall be exceptions to the required lot areas:
A. Lots of record with less than the area required by this code.
B. Lots or development sites which, as a process of their creation, were approved in accordance with this code.
C. Planned unit developments, provided they conform to requirements for planned unit development approval.

Applicant's Facts This proposal complies with subsection C. of this criterion as a Planned Unit and Findings: Development is proposed with conformity to all PUD requirements.

This standard is met.
15.405.030 Lot dimensions and frontage.
A. Width. Widths of lots shall conform to the standards of this code.
B. Depth to Width Ratio. Each lot and parcel shall have an average depth between the front and rear lines of not more than two and one-half times the average width between the side lines. Depths of lots shall conform to the standards of this code. Development of lots under $\mathbf{1 5 , 0 0 0}$ square feet are exempt from the lot depth to width ratio requirement.
C. Area. Lot sizes shall conform to standards set forth in this code. Lot area calculations shall not include area contained in public or private streets as defined by this code.
D. Frontage.

1. No lot or development site shall have less than the following lot frontage standards:
a. Each lot or development site shall have either frontage on a public street for a distance of at least 25 feet or have access to a public street through an easement that is at least 25 feet wide. No new private streets, as defined in NMC 15.05.030, shall be created to provide frontage or access.
b. Each lot in an R-2 and R-3 zone shall have a minimum width of $\mathbf{3 0}$ feet at the front building line.
c. Each lot in an R-1, AI, or RP zone shall have a minimum width of $\mathbf{5 0}$ feet at the front building line.
d. Each lot in an AR zone shall have a minimum width of 45 feet at the front building line.
2. The above standards apply with the following exceptions:
a. Legally created lots of record in existence prior to the effective date of the ordinance codified in this code.
b. Lots or development sites which, as a process of their creation, were approved with sub-standard widths in accordance with provisions of this code.
c. Existing private streets may not be used for new dwelling units, except private streets that were created prior to March 1, 1999, including paving to fire access roads standards and installation of necessary utilities, and private streets allowed in the airport residential and airport industrial districts.

Applicant's Facts This application includes a Planned Unit Development (PUD) that proposes and Findings: reduced lot dimensions and frontage. Private streets are proposed to provide access to many of the lots in this development. Private streets are permitted as discussed previously in this narrative. The standards for a PUD are discussed previously in this narrative.

This standard is met.
15.405.040 Lot coverage and parking coverage requirements.
A. Purpose. The lot coverage and parking coverage requirements below are intended to:

1. Limit the amount of impervious surface and storm drain runoff on residential lots.
2. Provide open space and recreational space on the same lot for occupants of that lot.
3. Limit the bulk of residential development to that appropriate in the applicable zone.
B. Residential uses in residential zones shall meet the following maximum lot coverage and parking coverage standards. See the definitions in NMC 15.05.030 and Appendix A, Figure 4.
4. Maximum Lot Coverage.
a. R-1: $\mathbf{3 0}$ percent, or $\mathbf{4 0}$ percent if all structures on the lot are one-story.
b. R-2 and RP: 50 percent.
c. AR and R-3: 50 percent.
5. Maximum Parking Coverage. R-1, R-2, R-3, and RP: 30 percent.
6. Combined Maximum Lot and Parking Coverage.
a. R-1, R-2 and RP: $\mathbf{6 0}$ percent.
b. R-3: $\mathbf{7 0}$ percent.
C. All other districts and uses not listed in subsection (B) of this section shall not be limited as to lot coverage and parking coverage except as otherwise required by this code.

Applicant's Facts This application includes a Planned Unit Development (PUD) that proposes an and Findings: increase to the maximum lot coverage standards. This increase to the maximum is proposed to provide more housing options at an approachable price point, including some affordable housing. The standards for a PUD are discussed previously in this narrative.

This standard is met.

15.410 Yard Setback Requirements

15.410.010 General yard regulations.
A. No yard or open space provided around any building for the purpose of complying with the provisions of this code shall be considered as providing a yard or open space for any other building. B. No yard or open space on adjoining property shall be considered as providing required yard or open space for another lot or development site under the provisions of this code.
C. No front yards provided around any building for the purpose of complying with the regulations of this code shall be used for public or private parking areas or garages, or other accessory buildings, except as specifically provided elsewhere in this code.
D. When the common property line separating two or more contiguous lots is covered by a building or a permitted group of buildings with respect to such common property line or lines does not fully conform to the required yard spaces on each side of such common property line or lines, such lots shall constitute a single development site and the yards as required by this code shall then not apply to such common property lines.
E. Dwellings Where Permitted above Nonresidential Buildings. The front and interior yard requirements for residential uses shall not be applicable; provided, that all yard requirements for the district in which such building is located are complied with.
F. In the AI airport industrial district, clear areas, safety areas, object-free areas, taxiways, parking aprons, and runways may be counted as required yards for a building, even if located upon an adjacent parcel.
G. In the AR airport residential district, clear areas, safety areas, object-free areas, taxiways, parking aprons, and runways may be counted as required yards for a building, if located upon an adjacent parcel.
15.410.020 Front yard setback.
A. Residential (see Appendix A, Figure 10).

1. $A R, R-1$ and $R-2$ districts shall have a front yard of not less than $\mathbf{1 5}$ feet. Said yard shall be landscaped and maintained.
2. R-3 and RP districts shall have a front yard of not less than 12 feet. Said yard shall be landscaped and maintained.
3. The entrance to a garage or carport, whether or not attached to a dwelling, shall be set back at least $\mathbf{2 0}$ feet from the nearest property line of the street to which access will be provided. However, the foregoing setback requirement shall not apply where the garage or carport will be provided with access to an alley only.
B. Commercial.
4. All lots or development sites in the $\mathbf{C - 1}$ district shall have a front yard of not less than $\mathbf{1 0}$ feet. Said yard shall be landscaped and maintained.
5. All lots or development sites in the C-2 district shall have a front yard of not less than $\mathbf{1 0}$ feet. No parking shall be allowed in said yard. Said yard shall be landscaped and maintained.
6. All lots or development sites in the C-3 district shall have no minimum front yard requirements. The maximum allowable front yard shall be 20 feet. In the case of a through lot with two front yards, at least one front yard must meet the maximum setback requirement. In the case of three or more front yards, at least two front yards must meet the maximum setback requirements. No parking shall be allowed in said yard. Said yard shall be landscaped and maintained.
7. All lots or development sites in the C-4 district will comply with the front yard requirements described in NMC 15.352.040(E).
15.410.030 Interior yard setback.
A. Residential.
8. All lots or development sites in the $A R, R-1, R-2$ and $R-3$ districts shall have interior yards of not less than five feet, except that where a utility easement is recorded adjacent to a side lot line, there shall be a side yard no less than the width of the easement.
9. All lots or development sites in the RP district shall have interior yards of not less than eight feet.
B. Commercial.
10. All lots or development sites in the $\mathbf{C - 1}$ and $\mathrm{C}-2$ districts have no interior yards required where said lots or development sites abut property lines of commercially or industrially zoned property. When interior lot lines of said districts are common with property zoned
residentially, interior yards of not less than $\mathbf{1 0}$ feet shall be required opposite the residential districts.
11. All lots or development sites in the $\mathbf{C}-\mathbf{3}$ district shall have no interior yard requirements.
12. All lots or development sites in the C-4 district will comply with the interior yard requirements described in NMC 15.352.040(E).

Applicant's Facts This application includes a Planned Unit Development (PUD) that proposes and Findings: reduced yard setbacks. The reduced yard setbacks allow innovation in design and density of this site that promotes the purpose of the PUD to provide an approachable price point for housing, including some affordable housing. The standards for a PUD are discussed previously in this narrative.

This standard is met.

15.410.060 Vision clearance setback.

The following vision clearance standards shall apply in all zones (see Appendix A, Figure 9).
A. At the intersection of two streets, including private streets, a triangle formed by the intersection of the curb lines, each leg of the vision clearance triangle shall be a minimum of $\mathbf{5 0}$ feet in length.
B. At the intersection of a private drive and a street, a triangle formed by the intersection of the curb lines, each leg of the vision clearance triangle shall be a minimum of $\mathbf{2 5}$ feet in length.
C. Vision clearance triangles shall be kept free of all visual obstructions from two and one-half feet to nine feet above the curb line. Where curbs are absent, the edge of the asphalt or future curb location shall be used as a guide, whichever provides the greatest amount of vision clearance.
D. There is no vision clearance requirement within the commercial zoning district(s) located within the riverfront (RF) overlay subdistrict.

Applicant's Facts The proposed development maintains all required vision clearance setbacks, as and Findings: demonstrated on the submitted plans.

This standard is met.
15.410.070 Yard exceptions and permitted intrusions into required yard setbacks.

The following intrusions may project into required yards to the extent and under the conditions and limitations indicated:
A. Depressed Areas. In any district, open work fences, hedges, guard railings or other landscaping or architectural devices for safety protection around depressed ramps, stairs or retaining walls may be located in required yards; provided, that such devices are not more than three and one-half feet in height.
B. Accessory Buildings. In front yards on through lots, where a through lot has a depth of not more than $\mathbf{1 4 0}$ feet, accessory buildings may be located in one of the required front yards; provided, that every portion of such accessory building is not less than $\mathbf{1 0}$ feet from the nearest street line.
C. Projecting Building Features. The following building features may project into the required front yard no more than five feet and into the required interior yards no more than two feet; provided, that such projections are no closer than three feet to any interior lot line:

1. Eaves, cornices, belt courses, sills, awnings, buttresses or other similar features.
2. Chimneys and fireplaces, provided they do not exceed eight feet in width.
3. Porches, platforms or landings which do not extend above the level of the first floor of the building.
4. Mechanical structures (heat pumps, air conditioners, emergency generators and pumps).
D. Fences and Walls.
5. In the residential district, a fence or wall shall be permitted to be placed at the property line or within a yard setback as follows:
a. Not to exceed six feet in height. Located or maintained within the required interior yards. For purposes of fencing only, lots that are corner lots or through lots may select one of the street frontages as a front yard and all other yards shall be considered as interior yards, allowing the placement of a six-foot fence on the property line. In no case may a fence extend into the clear vision zone as defined in NMC 15.410.060.
b. Not to exceed four feet in height. Located or maintained within all other front yards.
6. In any commercial or industrial district, a fence or wall shall be permitted to be placed at the property line or within a yard setback as follows:
a. Not to exceed eight feet in height. Located or maintained in any interior yard except where the requirements of vision clearance apply. For purposes of fencing only, lots that are corner lots or through lots may select one of the street frontages as a front yard and all other yards shall be considered as interior yards, allowing the placement of an eightfoot fence on the property line.
b. Not to exceed four feet in height. Located or maintained within all other front yards.
7. If chain link (wire-woven) fences are used, they are manufactured of corrosion-proof materials of at least 11-1/2 gauge.
8. The requirements of vision clearance shall apply to the placement of fences.

Applicant's Facts The Applicant acknowledges permitted intrusions into required yard setbacks. The and Findings: fences surrounding the single-family residential in the R-1 and R-2 zoning areas will not exceed 6 -feet in height. The fencing in the $\mathrm{C}-2$ zoning areas will not exceed 8 -feet in height. No fence exceeding 4 -feet in height will be placed in a front yard setback.

This standard is met.
E. Parking and Service Drives (Also Refer to NMC 15.440.010 through 15.440.080).

1. In any district, service drives or accessways providing ingress and egress shall be permitted, together with any appropriate traffic control devices in any required yard.
2. In any residential district, public or private parking areas and parking spaces shall not be permitted in any required yard except as provided herein:
a. Required parking spaces shall be permitted on service drives in the required front yard in conjunction with any single-family or two-family dwelling on a single lot.
b. Recreational vehicles, boat trailers, camperettes and all other vehicles not in daily use are restricted to parking in the front yard setback for not more than 48 hours; and recreational vehicles, boat trailers, camperettes and all other vehicles not in daily use are permitted to be located in the required interior yards.
c. Public or private parking areas, parking spaces or any building or portion of any building intended for parking which have been identified as a use permitted in any residential district shall be permitted in any interior yard that abuts an alley, provided said parking areas, structures or spaces shall comply with NMC 15.440.070, Parking tables and diagrams (Diagrams 1 through 3).
d. Public or private parking areas, service drives or parking spaces which have been identified as a use permitted in any residential district shall be permitted in interior yards; provided, that said parking areas, service drives or parking spaces shall comply with other requirements of this code.
3. In any commercial or industrial district, except C-1, C-4 and M-1, public or private parking areas or parking spaces shall be permitted in any required yard (see NMC 15.410.030). Parking requirements in the C-4 district are described in NMC 15.352.040(H).
4. In the I district, public or private parking areas or parking spaces may be no closer to a front property line than 20 feet, and no closer to an interior property line than five feet.
F. Public Telephone Booths and Public Transit Shelters. Public telephone booths and public transit shelters shall be permitted; provided, that vision clearance is maintained for vehicle requirements for vision clearance.
G. Hangars within the AR airport residential district may be constructed with no yard setbacks to property lines adjacent to other properties within the airport residential or airport industrial districts

Applicant's Facts Parking is proposed on private lots in driveways, on-street parallel, on-street in and Findings: perpendicular "bays", and in designated parking lots. There are a total of 246 parking spaces proposed to serve the residential development plus either one or two parking spaces per unit within the garages of the single family homes. The location of the proposed parking areas meets the requirements of this standard.

This standard is met.

15.415 Building and Site Design Standards

15.415.010 Main buildings and uses as accessory buildings.
A. Hereinafter, any building which is the only building on a lot is a main building.
B. In any residential district except RP, there shall be only one main use per lot or development site; provided, that home occupations shall be allowed where permitted.
C. In any residential district, there shall be no more than two accessory buildings on any lot or development site.

Applicant's Facts The proposed residential development includes only main residential-use and Findings: buildings at this time. The Applicant acknowledges that no more than two accessory buildings will be permitted on any lot in the R-zoned portions of the development.

This standard is met.

15.415.020 Building height limitation.

A. Residential.

1. In the R-1, R-2, AR, and RP districts, no main building shall exceed 30 feet in height. Accessory buildings in the R-1, R-2, R-3, AR, and RP districts are limited to 16 feet in height, except as follows:
a. Up to $\mathbf{8 0 0}$ square feet of an accessory building may have a height of up to $\mathbf{2 4}$ feet.
b. Aircraft hangars in the AR district may be the same height as the main building.
2. In the R-3 district, no main building shall exceed 45 feet in height, except, where an R-3 district abuts upon an R-1 district, the maximum permitted building height shall be limited to 30 feet for a distance of 50 feet from the abutting boundary of the aforementioned district.
3. Single-family dwellings permitted in commercial or industrial districts shall not exceed 30 feet in height.

Applicant's Facts The proposed single-family three story attached and detached structures and Findings: proposed will exceed the 30 foot height limits. The proposed buildings will be approximately 35 feet in height. The applicant has proposed a height allowance which exceeds the limitations of this section as part of an overall plan to create a planned unit development.

This standard is met.

B. Commercial and Industrial.

1. In the $\mathbf{C - 1}$ district no main building or accessory building shall exceed 30 feet in height.
2. In the $\mathrm{AI}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{M}-1, \mathrm{M}-2$, and $\mathrm{M}-3$ districts there is no building height limitation, except, where said districts abut upon a residential district, the maximum permitted building height shall not exceed the maximum building height permitted in the abutting residential district for a distance of $\mathbf{5 0}$ feet from the abutting boundary.
3. In the C-4 district, building height limitation is described in NMC $15.352 .040(\mathrm{~J})(1)$.

Applicant's Facts The multi-family buildings proposed in the C-2 zoned portion of this site require and Findings: a conditional use permit. As such, the maximum height of buildings in the C-2 zoning district will be stated in the Conditional Use Permit, as required by subsection C., below.

This standard is not applicable as a Conditional Use Permit is requested and will state the maximum height of buildings.
C. The maximum height of buildings and uses permitted conditionally shall be stated in the conditional use permits.

Abstract

Applicant's Facts The Applicant proposes a maximum building height of 48 feet for the multi-family and Findings: residential structures. This maximum height shall be stated on the Conditional Use Permit.

This standard is met.
15.415.040 Public access required.

No building or structure shall be erected or altered except on a lot fronting or abutting on a public street or having access to a public street over a private street or easement of record approved in accordance with provisions contained in this code. New private streets may not be created to provide access except as allowed under NMC 15.332.020(B)(24), 15.336.020(B)(8), and in the M-4 zone. Existing private streets may not be used for access for new dwelling units, except as allowed under NMC 15.405.030. No building or structure shall be erected or altered without provisions for access roadways as required in the Oregon Fire Code, as adopted by the city.

Applicant's Facts All proposed residential structures will have access to a public street either directly and Findings: or via a connection from a private street, as permitted by the Planned Unit Development (PUD) criteria and as previously discussed in this narrative.

This standard is met.

15.420 Landscaping and Outdoor Areas

15.420.010 Required minimum standards.
A. Private and Shared Outdoor Recreation Areas in Residential Developments.

1. Private Areas. Each ground-level living unit in a residential development subject to a design review plan approval shall have an accessible outdoor private space of not less than 48 square feet in area. The area shall be enclosed, screened or otherwise designed to provide increased privacy for unit residents, their guests and neighbors.
2. Individual and Shared Areas. Usable outdoor recreation space shall be provided for the individual and/or shared use of residents and their guests in any duplex or multifamily residential development, as follows:
a. One- or two-bedroom units: $\mathbf{2 0 0}$ square feet per unit.
b. Three- or more bedroom units: $\mathbf{3 0 0}$ square feet per unit.
c. Storage areas are required in residential developments. Convenient areas shall be provided in residential developments for the storage of articles such as bicycles, barbecues, luggage, outdoor furniture, and the like. These shall be entirely enclosed.
3. In the AR airport residential district a five percent landscaping standard is required with the goal of "softening" the buildings and making the development "green" with plants, where
possible. The existence of the runway, taxiway, and approach open areas already provide generally for the $\mathbf{1 5}$ percent requirement.

Applicant's Facts Each ground-level home within the community will have a minimum of 48 square and Findings: feet of private outdoor open space. The multi-family housing area provides the required shared usable outdoor recreation space. Enclosed storage areas are provided attached to the outdoor private areas in the multi-family residential and in the garages of the single-family residential.

This standard is met.
B. Required Landscaped Area. The following landscape requirements are established for all developments except single-family dwellings:

1. A minimum of 15 percent of the lot area shall be landscaped; provided, however, that computation of this minimum may include areas landscaped under subsection (B)(3) of this section. Development in the C-3 (central business district) zoning district and M-4 (large lot industrial) zoning district is exempt from the $\mathbf{1 5}$ percent landscape area requirement of this section. Additional landscaping requirements in the C-4 district are described in NMC 15.352.040(K). In the AI airport industrial district, only a five percent landscaping standard is required with the goal of "softening" the buildings and making the development "green" with plants, where possible. The existence of the runway, taxiway, and approach open areas already provide generally for the $\mathbf{1 5}$ percent requirement. Developments in the AI airport industrial district with a public street frontage shall have said minimum landscaping between the front property line and the front of the building.

Applicant's Facts A minimum of fifteen percent (15\%) of the area surrounding the multi-family and Findings: development will be landscaped.

This standard is met.
2. All areas subject to the final design review plan and not otherwise improved shall be landscaped.

Applicant's Facts All areas included with the final design review plan and not otherwise improved and Findings: will be landscaped.

This standard is met.
3. The following landscape requirements shall apply to the parking and loading areas:
a. A parking or loading area providing $\mathbf{1 0}$ or more spaces shall be improved with defined landscaped areas totaling no less than $\mathbf{2 5}$ square feet per parking space.
b. A parking, loading area, or drive aisle which runs adjacent to a property line shall be separate from any lot line adjacent to a street by a landscaped strip at least 10 feet in interior width or the width of the required yard, whichever is greater, and any other
lot line by a landscaped strip of at least five feet in interior width. See subsections (B)(3)(c) and (d) of this section for material to plant within landscape strips.
c. A landscaped strip separating a parking area, loading area, or drive aisle from a street shall contain street trees spaced as appropriate to the species, not to exceed 50 feet apart on average, and a combination of shrubs and ground cover, or lawn. This landscaping shall provide partial screening of these areas from the street.
d. A landscaped strip separating a parking area, loading area, or drive aisle from an interior lot line shall contain any combination of trees, shrubs, ground cover or lawn. Plant material shall be selected from at least two different plant material groups (example: trees and shrubs, or lawn and shrubs, or lawn and trees and shrubs).
e. Landscaping in a parking or loading area shall be located in defined landscaped areas which are uniformly distributed throughout the parking or loading area.
f. Landscaping areas in a parking lot, service drive or loading area shall have an interior width of not less than five feet.
g. All multifamily, institutional, commercial, or industrial parking areas, service drives, or loading zones which abut a residential district shall be enclosed with a 75 percent opaque, site-obscuring fence, wall or evergreen hedge along and immediately adjacent to any interior property line which abuts the residential district. Landscape plantings must be large enough to provide the required minimum screening requirement within 12 months after initial installation. Adequate provisions shall be maintained to protect walls, fences or plant materials from being damaged by vehicles using said parking areas.
h. An island of landscaped area shall be located to separate blocks of parking spaces. At a minimum, one deciduous shade tree per seven parking spaces shall be planted to create a partial tree canopy over and around the parking area. No more than seven parking spaces may be grouped together without an island separation unless otherwise approved by the director based on the following alternative standards:
i. Provision of a continuous landscaped strip, with a five-foot minimum width, which runs perpendicular to the row of parking spaces (see Appendix A, Figure 13).
ii. Provision of tree planting landscape islands, each of which is at least 16 square feet in size, and spaced no more than $\mathbf{5 0}$ feet apart on average, within areas proposed for back-to-back parking (see Appendix A, Figure 14).

Applicant's Facts As identified on the included site plan, the parking areas providing 10 or more and Findings: spaces all meet the minimum landscaping requirements. All landscaped areas in parking areas provide a minimum of two different plant material groups, including trees, shrubs, ground cover or lawn. Fencing will be provided in compliance with this Section.

This standard is met.
4. Trees, Shrubs and Ground Covers. The species of street trees required under this section shall conform to those authorized by the city council through resolution. The director shall have the responsibility for preparing and updating the street tree species list which shall be adopted in resolution form by the city council.
a. Arterial and minor arterial street trees shall have spacing of approximately 50 feet on center. These trees shall have a minimum two-inch caliper tree trunk or stalk at a measurement of two feet up from the base and shall be balled and burlapped or boxed.
b. Collector and local street trees shall be spaced approximately 35 to 40 feet on center. These trees shall have a minimum of a one and one-half or one and three-fourths inch tree trunk or stalk and shall be balled and burlapped or boxed.
c. Accent Trees. Accent trees are trees such as flowering cherry, flowering plum, crabapple, Hawthorne and the like. These trees shall have a minimum one and one-half inch caliper tree trunk or stalk and shall be at least eight to $\mathbf{1 0}$ feet in height. These trees may be planted bare root or balled and burlapped. The spacing of these trees should be approximately 25 to 30 feet on center.
d. All broad-leafed evergreen shrubs and deciduous shrubs shall have a minimum height of $\mathbf{1 2}$ to $\mathbf{1 5}$ inches and shall be balled and burlapped or come from a twogallon can. Gallon-can size shrubs will not be allowed except in ground covers. Larger sizes of shrubs may be required in special areas and locations as specified by the design review board. Spacing of these shrubs shall be typical for the variety, three to eight feet, and shall be identified on the landscape planting plan.
e. Ground Cover Plant Material. Ground cover plant material such as greening juniper, cotoneaster, minor Bowles, English ivy, hypericum and the like shall be one of the following sizes in specified spacing for that size:

Gallon cans	3 feet on center
$4^{\prime \prime}$ containers	2 feet on center
2-1/4" containers	$18^{\prime \prime}$ on center
Rooted cuttings	$12^{\prime \prime}$ on center

Applicant's Facts As identified on the submitted landscaping plan, all street trees and ground cover and Findings: provided in this development will meet city standards.

This standard is met.
5. Automatic, underground irrigation systems shall be provided for all areas required to be planted by this section. The director shall retain the flexibility to allow a combination of irrigated and nonirrigated areas. Landscaping material used within nonirrigated areas must consist of drought- resistant varieties. Provision must be made for alternative irrigation
during the first year after initial installation to provide sufficient moisture for plant establishment.
6. Required landscaping shall be continuously maintained.
7. Maximum height of tree species shall be considered when planting under overhead utility lines.
8. Landscaping requirements and standards for parking and loading areas (subsection (B)(3) of this section) will apply to development proposals unless the institution has addressed the requirements and standards by an approved site development master plan. With an approved site development master plan, the landscape requirements will be reviewed through an administrative Type I review process.
9. In the M-4 zone, landscaping requirements and standards for parking and loading areas (subsection (B)(3) of this section) do not apply unless within 50 feet of a residential district.

Applicant's Facts Automatic, underground irrigation systems will be provided for all landscaped and Findings: areas. Landscaping will be continuously maintained and is included as a provision of the dues collection of the included $C C \& R s$. As identified in the included landscaping plan, the trees and shrubs have been chosen for their appropriateness for the location in which they are to be planted.

This standard is met.
C. Installation of Landscaping. All landscaping required by these provisions shall be installed prior to the issuance of occupancy permits, unless security equal to $\mathbf{1 1 0}$ percent of the cost of the landscaping as determined by the director is filed with the city, insuring such installation within six months of occupancy. A security - cash, certified check, time certificates of deposit, assignment of a savings account, bond or such other assurance of completion as shall meet with the approval of the city attorney - shall satisfy the security requirements. If the installation of the landscaping is not completed within the six-month period, or within an extension of time authorized by the director, the security may be used by the city to complete the installation. Upon completion of the installation, any portion of the remaining security deposited with the city shall be returned to the applicant.

Applicant's Facts Landscaping will be installed or assured according to City requirements prior to and Findings: the issuance of occupancy permits.

This standard is met.
15.420.020 Landscaping and amenities in public rights-of-way.

The following standards are intended to create attractive streetscapes and inviting pedestrian spaces. A review body may require any of the following landscaping and amenities to be placed in abutting public rights-of-way as part of multifamily, commercial, industrial, or institutional design reviews, or for subdivisions and planned unit developments. In addition, any entity improving existing rights-of-way should consider including these elements in the project. A decision to include any amenity
shall be based on comprehensive plan guidelines, pedestrian volumes in the area, and the nature of surrounding development.
A. Pedestrian Space Landscaping. Pedestrian spaces shall include all sidewalks and medians used for pedestrian refuge. Spaces near sidewalks shall provide plant material for cooling and dust control, and street furniture for comfort and safety, such as benches, waste receptacles and pedestrian-scale lighting. These spaces should be designed for short-term as well as long-term use. Elements of pedestrian spaces shall not obstruct sightlines and shall adhere to any other required city safety measures. Medians used for pedestrian refuge shall be designed for short-term use only with plant material for cooling and dust control, and pedestrian-scale lighting. The design of these spaces shall facilitate safe pedestrian crossing with lighting and accent paving to delineate a safe crossing zone visually clear to motorists and pedestrians alike.

1. Street trees planted in pedestrian spaces shall be planted according to NMC 15.420.010(B)(4).
2. Pedestrian spaces shall have low (two and one-half feet) shrubs and ground covers for safety purposes, enhancing visibility and discouraging criminal activity.
a. Plantings shall be 90 percent evergreen year-round, provide seasonal interest with fall color or blooms, and at maturity maintain growth within the planting area (refer to plant material matrix below).
b. Plant placement shall also adhere to clear sight line requirements as well as any other relevant city safety measures
3. Pedestrian-scale lighting shall be installed along sidewalks and in medians used for pedestrian refuge.
a. Pole lights as well as bollard lighting may be specified; however, the amount and type of pedestrian activity during evening hours, e.g., transit stops, nighttime service districts, shall ultimately determine the type of fixture chosen.
b. Luminaire styles shall match the area/district theme of existing luminaires and shall not conflict with existing building or roadway lights causing glare.
c. Lighting heights and styles shall be chosen to prevent glare and to designate a clear and safe path and limit opportunities for vandalism (see Appendix A, Figure 17, Typical Pedestrian Space Layouts).
d. Lighting shall be placed near the curb to provide maximum illumination for spaces furthest from building illumination. Spacing shall correspond to that of the street trees to prevent tree foliage from blocking light.
4. Street furniture such as benches and waste receptacles shall be provided for spaces near sidewalks only.
a. Furniture should be sited in areas with the heaviest pedestrian activity, such as downtown, shopping districts, and shopping centers.
b. Benches should be arranged to facilitate conversation between individuals with L-shaped arrangements and should face the area focal point, such as shops, fountains, plazas, and should divert attention away from nearby traffic.
5. Paving and curb cuts shall facilitate safe pedestrian crossing and meet all ADA requirements for accessibility.

Applicant's Facts The submitted landscaping plan identifies landscaping and amenities proposed and Findings: for the public right-of-way. Due to the residential nature of the site and the amenities to be provided within the project's open spaces, the public rights-ofway have been provided with mainly plantings. Once the commercial component of this site develops, we would anticipate the need for more benches, trash receptacles and other pedestrian amenities, potentially within the rights-of-way.

This standard is met.
B. Planting Strip Landscaping. All planting strips shall be landscaped. Planting strips provide a physical and psychological buffer for pedestrians from traffic with plant material that reduces heat and dust, creating a more comfortable pedestrian environment. Planting strips shall have different arrangements and combinations of plant materials according to the frequency of on-street parking (see Appendix A, Figures 18 and 19).

1. Planting strips which do not have adjacent parking shall have a combination of ground covers, low (two and one-half feet) shrubs and trees. Planting strips adjacent to frequently used on-street parking, as defined by city staff, shall only have trees protected by tree grates, and planting strips adjacent to infrequently used on-street parking shall be planted with ground cover as well as trees (see Appendix A, Figures 18 and 19, Typical Planting Strip Layouts). District themes or corridor themes linking individual districts should be followed utilizing a unifying plant characteristic, e.g., bloom color, habit, or fall color. When specifying thematic plant material, monocultures should be avoided, particularly those species susceptible to disease.
2. Street trees shall be provided in all planting strips as provided in NMC 15.420.010(B)(4).
a. Planting strips without adjacent parking or with infrequent adjacent parking shall have street trees in conjunction with ground covers and/or shrubs.
b. Planting strips with adjacent parking used frequently shall have only street trees protected by tree grates.
3. Shrubs and ground covers shall be provided in planting strips without adjacent parking with low (two and one-half feet) planting masses to enhance visibility, discourage criminal activity, and provide a physical as well as psychological buffer from passing traffic.
a. Plantings shall be $\mathbf{9 0}$ percent evergreen year-round, provide seasonal interest with fall color or blooms and at maturity maintain growth within the planting area.
b. Ground cover able to endure infrequent foot traffic shall be used in combination with street trees for planting strips with adjacent occasional parking (refer to plant material matrix below).
c. All plant placement shall adhere to clear sight line requirements as well as any other relevant city safety measures.
C. Maintenance. All landscapes shall be maintained for the duration of the planting to encourage health of plant material as well as public health and safety. All street trees and shrubs shall be pruned to maintain health and structure of the plant material for public safety purposes.

Applicant's Facts As identified in the included landscaping plan, all planting strips will be landscaped and Findings: with a combination of ground covers, shrubs and trees. All landscaping will be maintained for the duration of the planting and all street trees and shrubs will be pruned to maintain the health and structure of the plants.

This standard is met.
D. Exception. In the AI airport industrial district and AR airport residential district, no landscape or amenities except for grass are required for any area within 50 feet of aircraft operation areas including aircraft parking areas, taxiways, clear areas, safety areas, object-free areas, and the runway.

Applicant's Facts This standard is not in the AI or AR zone and, as such, this standard is not and Findings: applicable.

15.425 Exterior Lighting

15.425.010 Purpose.

The purpose of this chapter is to regulate the placement, orientation, distribution patterns, and fixture types of on-site outdoor lighting. The intent of this section is to provide minimum lighting standards that promote safety, utility, and security, prevent glare on public roadways, and protect the privacy of residents.
15.425.020 Applicability and exemptions.
A. Applicability. Outdoor lighting shall be required for safety and personal security in areas of assembly, parking, and traverse, as part of multifamily residential, commercial, industrial, public, recreational and institutional uses. The applicant for any Type I or Type II development permit shall submit, as part of the site plan, evidence that the proposed outdoor lighting plan will comply with this section. This information shall contain but not be limited to the following:

1. The location, height, make, model, lamp type, wattage, and proposed cutoff angle of each outdoor lighting fixture.
2. Additional information the director may determine is necessary, including but not limited to illuminance level profiles, hours of business operation, and percentage of site dedicated to parking and access.
3. If any portion of the site is used after dark for outdoor parking, assembly or traverse, an illumination plan for these areas is required. The plan must address safety and personal security.
B. Exemptions. The following uses shall be exempt from the provisions of this section:
4. Public street and airport lighting.
5. Circus, fair, carnival, or outdoor governmentally sponsored event or festival lighting.
6. Construction or emergency lighting, provided such lighting is discontinued immediately upon completion of the construction work or abatement of the emergency necessitating said lighting.
7. Temporary Lighting. In addition to the lighting otherwise permitted in this code, a lot may contain temporary lighting during events as listed below:
a. Grand Opening Event. A grand opening is an event of up to $\mathbf{3 0}$ days in duration within 30 days of issuance of a certificate of occupancy for a new or remodeled structure, or within 30 days of change of business or ownership. No lot may have more than one grand opening event per calendar year. The applicant shall notify the city in writing of the beginning and ending dates prior to the grand opening event.
b. Other Events. A lot may have two other events per calendar year. The events may not be more than eight consecutive days in duration, nor less than $\mathbf{3 0}$ days apart.
8. Lighting activated by motion sensor devices.
9. Nonconforming lighting in place as of September 5, 2000. Replacement of nonconforming lighting is subject to the requirements of NMC 15.205.010 through 15.205.100.
10. Light Trespass onto Industrial Properties. The lighting trespass standards of NMC 15.425.040 do not apply where the light trespass would be onto an industrially zoned property.

Applicant's Facts The land use submittal includes a lighting plan identifying the location, height, and Findings: make, model, lamp type, wattage, and proposed cutoff angle of each outdoor lighting fixture. Lighting is provided in the parking areas and the multi-family residential buildings.

This standard is met.
15.425.030 Alternative materials and methods of construction, installation, or operation.

The provisions of this section are not intended to prevent the use of any design, material, or methods of installation or operation not specifically prescribed by this section, provided any such alternate has been approved by the director. Alternatives must be an approximate equivalent to the applicable specific requirement of this section and must comply with all other applicable standards in this section.

Applicant's Facts This land use submittal does not include a request for alternative materials and and Findings: methods of construction, installation or operation.

This standard is met.

15.425.040 Requirements.

A. General Requirements - All Zoning Districts.

1. Low-level light fixtures include exterior lights which are installed between ground level and six feet tall. Low-level light fixtures are considered nonintrusive and are unrestricted by this code.
2. Medium-level light fixtures include exterior lights which are installed between six feet and 15 feet above ground level. Medium-level light fixtures must either comply with the shielding requirements of subsection (B) of this section, or the applicant shall show that light trespass from a property has been designed not to exceed one-half foot-candle at the property line.
3. High-level light fixtures include exterior lights which are installed $\mathbf{1 5}$ feet or more above ground level. High-level light fixtures must comply with the shielding requirements of subsection (B) of this section, and light trespass from a property may not exceed one-half foot-candle at the property line.
B. Table of Shielding Requirements.

Fixture Lamp Type	Shielded
Low/high pressure sodium, mercury vapor, metal halide and fluorescent over 50 watts	Fully
Incandescent over 160 watts	Fully
Incandescent $\mathbf{1 6 0}$ watts or less	None
Fossil fuel	None
Any light source of $\mathbf{5 0}$ watts or less	None
Other sources	As approved by NMC 15.425.030

Applicant's Facts The land use submittal includes a lighting plan identifying the location, height, and Findings: make, model, lamp type, wattage, and proposed cutoff angle of each outdoor lighting fixture. Lighting is provided in the parking areas and the multi-family residential buildings. All medium- and high-level lighting is designed to meet this section.

This standard is met.

15.430 Underground Utility Installation

15.430.010 Underground utility installation.
A. All new utility lines, including but not limited to electric, communication, natural gas, and cable television transmission lines, shall be placed underground. This does not include surface-mounted transformers, connections boxes, meter cabinets, service cabinets, temporary facilities during construction, and high-capacity electric lines operating at $\mathbf{5 0 , 0 0 0}$ volts or above.
B. Existing utility lines shall be placed underground when they are relocated, or when an addition or remodel requiring a Type II design review is proposed, or when a developed area is annexed to the city.
C. The director may make exceptions to the requirement to underground utilities based on one or more of the following criteria:

1. The cost of undergrounding the utility is extraordinarily expensive.
2. There are physical factors that make undergrounding extraordinarily difficult.
3. Existing utility facilities in the area are primarily overhead and are unlikely to be changed.

Applicant's Facts All new utility lines will be located underground. and Findings:

This standard is met.
15.440 Off-Street Parking, Bicycle Parking, and Private Walkways

Article I. Off-Street Parking Requirements

15.440.010 Required off-street parking.
A. Off-street parking shall be provided on the development site for all R-1, C-1, M-1, M-2 and M-3 zones. In all other zones, the required parking shall be on the development site or within 400 feet of the development site which the parking is required to serve. All required parking must be under the same ownership as the development site served except through special covenant agreements as approved by the city attorney, which bind the parking to the development site.
B. Off-street parking is not required in the C-3 district, except for:

1. Dwelling units meeting the requirements noted in NMC 15.305.020.
2. New development which is either immediately adjacent to a residential district or separated by nothing but an alley.
C. Within the C-4 district, the minimum number of required off-street parking spaces shall be $\mathbf{5 0}$ percent of the number required by NMC 15.440.030, except that no reduction is permitted for residential uses.
D. All commercial, office, or industrial developments that have more than $\mathbf{2 0}$ off-street parking spaces and that have designated employee parking must provide at least one preferential carpool/vanpool parking space. The preferential carpool/vanpool parking space(s) must be located close to a building entrance.

Applicant's Facts The proposed parking for the single-family homes will be on the same lot as the and Findings: use. Additional on-street parking and "guest parking" areas are proposed and will be owned and maintained according to the CC\&Rs for the Homeowner's Association. The proposed parking for the multi-family buildings will also be on the same development site as the buildings, in a parking lot adjacent to the buildings. There are no commercial, office or industrial developments proposed at this time and, as such, no carpool/vanpool parking spaces are required.

This standard is met.
15.440.020 Parking area and service drive design.
A. All public or private parking areas, parking spaces, or garages shall be designed, laid out and constructed in accordance with the minimum standards as set forth in NMC 15.440.070.
B. Groups of three or more parking spaces, except those in conjunction with single-family or twofamily dwellings on a single lot, shall be served by a service drive so that no backward movement or other maneuvering of a vehicle within a street, other than an alley, will be required. Service drives shall be designed and constructed to facilitate the flow of traffic, provide maximum safety in traffic access and egress and maximum safety of pedestrian and vehicular traffic on the site, but in no case shall two-way and one-way service drives be less than $\mathbf{2 0}$ feet and $\mathbf{1 2}$ feet, respectively. Service drives shall be improved in accordance with the minimum standards as set forth in NMC 15.440.060.
C. Gates. A private drive or private street serving as primary access to more than one dwelling unit shall not be gated to limit access, except as approved by variance.
D. In the AI airport industrial district and AR airport residential district, taxiways may be used as part of the service drive design where an overall site plan is submitted that shows how the circulation of aircraft and vehicles are safely accommodated, where security fences are located, if required, and is approved by the fire marshal, planning director, and public works director. The following submittal must be made:

1. A drawing of the area to be developed, including the probable location, height, and description of structures to be constructed; the location and description of a security fence or gate to secure the aircraft operations areas of off-airport property from the other nonsecured pedestrian/auto/truck areas of on-airport property; the proposed location of the proposed taxiway access in accordance with FAA specifications (refer to Federal Aviation Administration Advisory Circular No. 150/5300-13 regarding airport design, and AC/537010B regarding construction standards for specifications that should be used as a guideline); and the identification of the vehicular traffic pattern area clearly separated from aircraft traffic. Once specific buildings have been designed, FAA Form 7460-1, Notice of Proposed Construction or Alteration, must be submitted to the City of Newberg, the private airport owner, and the FAA for airspace review.
15.440.030 Parking spaces required.

Use	Minimum Parking Spaces Required
Residential Types	
Dwelling, multifamily and multiple single-family dwellings on a single lot Studio or one-bedroom unit Two-bedroom unit Three- and four-bedroom unit Five- or more bedroom unit - Unassigned spaces	1 per dwelling unit 1.5 per dwelling unit 2 per dwelling unit 0.75 spaces per bedroom If a development is required to have more than 10 spaces on a lot, then it must provide some unassigned spaces. At least 15 percent of the total required parking spaces must be unassigned and be located for convenient use by all occupants of the development. The location shall be approved by the director. If a development is required to have more than $\mathbf{1 0}$ spaces on a lot, then it must provide at least $\mathbf{0 . 2}$ visitor spaces
- Visitor spaces - On-street parking credit	per dwelling unit. On-street parking spaces may be counted toward the minimum number of required spaces for developments required to have more than 10 spaces on a lot. The on-street spaces must be directly adjoining and on the same side of the street as the subject property, must be legal spaces that meet all city standards, and cannot be counted if they could be

	removed by planned future street widening or a bike lane on the street. At the review body's discretion, affordable housing projects may reduce the required off-street parking by 10 percent if there is an adequate continuous pedestrian route no more than 1,500 feet in length from the development to transit service with an average of less than one hour regular service intervals during commuting periods or where the development provides its own transit. A developer may qualify for this parking reduction if improvements on a proposed pedestrian route are made by the developer, thereby rendering it an adequate continuous route.
Dwelling, single-family or two-	
family forvice	2 for each dwelling unit on a single lot

Applicant's Facts All single-family development will have parking on the individual lots. The multiand Findings: family development proposes to create 51 units with 27 one bedroom homes and 24 two bedroom homes. The required parking for the one bedroom units is 27 spaces, the two bedroom units require 36 parking spaces and a total of 10 visitor parking spaces are required for a total of 74 parking spaces. As proposed, 92 spaces are provided which are on the same site as the multi-family buildings. An additional 7 on-street parking spaces are provided adjacent to the multi-family lot.

This standard is met.
15.440.060 Parking area and service drive improvements.

All public or private parking areas, outdoor vehicle sales areas, and service drives shall be improved according to the following:
A. All parking areas and service drives shall have surfacing of asphaltic concrete or Portland cement concrete or other hard surfacing such as brick or concrete pavers. Other durable and dust-free surfacing materials may be approved by the director for infrequently used parking areas. All parking areas and service drives shall be graded so as not to drain stormwater over the public sidewalk or onto any abutting public or private property.
B. All parking areas shall be designed not to encroach on public streets, alleys, and other rights-ofway. Parking areas shall not be placed in the area between the curb and sidewalk or, if there is no sidewalk, in the public right-of-way between the curb and the property line. The director may issue a permit for exceptions for unusual circumstances where the design maintains safety and aesthetics. C. All parking areas, except those required in conjunction with a single-family or two-family dwelling, shall provide a substantial bumper which will prevent cars from encroachment on abutting private and public property.
D. All parking areas, including service drives, except those required in conjunction with single-family or two-family dwellings, shall be screened in accordance with NMC 15.420.010(B).
E. Any lights provided to illuminate any public or private parking area or vehicle sales area shall be so arranged as to reflect the light away from any abutting or adjacent residential district.
F. All service drives and parking spaces shall be substantially marked and comply with NMC 15.440.070.
G. Parking areas for residential uses shall not be located in a required front yard, except as follows:

1. Attached or detached single-family or two-family: parking is authorized in a front yard on a service drive which provides access to an improved parking area outside the front yard.
2. Three- or four-family: parking is authorized in a front yard on a service drive which is adjacent to a door at least seven feet wide intended and used for entrance of a vehicle (see Appendix A, Figure 12).
H. A reduction in size of the parking stall may be allowed for up to a maximum of $\mathbf{3 0}$ percent of the total number of spaces to allow for compact cars. For high turnover uses, such as convenience stores or fast-food restaurants, at the discretion of the director, all stalls will be required to be full-sized.
I. Affordable housing projects may use a tandem parking design, subject to approval of the community development director.
J. Portions of off-street parking areas may be developed or redeveloped for transit-related facilities and uses such as transit shelters or park-and-ride lots, subject to meeting all other applicable standards, including retaining the required minimum number of parking spaces.

Applicant's Facts As identified on the submitted site plan and utility plans, all parking areas and and Findings: service drives will be constructed to City standards. Parking areas do not encroach on public streets. Substantial parking bumpers are provided for the multi-family parking area. All parking area lighting will be designed to reduce light spill and glare away from any proposed or existing neighboring developments.

This standard is met.

Article II. Bicycle Parking

15.440.090 Purpose.

Cycling is a healthy activity for travel and recreation. In addition, by maximizing bicycle travel, the community can reduce negative effects of automobile travel, such as congestion and pollution. To maximize bicycle travel, developments must provide effective support facilities. At a minimum, developments need to provide a secure place for employees, customers, and residents to park their bicycles. [Ord. 2564, 4-15-02; Ord. 2518, 9-21-99. Code 2001 § 151.625.1.]

15.440.100 Facility requirements.

Bicycle parking facilities shall be provided for the uses shown in the following table. Fractional space requirements shall be rounded up to the next whole number.

Use	Minimum Number of Bicycle Parking Spaces Required

New multiple dwellings, including One bicycle parking space for every four dwelling units additions creating additional dwelling units

Applicant's Facts The proposed 51 multi-family dwelling units requires 13 bicycle parking spaces. and Findings: This proposal includes the provision of 13 bicycle parking spaces.

This standard is met.

15.440.110 Design.

A. Bicycle parking facilities shall consist of one or more of the following:

1. A firmly secured loop, bar, rack, or similar facility that accommodates locking the bicycle frame and both wheels using a cable or U-shaped lock.
2. An enclosed locker.
3. A designated area within the ground floor of a building, garage, or storage area. Such area shall be clearly designated for bicycle parking.
4. Other facility designs approved by the director.
B. All bicycle parking spaces shall be at least six feet long and two and one-half feet wide. Spaces shall not obstruct pedestrian travel.
C. All spaces shall be located within 50 feet of a building entrance of the development.
D. Required bicycle parking facilities may be located in the public right-of-way adjacent to a development subject to approval of the authority resp

Applicant's Facts As shown on the included site development plans, the bicycle parking facility is and Findings: designed to meet these requirements.

This standard is met.

Article III. Private Walkways

15.440.120 Purpose.

Sidewalks and private walkways are part of the city's transportation system. Requiring their construction is part of the city's plan to encourage multimodal travel and to reduce reliance on the automobile. Considerable funds have and will be expended to install sidewalks along the streets in the city. Yet there is little point to this expense if it is not possible for people to walk from the sidewalk to the developments along each side. The following requirements are intended to provide safe and convenient paths for employees, customers, and residents to walk from public sidewalks to development entrances, and to walk between buildings on larger sites.

15.440.130 Where required.

Private walkways shall be constructed as part of any development requiring Type II design review, including mobile home parks. In addition, they may be required as part of conditional use permits or planned unit developments. In the airport industrial (AI) district and residential (AR) district, on-
site walks are not required in aircraft operations areas, such as parking aprons, taxiways, and runways.

Applicant's Facts As this application includes a Planned Unit Development and Conditional Use and Findings: Permit, walkways and sidewalks are required.

This standard is met.
15.440.140 Private walkway design.
A. All required private walkways shall meet the applicable building code and Americans with Disabilities Act requirements.
B. Required private walkways shall be a minimum of four feet wide.
C. Required private walkways shall be constructed of portland cement concrete or brick.
D. Crosswalks crossing service drives shall, at a minimum, be painted on the asphalt or clearly marked with contrasting paving materials or humps/raised crossings. If painted striping is used, it should consist of thermoplastic striping or similar type of durable application.
E. At a minimum, required private walkways shall connect each main pedestrian building entrance to each abutting public street and to each other.
F. The review body may require on-site walks to connect to development on adjoining sites.
G. The review body may modify these requirements where, in its opinion, the development provides adequate on-site pedestrian circulation, or where lot dimensions, existing building layout, or topography preclude compliance with these standards.

Applicant's Facts The proposal includes private walkways connecting the multi-family units to and Findings: Highway 99W and connecting the western portion of the site to Spring Meadow Park. These walkways will be a minimum of 4 -feet in width and will be constructed of Portland cement concrete. Crosswalks will be provided on the site to delineate the shift from public streets to private streets. Crosswalks will be painted/clearly striped in conformance with these requirements.

This standard is met.

Division 15.500 Public Improvement Standards

15.505 Public Improvements Standards
15.505.010 Purpose.

This chapter provides standards for public infrastructure and utilities installed with new development, consistent with the policies of the City of Newberg comprehensive plan and adopted city master plans. The standards are intended to minimize disturbance to natural features, promote energy conservation and efficiency, minimize and maintain development impacts on surrounding properties and neighborhoods, and ensure timely completion of adequate public facilities to serve new development.
15.505.020 Applicability.

The provision and utilization of public facilities and services within the City of Newberg shall apply to all land developments in accordance with this chapter. No development shall be approved unless the following improvements are provided for prior to occupancy or operation, unless future provision is assured in accordance with NMC 15.505.030(E).
A. Public Works Design and Construction Standards. The design and construction of all improvements within existing and proposed rights-of-way and easements, all improvements to be maintained by the city, and all improvements for which city approval is required shall comply with the requirements of the most recently adopted Newberg public works design and construction standards.
B. Street Improvements. All projects subject to a Type II design review, partition, or subdivision approval must construct street improvements necessary to serve the development.
C. Water. All developments, lots, and parcels within the City of Newberg shall be served by the municipal water system as specified in Chapter 13.15 NMC.
D. Wastewater. All developments, lots, and parcels within the City of Newberg shall be served by the municipal wastewater system as specified in Chapter 13.10 NMC.
E. Stormwater. All developments, lots, and parcels within the City of Newberg shall manage stormwater runoff as specified in Chapters 13.20 and 13.25 NMC.
F. Utility Easements. Utility easements shall be provided as necessary and required by the review body to provide needed facilities for present or future development of the area.
G. City Approval of Public Improvements Required. No building permit may be issued until all required public facility improvements are in place and approved by the director, or are otherwise bonded for in a manner approved by the review authority, in conformance with the provisions of this code and the Newberg Public Works Design and Construction Standards.

Applicant's Facts As identified on the included public improvement plans, the design and and Findings: construction of all improvements within existing and proposed public rights-ofway and easements and all improvements to be maintained by the city are designed to comply with the requirements of the most recently adopted Newberg public works design and construction standards. All improvements for which city approval is required are proposed to the most recently adopted Newberg public works design and construction standards or, in the case of private streets, as reviewed and approved by the Newberg Engineering Department. The site development plan includes private and public streets, utility easements where necessary, connection to public water and sanitary sewer services and management of stormwater runoff.

This standard is met.
15.505.030 Street standards.
A. Purpose. The purpose of this section is to:

1. Provide for safe, efficient, and convenient multi-modal transportation within the City of Newberg.
2. Provide adequate access to all proposed and anticipated developments in the City of Newberg. For purposes of this section, "adequate access" means direct routes of travel between destinations; such destinations may include residential neighborhoods, parks, schools, shopping areas, and employment centers.
3. Provide adequate area in all public rights-of-way for sidewalks, wastewater and water lines, stormwater facilities, natural gas lines, power lines, and other utilities commonly and appropriately placed in such rights-of-way. For purposes of this section, "adequate area" means space sufficient to provide all required public services to standards defined in this code and in the Newberg public works design and construction standards.
B. Applicability. The provisions of this section apply to:
4. The creation, dedication, and/or construction of all public streets, bike facilities, or pedestrian facilities in all subdivisions, partitions, or other developments in the City of Newberg.
5. The extension or widening of existing public street rights-of-way, easements, or street improvements including those which may be proposed by an individual or the city, or which may be required by the city in association with other development approvals.
6. The construction or modification of any utilities, pedestrian facilities, or bike facilities in public rights-of-way or easements.
7. The designation of planter strips. Street trees are required subject to Chapter $\mathbf{1 5 . 4 2 0}$ NMC.
8. Developments outside the city that tie into or take access from city streets.

Applicant's Facts As demonstrated in the public improvement plans, this development includes and Findings: public and private streets designed to provide safe and convenient vehicular and pedestrian access. Proposed improvements include paved streets, curbs (rolled curb on private streets), sidewalks, crosswalks, planter strips with street trees and appropriate groundcover, and utility easements where necessary.

This standard is met.
C. Layout of Streets, Alleys, Bikeways, and Walkways. Streets, alleys, bikeways, and walkways shall be laid out and constructed as shown in the Newberg transportation system plan. In areas where the transportation system plan or future street plans do not show specific transportation improvements, roads and streets shall be laid out so as to conform to previously approved subdivisions, partitions, and other developments for adjoining properties, unless it is found in the public interest to modify these patterns. Transportation improvements shall conform to the standards within the Newberg Municipal Code, the Newberg public works design and construction standards, the Newberg transportation system plan, and other adopted city plans.

Applicant's Facts While no bikeways are proposed, the streets, alleys and walkways are designed to and Findings: comply with the Newberg Transportation System Plan. Streets are planned to meet with adjoining roadways and to provide for future connectivity to the east.

This standard is met.
D. Construction of New Streets. Where new streets are necessary to serve a new development, subdivision, or partition, right-of-way dedication and full street improvements shall be required. Three-quarter streets may be approved in lieu of full street improvements when the city finds it to be practical to require the completion of the other one-quarter street improvement when the adjoining property is developed; in such cases, three-quarter street improvements may be allowed by the city only where all of the following criteria are met:

1. The land abutting the opposite side of the new street is undeveloped and not part of the new development; and
2. The adjoining land abutting the opposite side of the street is within the city limits and the urban growth boundary.

Applicant's Facts Full street improvements are proposed throughout the site. and Findings:

This standard is met.
E. Improvements to Existing Streets.

1. All projects subject to partition, subdivision, or Type II design review approval shall dedicate right-of-way sufficient to improve the street to the width specified in subsection (G) of this section.
2. All projects subject to partition, subdivision, or Type II design review approval must construct a minimum of a three-quarter street improvement to all existing streets adjacent to, within, or necessary to serve the development. The director may waive or modify this requirement where the applicant demonstrates that the condition of existing streets to serve the development meets city standards and is in satisfactory condition to handle the projected traffic loads from the development. Where a development has frontage on both sides of an existing street, full street improvements are required.
3. In lieu of the street improvement requirements outlined in NMC 15.505.040(B), the review authority may elect to accept from the applicant monies to be placed in a fund dedicated to the future reconstruction of the subject street(s). The amount of money deposited with the city shall be $\mathbf{1 0 0}$ percent of the estimated cost of the required street improvements (including any associated utility improvements), and 10 percent of the estimated cost for inflation. Cost estimates used for this purpose shall be based on preliminary design of the constructed street provided by the applicant's engineer and shall be approved by the director.

Applicant's Facts The proposal includes development of full street improvements throughout the and Findings: site. The public streets will be constructed to public street standards and dedicated to the City of Newberg. The private streets will be full street improvements and will be owned and maintained by the future Homeowner's Association subject to the CC\&Rs (a draft of which is submitted with this proposal).

This standard is met.
F. Improvements Relating to Impacts. Improvements required as a condition of development approval shall be roughly proportional to the impact of the development on public facilities and services. The review body must make findings in the development approval that indicate how the required improvements are roughly proportional to the impact. Development may not occur until required transportation facilities are in place or guaranteed, in conformance with the provisions of this code. If required transportation facilities cannot be put in place or be guaranteed, then the review body shall deny the requested land use application.

Applicant's Facts Development of the proposed street network and utilities within the development and Findings: and connecting to the neighboring properties is roughly proportional to the transportation and development impacts from the development. Transportation facilities will be in place or guaranteed prior to development of the site.

This standard is met.
G. Street Width and Design Standards.

1. Design Standards. All streets shall conform with the standards contained in Table 15.505.030(G). Where a range of values is listed, the director shall determine the width based on a consideration of the total street section width needed, existing street widths, and existing development patterns. Preference shall be given to the higher value. Where values may be modified by the director, the overall width shall be determined using the standards under subsections (G)(2) through (10) of this section.

Table 15.505.030(G) Street Design Standards

Type of Street	Right-ofWay Width	Curb-to- Curb Pavement Width	Motor Vehicle Travel Lanes	Median Type	Striped Bike Lane (Both Sides)	On- Street Parking
Arterial Streets						
Expressway**	ODOT	ODOT	ODOT	ODOT	ODOT	ODOT
Minor arterial	69-80 feet	48 feet	2 lanes	TWLTL or median*	Yes	No*
Collectors						
Minor	61-65 feet	40 feet	2 lanes	None*	Yes*	Yes*
Local Streets						
Local residential	54-60 feet	32 feet	2 lanes	None	No	Yes

2. Motor Vehicle Travel Lanes. Collector and arterial streets shall have a minimum width of $\mathbf{1 2}$ feet.
3. Bike Lanes. Striped bike lanes shall be a minimum of six feet wide. Bike lanes shall be provided where shown in the Newberg transportation system plan.
4. Parking Lanes. Where on-street parking is allowed on collector and arterial streets, the parking lane shall be a minimum of eight feet wide.
5. Center Turn Lanes. Where a center turn lane is provided, it shall be a minimum of $\mathbf{1 2}$ feet wide.
6. Limited Residential Streets. Limited residential streets shall be allowed only at the discretion of the review authority, and only in consideration of the following factors:
a. The requirements of the fire chief shall be followed.
b. The estimated traffic volume on the street is low, and in no case more than $\mathbf{6 0 0}$ average daily trips.
c. Use for through streets or looped streets is preferred over cul-de-sac streets.
d. Use for short blocks (under 400 feet) is preferred over longer blocks.
e. The total number of residences or other uses accessing the street in that block is small, and in no case more than $\mathbf{3 0}$ residences.
f. On-street parking usage is limited, such as by providing ample off-street parking, or by staggering driveways so there are few areas where parking is allowable on both sides.
7. Sidewalks. Sidewalks shall be provided on both sides of all public streets. Minimum width is five feet.
8. Planter Strips. Except where infeasible, a planter strip shall be provided between the sidewalk and the curb line, with a minimum width of five feet. This strip shall be landscaped in accordance with the standards in NMC 15.420.020. Curb-side sidewalks may be allowed on limited residential streets. Where curb-side sidewalks are allowed, the following shall be provided:
a. Additional reinforcement is done to the sidewalk section at corners.
b. Sidewalk width is six feet.
9. Slope Easements. Slope easements shall be provided adjacent to the street where required to maintain the stability of the street.
10. Intersections and Street Design. The street design standards in the Newberg public works design and construction standards shall apply to all public streets, alleys, bike facilities, and sidewalks in the city.
11. The planning commission may approve modifications to street standards for the purpose of ingress or egress to a minimum of three and a maximum of six lots through a conditional use permit.

Applicant's Facts Streets, sidewalks and planter strips, as identified on the proposed public and Findings: improvement plans, are designed to meet the standards of the Newberg Transportation System Plan and this section.

This standard is met.
H. Modification of Street Right-of-Way and Improvement Width. The director, pursuant to the Type II review procedures of Chapter 15.220 NMC, may allow modification to the public street standards
of subsection (G) of this section, when the criteria in both subsections $(H)(1)$ and (2) of this section are satisfied:

1. The modification is necessary to provide design flexibility in instances where:
a. Unusual topographic conditions require a reduced width or grade separation of improved surfaces; or
b. Lot shape or configuration precludes accessing a proposed development with a street which meets the full standards of this section; or
c. A modification is necessary to preserve trees or other natural features determined by the city to be significant to the aesthetic character of the area; or
d. A planned unit development is proposed and the modification of street standards is necessary to provide greater privacy or aesthetic quality to the development.
2. Modification of the standards of this section shall only be approved if the director finds that the specific design proposed provides adequate vehicular access based on anticipated traffic volumes.

Applicant's Facts Street modifications are not proposed as part of this development and, as such, and Findings: this standard is not applicable.
I. Temporary Turnarounds. Where a street will be extended as part of a future phase of a development, or as part of development of an abutting property, the street may be terminated with a temporary turnaround in lieu of a standard street connection or circular cul-de-sac bulb. The director and fire chief shall approve the temporary turnaround. It shall have an all-weather surface, and may include a hammerhead-type turnaround meeting fire apparatus access road standards, a paved or graveled circular turnaround, or a paved or graveled temporary access road. For streets extending less than 150 feet and/or with no significant access, the director may approve the street without a temporary turnaround. Easements or right-of-way may be required as necessary to preserve access to the turnaround.

Applicant's Facts The east-west minor collector dead-ends at the eastern property line for and Findings: connection to future development. The easternmost north-south private street creates a hammerhead-type turnaround with the minor collector.

This standard is met.
J. Topography. The layout of streets shall give suitable recognition to surrounding topographical conditions in accordance with the purpose of this code.

Applicant's Facts The layout of the streets takes into consideration the surrounding topography. and Findings:

This standard is met.
K. Future Extension of Streets. All new streets required for a subdivision, partition, or a project requiring site design review shall be constructed to be "to and through": through the development and to the edges of the project site to serve adjacent properties for future development.

Applicant's Facts The street network connects to the existing street to the north and future street and Findings: development to the east. Connection to the west is not possible because the entire property line is adjacent to Spring Meadow Park. The connection to the south is the access from Highway 99W.

This standard is met.
L. Cul-de-Sacs.

1. Cul-de-sacs shall only be permitted when one or more of the circumstances listed in this section exist. When cul-de-sacs are justified, public walkway connections shall be provided wherever practical to connect with another street, walkway, school, or similar destination.
a. Physical or topographic conditions make a street connection impracticable. These conditions include but are not limited to controlled access streets, railroads, steep slopes, wetlands, or water bodies where a connection could not be reasonably made.
b. Buildings or other existing development on adjacent lands physically preclude a connection now or in the future, considering the potential for redevelopment.
c. Where streets or accessways would violate provisions of leases, easements, or similar restrictions.
d. Where the streets or accessways abut the urban growth boundary and rural resource land in farm or forest use, except where the adjoining land is designated as an urban reserve area.
2. Cul-de-sacs shall be no more than 400 feet long (measured from the centerline of the intersection to the radius point of the bulb).
3. Cul-de-sacs shall not serve more than $\mathbf{1 8}$ single-family dwellings.

Each cul-de-sac shall have a circular end with a minimum diameter of 96 feet, curb-to-curb, within a 109-foot minimum diameter right-of-way. For residential uses, a 35 -foot radius may be allowed if the street has no parking, a mountable curb, curbside sidewalks, and sprinkler systems in every building along the street.

Applicant's Facts No cul-de-sacs are proposed as part of this development and, as such, this and Findings: standard is not applicable.
M. Street Names and Street Signs. Streets that are in alignment with existing named streets shall bear the names of such existing streets. Names for new streets not in alignment with existing streets are subject to approval by the director and the fire chief and shall not unnecessarily duplicate or resemble the name of any existing or platted street in the city. It shall be the responsibility of the land divider to provide street signs.

Applicant's Facts The north-south major collector will be named Crestview Street as that is the name and Findings: of the connection to the north. Other streets in the development are new and will be established with this development.

This standard is met.

N. Platting Standards for Alleys.

1. An alley may be required to be dedicated and constructed to provide adequate access for a development, as deemed necessary by the director.
2. The right-of-way width and paving design for alleys shall be not less than $\mathbf{2 0}$ feet wide. Slope easements shall be dedicated in accordance with specifications adopted by the city council under NMC 15.505.010 et seq.
3. Where two alleys intersect, $\mathbf{1 0}$-foot corner cut-offs shall be provided.
4. Unless otherwise approved by the city engineer where topographical conditions will not reasonably permit, grades shall not exceed 12 percent on alleys, and centerline radii on curves shall be not less than $\mathbf{1 0 0}$ feet.
5. All provisions and requirements with respect to streets identified in this code shall apply to alleys the same in all respects as if the word "street" or "streets" therein appeared as the word "alley" or "alleys" respectively.

Applicant's Facts The alleys included with this proposal are all proposed as private streets owned and Findings: and maintained by the Homeowner's Association.

This standard is met.

O. Platting Standards for Blocks.

1. Purpose. Streets and walkways can provide convenient travel within a neighborhood and can serve to connect people and land uses. Large, uninterrupted blocks can serve as a barrier to travel, especially walking and biking. Large blocks also can divide rather than unite neighborhoods. To promote connected neighborhoods and to shorten travel distances, the following minimum standards for block lengths are established.
2. Maximum Block Length and Perimeter. The maximum length and perimeters of blocks in the zones listed below shall be according to the following table. The review body for a subdivision, partition, conditional use permit, or a Type II design review may require installation of streets or walkways as necessary to meet the standards below.

Zones(s)	Maximum Length\quad Block	Maximum Perimeter
R-1	$\mathbf{8 0 0}$ feet	$\mathbf{2 , 0 0 0}$ feet
R-2, R-3, RP, I	$\mathbf{1 , 2 0 0}$ feet	$\mathbf{3 , 0 0 0}$ feet

3. Exceptions.

a. If a public walkway is installed mid-block, the maximum block length and perimeter may be increased by 25 percent.
b. Where a proposed street divides a block, one of the resulting blocks may exceed the maximum block length and perimeter standards provided the average block length and perimeter of the two resulting blocks do not exceed these standards.
c. Blocks in excess of the above standards are allowed where access controlled streets, street access spacing standards, railroads, steep slopes, wetlands, water bodies, preexisting development, ownership patterns or similar circumstances restrict street and walkway location and design. In these cases, block length and perimeter shall be as small as practical. Where a street cannot be provided because of these circumstances but a public walkway is still feasible, a public walkway shall be provided.
d. Institutional campuses located in an R-1 zone may apply the standards for the institutional zone.
e. Where a block is in more than one zone, the standards of the majority of land in the proposed block shall apply.
f. Where a local street plan, concept master site development plan, or specific plan has been approved for an area, the block standards shall follow those approved in the plan. In approving such a plan, the review body shall follow the block standards listed above to the extent appropriate for the plan area.

Applicant's Facts The proposed development would create several blocks and new blocks however and Findings: the patterns of natural resources present on the site and the existing development surrounding the property make a traditional subdivision with blocks meeting the standards listed above impractical. Instead of a traditional block layout, the applicant has proposed a series of blocks which are porous and interconnected with private streets, walkways, and alleys.

This standard is met.
P. Private Streets. New private streets, as defined in NMC 15.05.030, shall not be created, except as allowed by NMC 15.240.020(L)(2).

Applicant's Facts Private streets are proposed in compliance with NMC 15.240.020(L)(2), as and Findings: addressed previously in this narrative.

This standard is met.
Q. Traffic Calming.

1. The following roadway design features may be required in new street construction where traffic calming needs are anticipated:
a. Serpentine alignment.
b. Curb extensions.
c. Traffic diverters/circles.
d. Raised medians and landscaping.
e. Other methods shown effective through engineering studies.
2. Traffic-calming measures such as speed humps should be applied to mitigate traffic operations and/or safety problems on existing streets. They should not be applied with new street constructions.

Applicant's Facts Traffic calming measures are not proposed as the submitted Transportation and Findings: Impact Analysis demonstrates that the proposed street network is safe and effective.

This standard is met.
R. Vehicular Access Standards.

1. Purpose. The purpose of these standards is to manage vehicle access to maintain traffic flow, safety, roadway capacity, and efficiency. They help to maintain an adequate level of service consistent with the functional classification of the street. Major roadways, including arterials and collectors, serve as the primary system for moving people and goods within and through the city. Access is limited and managed on these roads to promote efficient through movement. Local streets and alleys provide access to individual properties. Access is managed on these roads to maintain safe maneuvering of vehicles in and out of properties and to allow safe through movements. If vehicular access and circulation are not properly designed, these roadways will be unable to accommodate the needs of development and serve their transportation function.
2. Access Spacing Standards. Public street intersection and driveway spacing shall follow the standards in Table 15.505.R below. The Oregon Department of Transportation (ODOT) has jurisdiction of some roadways within the Newberg city limits, and ODOT access standards will apply on those roadways.

Table 15.505.R. Access Spacing Standards

Roadway Functional Classification	Area ${ }^{1}$	Minimum Public Street Intersection Spacing (Feet) ${ }^{2}$				Driveway Setback from
Expressway	All	Refer to Standards	ODOT	Access	Spacing	NA
Major Arterial	Urban CBD	Refer to Standards	ODOT	Access	Spacing	
Minor Arterial	Urban CBD	$\begin{aligned} & \hline 500 \\ & 200 \end{aligned}$				$\begin{aligned} & \hline 150 \\ & 100 \end{aligned}$
Major Collector	All	400				150
Minor Collector	All	300				100

3. Properties with Multiple Frontages. Where a property has frontage on more than one street, access shall be limited to the street with the lesser classification.
4. Driveways. More than one driveway is permitted on a lot accessed from either a minor collector or local street as long as there is at least 40 feet of lot frontage separating each driveway approach. More than one driveway is permitted on a lot accessed from a major collector as long as there is at least 100 feet of lot frontage separating each driveway approach.
5. Alley Access. Where a property has frontage on an alley and the only other frontages are on collector or arterial streets, access shall be taken from the alley only. The review body may allow creation of an alley for access to lots that do not otherwise have frontage on a public street provided all of the following are met:
a. The review body finds that creating a public street frontage is not feasible.
b. The alley access is for no more than six dwellings and no more than six lots.
c. The alley has through access to streets on both ends.
d. One additional parking space over those otherwise required is provided for each dwelling. Where feasible, this shall be provided as a public use parking space adjacent to the alley.
6. Closure of Existing Accesses. Existing accesses that are not used as part of development or redevelopment of a property shall be closed and replaced with curbing, sidewalks, and landscaping, as appropriate.
7. Shared Driveways.
a. The number of driveways onto arterial streets shall be minimized by the use of shared driveways with adjoining lots where feasible. The city shall require shared driveways as a condition of land division or site design review, as applicable, for traffic safety and access management purposes. Where there is an abutting developable property, a shared driveway shall be provided as appropriate. When shared driveways are required, they shall be stubbed to adjacent developable parcels to indicate future extension. "Stub" means that a driveway temporarily ends at the property line, but may be accessed or extended in the future as the adjacent parcel develops. "Developable" means that a parcel is either vacant or it is likely to receive additional development (i.e., due to infill or redevelopment potential).
b. Access easements (i.e., for the benefit of affected properties) and maintenance agreements shall be recorded for all shared driveways, including pathways, at the time of final plat approval or as a condition of site development approval.
c. No more than four lots may access one shared driveway.
d. Shared driveways shall be posted as no parking fire lanes where required by the fire marshal.
e. Where three lots or three dwellings share one driveway, one additional parking space over those otherwise required shall be provided for each dwelling. Where feasible, this shall be provided as a common use parking space adjacent to the driveway.
8. Frontage Streets and Alleys. The review body for a partition, subdivision, or design review may require construction of a frontage street to provide access to properties fronting an arterial or collector street.
9. ODOT or Yamhill County Right-of-Way. Where a property abuts an ODOT or Yamhill County right-of-way, the applicant for any development project shall obtain an access permit from ODOT or Yamhill County.
10. Exceptions. The director may allow exceptions to the access standards above in any of the following circumstances:
a. Where existing and planned future development patterns or physical constraints, such as topography, parcel configuration, and similar conditions, prevent access in accordance with the above standards.
b. Where the proposal is to relocate an existing access for existing development, where the relocated access is closer to conformance with the standards above and does not increase the type or volume of access.
c. Where the proposed access results in safer access, less congestion, a better level of service, and more functional circulation, both on street and on site, than access otherwise allowed under these standards.
11. Where an exception is approved, the access shall be as safe and functional as practical in the particular circumstance. The director may require that the applicant submit a traffic study by a registered engineer to show the proposed access meets these criteria.

Applicant's Facts This application proposes one access on Highway 99W. All other driveway and and Findings: intersection spacing standards are met, as demonstrated on the submitted public improvement plans.

This standard is met.

S. Public Walkways.

1. Projects subject to Type II design review, partition, or subdivision approval may be required to provide public walkways where necessary for public safety and convenience, or where necessary to meet the standards of this code. Public walkways are meant to connect cul-desacs to adjacent areas, to pass through oddly shaped or unusually long blocks, to provide for networks of public paths according to adopted plans, or to provide access to schools, parks or other community destinations or public areas. Where practical, public walkway easements and locations may also be used to accommodate public utilities.
2. Public walkways shall be located within a public access easement that is a minimum of $\mathbf{1 5}$ feet in width.
3. A walk strip, not less than $\mathbf{1 0}$ feet in width, shall be paved in the center of all public walkway easements. Such paving shall conform to specifications in the Newberg public works design and construction standards.
4. Public walkways shall be designed to meet the Americans with Disabilities Act requirements.
5. Public walkways connecting one right-of-way to another shall be designed to provide as short and straight of a route as practical.
6. The developer of the public walkway may be required to provide a homeowners' association or similar entity to maintain the public walkway and associated improvements.
7. Lighting may be required for public walkways in excess of 250 feet in length.
8. The review body may modify these requirements where it finds that topographic, preexisting development, or similar constraints exist.

Applicant's Facts Public walkways are proposed to connect the multi-family resident to Highway and Findings: 99 W , throughout the wetland/natural areas, and connecting from the development to Spring Meadow Park to the west.

This standard is met.
T. Street Trees. Street trees shall be provided for all projects subject to Type II design review, partition, or subdivision. Street trees shall be installed in accordance with the provisions of NMC 15.420.010(B)(4).

Applicant's Facts As indicated on the submitted landscaping plans, street trees are proposed on all and Findings: streets.

This standard is met.
U. Street Lights. All developments shall include underground electric service, light standards, wiring and lamps for street lights according to the specifications and standards of the Newberg public works design and construction standards. The developer shall install all such facilities and make the necessary arrangements with the serving electric utility as approved by the city. Upon the city's acceptance of the public improvements associated with the development, the street lighting system, exclusive of utility-owned service lines, shall be and become property of the city unless otherwise designated by the city through agreement with a private utility.

Applicant's Facts This proposal includes developer-installed underground electric service, light and Findings: standards, wiring and lamps for street lights according to the specifications and standards of the Newberg public works design and construction standards.

This standard is met.
V. Transit Improvements. Development proposals for sites that include or are adjacent to existing or planned transit facilities, as shown in the Newberg transportation system plan or adopted local or regional transit plan, shall be required to provide any of the following, as applicable and required by the review authority:

1. Reasonably direct pedestrian connections between the transit facility and building entrances of the site. For the purpose of this section, "reasonably direct" means a route that does not deviate unnecessarily from a straight line or a route that does not involve a significant amount of out-of-direction travel for users.
2. A transit passenger landing pad accessible to disabled persons.
3. An easement of dedication for a passenger shelter or bench if such facility is in an adopted plan.
4. Lighting at the transit facility.

Applicant's Facts There are no transit facilities within or adjacent to this site and, as such, this and Findings: standard is not applicable.
15.505.040 Public utility standards.
A. Purpose. The purpose of this section is to provide adequate services and facilities appropriate to the scale and type of development.
B. Applicability. This section applies to all development where installation, extension or improvement of water, wastewater, or private utilities is required to serve the development or use of the subject property.
C. General Standards.

1. The design and construction of all improvements within existing and proposed rights-of-way and easements, all improvements to be maintained by the city, and all improvements for which city approval is required shall conform to the Newberg public works design and construction standards and require a public improvements permit.
2. The location, design, installation and maintenance of all utility lines and facilities shall be carried out with minimum feasible disturbances of soil and site. Installation of all proposed public and private utilities shall be coordinated by the developer and be approved by the city to ensure the orderly extension of such utilities within public right-of-way and easements.
D. Standards for Water Improvements. All development that has a need for water service shall install the facilities pursuant to the requirements of the city and all of the following standards. Installation of such facilities shall be coordinated with the extension or improvement of necessary wastewater and stormwater facilities, as applicable.
3. All developments shall be required to be linked to existing water facilities adequately sized to serve their intended area by the construction of water distribution lines, reservoirs and pumping stations which connect to such water service facilities. All necessary easements required for the construction of these facilities shall be obtained by the developer and granted to the city pursuant to the requirements of the city.
4. Specific location, size and capacity of such facilities will be subject to the approval of the director with reference to the applicable water master plan. All water facilities shall conform with city pressure zones and shall be looped where necessary to provide adequate pressure and fire flows during peak demand at every point within the system in the development to which the water facilities will be connected. Installation costs shall remain entirely the developer's responsibility.
5. The design of the water facilities shall take into account provisions for the future extension beyond the development to serve adjacent properties, which, in the judgment of the city, cannot be feasibly served otherwise.
6. Design, construction and material standards shall be as specified by the director for the construction of such public water facilities in the city.
E. Standards for Wastewater Improvements. All development that has a need for wastewater services shall install the facilities pursuant to the requirements of the city and all of the following standards. Installation of such facilities shall be coordinated with the extension or improvement of necessary water services and stormwater facilities, as applicable.
7. All septic tank systems and on-site sewage systems are prohibited. Existing septic systems must be abandoned or removed in accordance with Yamhill County standards.
8. All properties shall be provided with gravity service to the city wastewater system, except for lots that have unique topographic or other natural features that make gravity wastewater extension impractical as determined by the director. Where gravity service is impractical, the developer shall provide all necessary pumps/lift stations and other improvements, as determined by the director.
9. All developments shall be required to be linked to existing wastewater collection facilities adequately sized to serve their intended area by the construction of wastewater lines which connect to existing adequately sized wastewater facilities. All necessary easements required for the construction of these facilities shall be obtained by the developer and granted to the city pursuant to the requirements of the city.
10. Specific location, size and capacity of wastewater facilities will be subject to the approval of the director with reference to the applicable wastewater master plan. All wastewater facilities shall be sized to provide adequate capacity during peak flows from the entire area potentially served by such facilities. Installation costs shall remain entirely the developer's responsibility.
11. Temporary wastewater service facilities, including pumping stations, will be permitted only if the director approves the temporary facilities, and the developer provides for all facilities that are necessary for transition to permanent facilities.
12. The design of the wastewater facilities shall take into account provisions for the future extension beyond the development to serve upstream properties, which, in the judgment of the city, cannot be feasibly served otherwise.
13. Design, construction and material standards shall be as specified by the director for the construction of such wastewater facilities in the city.
F. Easements. Easements for public and private utilities shall be provided as deemed necessary by the city, special districts, and utility companies. Easements for special purpose uses shall be of a width deemed appropriate by the responsible agency. Such easements shall be recorded on easement forms approved by the city and designated on the final plat of all subdivisions and partitions. Minimum required easement width and locations are as provided in the Newberg public works design and construction standards.

Applicant's Facts The development will connect to public utilities, including water and sanitary and Findings: sewer. As demonstrated on the submitted public improvement plans, all public utilities are designed to be constructed to City standards.

This standard is met.
15.505.050 Stormwater system standards.
A. Purpose. The purpose of this section is to provide for the drainage of surface water from all development; to minimize erosion; and to reduce degradation of water quality due to sediments and pollutants in stormwater runoff.
B. Applicability. The provisions of this section apply to all developments subject to site development review or land division review and to the reconstruction or expansion of such developments that increases the flow or changes the point of discharge to the city stormwater system. Additionally, the provisions of this section shall apply to all drainage facilities that impact any public storm drain system, public right-of-way or public easement, including but not limited to off-street parking and loading areas.
C. General Requirement. All stormwater runoff shall be conveyed to a public storm wastewater or natural drainage channel having adequate capacity to carry the flow without overflowing or otherwise causing damage to public and/or private property. The developer shall pay all costs associated with designing and constructing the facilities necessary to meet this requirement.
D. Plan for Stormwater and Erosion Control. No construction of any facilities in a development included in subsection (B) of this section shall be permitted until an engineer registered in the State of Oregon prepares a stormwater report and erosion control plan for the project. This plan shall contain at a minimum:

1. The methods to be used to minimize the amount of runoff, sedimentation, and pollution created from the development both during and after construction.
2. Plans for the construction of stormwater facilities and any other facilities that depict line sizes, profiles, construction specifications, and other such information as is necessary for the city to review the adequacy of the stormwater plans.
3. Design calculations shall be submitted for all drainage facilities. These drainage calculations shall be included in the stormwater report and shall be stamped by a licensed professional engineer in the State of Oregon. Peak design discharges shall be computed based upon the design criteria outlined in the public works design and construction standards for the city.
E. Development Standards. Development subject to this section shall be planned, designed, constructed, and maintained in compliance with the Newberg public works design and construction standards.

$$
\begin{array}{ll}
\text { Applicant's Facts } & \text { The submitted public improvement plans include details of the proposed } \\
\text { and Findings: } & \begin{array}{l}
\text { stormwater detention and treatment plan. The stormwater detention and } \\
\text { treatment plan is designed to meet City standards and to preclude stormwater } \\
\\
\\
\text { drainage on surrounding properties. }
\end{array}
\end{array}
$$

This standard is met.

SUMMARY AND CONCLUSION

Based upon the materials submitted herein, the Applicant respectfully requests approval from the City's Planning Commission of this application for a Planned Unit Development and a Conditional Use Permit.

Pre-application meeting notes: Crestview Crossing - 3/14/18

Planning comments:

Zoning and allowed uses: The site is in the $\mathrm{C}-2, \mathrm{R}-2$ and $\mathrm{R}-1$ zones.

Corps of Engineers/Department of State Lands:

Discussions with the Corps and DSL continue on the wetland mitigation program. The stream channel is proposed to be retained across the site.

Process:

Application type: Type III Preliminary PUD and a CUP for housing in the C-2 zone.
Timing: Typically 4-6 weeks after the application is deemed complete for a Planning Commission hearing. Two week appeal period following Planning Commission decision. If appealed then it would go to the City Council.
Public notice requirements: Mailed notice to properties within 500 feet, sign posted on frontage.

1. Please describe the city's plans and funding opportunities for the construction of the new connection between Highway 99 and existing section of Crestview.

Regional Solutions Grant: The City received a \$740,000 grant for Crestview Drive improvements that will cover the roadway from the County line west towards Springbrook Road. JT Smith Companies will be responsible to construct Crestview Drive from Highway 99W north to the County line where Crestview Drive is located. The City will go from the County Line west as far as it can go with the $\$ 740,000$ grant and \#1.1M in SDC funds. Springbrook Properties will construct from the location the City stops out to Springbrook Road. The roadway is a Major Collector with a travel lane in each direction, center turn lane, bike lanes, planer strip and sidewalks. The City will not be contributing grant funds to the portion of Crestview Drive that is the responsibility of JT Smith Companies to construct. If the City loses the grant funds then JT Smith Companies may have to pave at minimum a two lane asphalt surface in Crestview Drive that cover the gravel road portion based on trip distribution from the traffic analysis.
2. Please confirm the extent to which any frontage improvements will be required along Highway 99.

ODOT:
Frontage improvements along OR99W will need to be coordinated with the Oregon Department of Transportation (ODOT) in coordination with the City of Newberg. A separate meeting will need to be scheduled with ODOT on any requirements for Highway 99W improvements. Diego Arguea will contact Jerry Juster at ODOT to set up a meeting that City staff will attend.

Access Permit: An access permit from ODOT is required for connection o Crestview Drive to Highway 99W. JT Smith Companies will prepare the required permit application and the City will submit the permit application to ODOT. JT Smith Companies will be responsible for any ODOT fees for the permit application.

Commercial Access to Highway 99W: That will need to be discussed with ODOT. Prior meetings with ODOT indicated that Highway 99W would function as an on/off ramp to the Bypass and access from an on/off ramp is not permitted. The on/off ramp terminates at the Providence Drive/Crestview Drive intersection with Highway 99W.
3. Please comment upon whether the city has any interest in taking ownership of any open spaces within the plan.

The City is not interested in owning any park or open space in the development. The City suggested JT Smith Companies contact the Chehalem Park and Recreation District to see if they would be interested. City to provide contacts for Don Clements and Jim McMaster to JT Smith Companies representatives. Don Clements, Superintendent, dclements@cprdnewberg.org; Jim McMaster, Parks \& Facilities Supervisor, jmcmaster@cprdnewberg.org
4. Please confirm the applicable approval criteria for the PD and CUP applications.

Staff distributed the PUD and Conditional Use requirements.

5. Please provide comments on the site's layout, density, and overall road configuration.

The site layout was discussed and appears appropriate based on prior versions of the conceptual site layout. The proposal identifies some apartment uses that respond to prior comments to include some multi-family housing to address local housing advocate concerns and issues.

A distinction needs to be made between public and private streets, perhaps some type of gateway treatment.

The west leg of the roundabout including the splitter island needs to be part of the public street system, and then transition to a private street west of the roundabout.

There will be concern from planning commission about parking, be prepared to discuss parking needs/capacity.

For the road configuration it was suggested to talk with property owners to the east to make sure they are aware of the roadway layout and to determine if they have any concerns on the location of the stub streets.

The traffic circle on the west side will need a demarcation of surface type between a public street and private street. A driveway apron should be considered at the connection point with the north/south private street. JT Smith Companies will propose a round-a-bout design and the City will review TVF\&R wants to be able to see through the round-a-bout, us low landscaping.

A driveway apron will necessary to make the transition from the public street to private street for the east/west transportation system at the northwest corner of the site.
6. Please provide the City's right-of-way sections for all proposed roads.

See attached.
7. Are there addition plans required for land use approval that are not listed on the provided check list for a planned unit development? Will any architectural plans be required?

A PUD and CUP are required for development. Architectural plan are a requirement as part of the PUD. City is receptive to have as part of the submittal a pallet of building material to be used that can be mixed and matched on the proposed residential buildings, identify the scale and massing of the building will be important.

The commercial lot will be viewed as a vacant lot in the PUD. City is receptive to doing a separate Design Review on the commercial area at a later date when development is proposed.
8. The City currently requires a $\mathbf{1 0}^{\prime}$ PUE along the front of each lot within a subdivision. Can the $\mathbf{1 0}^{\prime}$ PUE requirement be reduced? What would be the City's preference for PUE placement for lots without frontage on a public street?

The City requires a 10' PUE. The City would be open to consider the applicant's proposal for PUE placement for lots without frontage on public streets. However the PUE alignment needs to be kept separate from the water, sewer, storm, and non-potable water alignments i.e. no overlapping of public vs. private utilities. The street alignment of public utilities needs to follow Standard Detail 103. Private utilities would also need to be included in the discussion (and consent to the PUE location) if the proposal includes placing private utilities in paved areas.
9. Does the City have preferred dimensions for the proposed roundabout?

Follow FHWA guidance for roundabout layout and design.
10. Can PUE's be located within alleyways?

The City is open to a proposal from the applicant, however public vs. private utilities must be kept in separate alignments.
11. Please provide a copy of the City's current Sewer Master Plan.

The City's current Sewer Master Plan is in the process of being updated. The March 2018 draft document can be found here:
https://www.newbergoregon.gov/engineering/page/wastewater-master-plan-ad-hoc-advisory-committee-1
12. The storm system design currently requires CG-48 structures with a maximum depth of 72inches. Please confirm the City's preferred design for the storm system in areas that reach depths greater than 72-inches.

The standard detail for this design is currently being revised.
13. Please confirm where the proposed development will be required to connect to the Recycled Water Use system. If so, please provide guidance on the design, location, depth and sizing for the proposed utility.

The development will be required to connect to non-potable water. Additional information about sizing for the non-potable water line can be found in the Water Master Plan. Further review and discussion will be needed to confirm design guidance for the non-potable system.
14. Does the city allow AWWA C900/C905 PVC to be used for water mains?

The City only allows ductile iron for public water mains, see Public Works Design and Construction Standards (PWDCS), Section 3.2 Pipe Materials and Size.
15. What values with the City of Newberg like to use for Occupants/Dwellings, Gallons/Occupant Contingency Factor, and Peaking Factor when calculation the Peak Design flow for the site?

See Sewer Master Plan.
16. Will the City allow mechanical stormwater treatment and what systems are currently approved for use?

Mechanical stormwater treatment is allowed for private facilities only. See the Public Works Design and Construction Standards for hierarchy of treatment solutions. Provide justification as to why mechanical treatment is used over preferred treatment solutions in the hierarchy.

Tualatin Valley Fire \& Rescue

June 5, 2018

Aaron Murphy
Senior Project Manager
3J Consulting, Inc.
5075 SW Griffith Dr. Suite 150
Beaverton, OR 97005
Re: Crestview Crossing
Tax Lot I.D: 3216AC 13800 \& 132161100

Aaron,
Thank you for the opportunity to review the proposed application surrounding the Crestview Crossing Subdivision. These notes are provided in regards to our meeting held on May 17, 2018 and the site plan published May 14, 2018. There may be more or less requirements needed based upon the final project design, however, Tualatin Valley Fire \& Rescue will endorse this proposal predicated on the following criteria and conditions of approval.

FIRE APPARATUS ACCESS:

1. FIRE APPARATUS ACCESS ROAD DISTANCE FROM BUILDINGS AND FACILITIES: Access roads shall be within 150 feet of all portions of the exterior wall of the first story of the building as measured by an approved route around the exterior of the building or facility. An approved turnaround is required if the remaining distance to an approved intersecting roadway, as measured along the fire apparatus access road, is greater than 150 feet. (OFC 503.1.1)
2. DEAD END ROADS AND TURNAROUNDS: Dead end fire apparatus access roads in excess of 150 feet in length shall be provided with an approved turnaround. Diagrams can be found in the corresponding guide that is located at http://www.tvfr.com/DocumentCenter/View/1296. (OFC 503.2.5 \& D103.1)
3. FIRE APPARATUS ACCESS ROAD WIDTH AND VERTICAL CLEARANCE: Fire apparatus access roads shall have an unobstructed driving surface width of not less than 20 feet (26 feet adjacent to fire hydrants (OFC D103.1)) and an unobstructed vertical clearance of not less than 13 feet 6 inches. (OFC 503.2.1 \& D103.1)
4. FIRE APPARATUS ACCESS ROADS WITH FIRE HYDRANTS: Where a fire hydrant is located on a fire apparatus access road, the minimum road width shall be 26 feet and shall extend 20 feet before and after the point of the hydrant. (OFC D103.1)
5. NO PARKING SIGNS: Where fire apparatus roadways are not of sufficient width to accommodate parked vehicles and 20 feet of unobstructed driving surface, "No Parking" signs shall be installed on one or both sides of the roadway and in turnarounds as needed. Signs shall read "NO PARKING - FIRE LANE" and shall be installed with a clear space above grade level of 7 feet. Signs shall be 12 inches wide by 18 inches high and shall have red letters on a white reflective background. (OFC D103.6)
6. NO PARKING: Parking on emergency access roads shall be as follows (OFC D103.6.1-2):
[^1]South Operating Center
8445 SW Elligsen Road
Wilsonville, Oregon
97070-9641
503-259-1500

Training Center
12400 SW Tonquin Road
Sherwood, Oregon
97140-9734
503-259-1600

1. 20-26 feet road width - no parking on either side of roadway
2. 26-32 feet road width - parking is allowed on one side
3. Greater than 32 feet road width - parking is not restricted

Note: For specific widths and parking allowances, contact the local municipality.
7. SURFACE AND LOAD CAPACITIES: Fire apparatus access roads shall be of an all-weather surface that is easily distinguishable from the surrounding area and is capable of supporting not less than 12,500 pounds point load (wheel load) and 75,000 pounds live load (gross vehicle weight). Documentation from a registered engineer that the final construction is in accordance with approved plans or the requirements of the Fire Code may be requested. (OFC 503.2.3)
8. TURNING RADIUS: The inside turning radius and outside turning radius shall not be less than 28 feet and 48 feet respectively, measured from the same center point. (OFC 503.2.4 \& D103.3)
9. ANGLE OF APPROACH/GRADE FOR TURNAROUNDS: Turnarounds shall be as flat as possible and have a maximum of 5% grade with the exception of crowning for water run-off. (OFC 503.2.7 \& D103.2)
10. ANGLE OF APPROACH/GRADE FOR INTERSECTIONS: Intersections shall be level (maximum 5\%) with the exception of crowning for water run-off. (OFC 503.2.7 \& D103.2)
11. ACCESS DURING CONSTRUCTION: Approved fire apparatus access roadways shall be installed and operational prior to any combustible construction or storage of combustible materials on the site. Temporary address signage shall also be provided during construction. (OFC 3309 and 3310.1)
12. TRAFFIC CALMING DEVICES: Shall be prohibited on fire access routes unless approved by the Fire Marshal. (OFC 503.4.1). Traffic calming measures linked here: http://www.tvfr.com/DocumentCenter/View/1578

FIREFIGHTING WATER SUPPLIES:

13. FIREFIGHTING WATER SUPPLY FOR INDIVIDUAL ONE- AND TWO-FAMILY DWELLINGS: The minimum available fire flow for one and two-family dwellings served by a municipal water supply shall be 1,000 gallons per minute. If the structure(s) is (are) 3,600 square feet or larger, the required fire flow shall be determined according to OFC Appendix B. (OFC B105.2)
14. FIRE FLOW WATER AVAILABILITY: Applicants shall provide documentation of a fire hydrant flow test or flow test modeling of water availability from the local water purveyor if the project includes a new structure or increase in the floor area of an existing structure. Tests shall be conducted from a fire hydrant within 400 feet for commercial projects, or 600 feet for residential development. Flow tests will be accepted if they were performed within 5 years as long as no adverse modifications have been made to the supply system. Water availability information may not be required to be submitted for every project. (OFC Appendix
15. FIRE HYDRANT DISTANCE FROM AN ACCESS ROAD: Fire hydrants shall be located not more than 15 feet from an approved fire apparatus access roadway unless approved by the Fire Marshal. (OFC C102.1)
16. PREMISES IDENTIFICATION: New and existing buildings shall have approved address numbers; building numbers or approved building identification placed in a position that is plainly legible and visible from the street or road fronting the property, including monument signs. These numbers shall contrast with their background. Numbers shall be a minimum of 4 inches high with a minimum stroke width of $1 / 2$ inch. (OFC 505.1)

If you have questions or need further clarification, please feel free to contact me at 503-259-1510.
Sincerely,

Gason Ann

Jason Arn Deputy Fire Marshal II

Email Jason.arn@tvfr.com

Cc: File

A full copy of the New Construction Fire Code Applications Guide for Residential Development is available at http://www.tvfr.com/DocumentCenter/View/1438
17. Will the City allow underground stormwater detention and what systems are currently approved for use?

Private underground stormwater detention facilities are allowed, the City does not have a pre-qualified list of approved materials.

3J CONSULTING

5075 SW GRIFFITH DRIVE, SUITE 150
BEAVERTON, OREGON 97005
PH: (503) 946.9365
April 25, 2018
WWW.3J-CONSULTING.COM

CRESTVIEW CROSSING

NOTICE OF NEIGHBORHOOD MEETING

Dear Resident or Property Owner:

3J Consulting, Inc. acts on behalf of JT Smith Companies regarding a new planned residential and commercial community located at the intersection of Highway 99 and Crestview Drive - 4505 Portland Road. This property can be legally identified as taxlots 3216 ac lot 13800 and 3216 lot 1100.

JT Smith Companies is proposing to bring forward a new design for a residential subdivision, small apartment complex, and a small commercial pad for future commercial and retail development. JT Smith is also proposing to extend Crestview Drive through the site to the Highway. Before submitting applications to the Newberg Planning Department, we would like to take the opportunity to discuss the proposal in more detail with our neighbors.

A meeting to discuss this project has been scheduled for:

Monday, May 14, 2018 6:00PM-7:00PM
Tualatin Valley Fire Station 21
3100 Middlebrook Drive Newberg, Oregon

The purpose of this meeting is to provide a forum for surrounding property owners/residents to review the proposal and to identify issues so they can be considered before the formal application is submitted. This meeting gives you the opportunity to share with me any special information you know about the property involved. We will try to answer questions related to how the project meeting relevant development standards consistent with Newberg's land use regulations.

Please note that this will be an informational meeting on preliminary development plans. These plans may change slightly before the application is submitted to the City. Depending upon the type of application, you may receive an official notice from the City of Newberg of your opportunity to participate either by submitted written comments, and/or by attending a public hearing.

We look forward to discussing this proposal with you. Please feel free to contact us at (503) 946-9365 or andrew.tull@3j-consulting.com if you have questions.

Sincerely,

Andrew Tull
Principal Planner
3J Consulting, Inc.

VICINITY MAP

3J CONSULTING CRESTVIEW CROSSING

PH: (503) 946.9365 LAND DIVISION

JJ CONSULTING

3J CONSULTING

NEIGHBORHOOD MEETING CRESTVIEW CROSSING LAND DIVISION MAY 14, 2018

5075 SW GRIFFITH DRIVE, SUITE 150 BEAVERTON, OREGON 97005

PH: (503) 946.9365
Www.3J-CONSULTING.COM

PRELIMINARY STORMWATER MANAGEMENT PLAN

CRESTVIEW CROSSING
 NEWBERG, OR

June 6, 2018

Prepared For:
JT Smith Companies
5285 Meadows Road
Lake Oswego, OR 97035

SLOPES V: Stormwater, Transportation and Utilities (NMFS\# NWR-2013-10411)

Stormwater Information Form

If you are submitting a project that includes a stormwater plan for review under SLOPES: Stormwater, Transportation and Utilities please fill out the following cover sheet to be included with stormwater management plan, and any other supporting materials.

Also include a drawing of the stormwater treatment area including drainage areas, direction of flow, BMP locations/types, contributing areas, other drainage features, receiving water/location, etc.

9.	Have you treated all stormwater to the design storm within the contributing impervious area? No If no, why not and how will you offset the effects from remaining stormwater?
	Water Quality
10.	Low Impact Development methods incorporated? (Yes) No (e.g. site layout, vegetation and soil protection, reforestation, integrated management practices such as amended soils, bioretention, permeable pavement, rainwater collection, tree retention) Please describe: Impervious areas from the entire development (except the multi-family residential) including, sidewalks and roads will be treated in vegetated facilities. Impervious area from the multi-family residential area will not be treated with vegetated facilities due to grading constraints. This area will be treated with an underground mechanical facility. How much of total stormwater is treated using LID: 94\%
11.	Treatment train, including pretreatment and bioretention methods used to treat water quality: All runoff will be conveyed to trapped catch basins followed by sumped water quality manholes to remove coarse sediment. The manholes will convey the pretreated stormwater to vegetated swales which will provide filtration through the length of each swale. Why this treatment train was chosen for the project site: The treatment train was incorporated into the project site to work with the existing topography and drainage channel within the property. Page in stormwater plan where more details can be found: Beginning on Page 10 of 25
	Water Quantity
12.	Does the project discharge directly into a major water body (see PDC 36.c.iii)? Yes No
13.	Pre-development runoff rate Post-development runoff rate (i.e., before human-induced changes to the unimproved property) (i.e., after proposed developments) $2-y r, 24$-hour storm: 1.72 cfs $2-y r, 24-$ hour storm: 0.86 cfs 10 -yr storm: 5.27 cfs 10-yr storm: 5.27 cfs
	Post-development runoff rate must be less than or equal to pre-development runoff rate
14.	Methods used to treat water quantity: Detention ponds and underground detention facilities will be constructed to detain post-developed runoff. Baseflows from the upstream area will continue to flow through the drainage channel. Page in stormwater plan where more details can be found: Beginning on Page 12 of 25
	Maintenance and Inspection Plan
15.	Have you included a stormwater maintenance plan with a description of the onsite stormwater system, inspection schedule and process, maintenance activities, legal and financial responsibility, and inspection and maintenance logs? No* *Projects cannot be submitted for review under SLOPES without a maintenance and inspection plan. Page in stormwater plan where plan can be found: Page 15 of 25 and the Preliminary O\&M Plan

Contact information for the party/parties that will be legally responsible for performing the inspections and maintenance or the stormwater facilities:

Name: Jesse Nemec
Phone number: 503-730-8620
Email: jnemec@jtsmithco.com

Name: \qquad
Phone number:
Email: \qquad
16.

Name: \qquad
Phone number:
Email: \qquad
Name: \qquad
Phone number: \qquad
Email: \qquad

Page in stormwater plan where more details can be found: Page 15 of 25 and the Preliminary O\&M Plan

TABLE OF CONTENTS

EXECUTIVESUMMARY 2
PROJECT DESCRIPTION 4
EXISTING CONDITIONS 5
Site 5
Flood Map 5
Site Geology 5
Geotechnical Report 6
Existing Site Storm 6
Existing Offsite Storm 6
Predeveloped Basin Areas 6
POST-DEVELOPED CONDITIONS 7
Site7
Post-Developed Basin Areas 7
Offsite Basin West Area 8
HYDROLOGIC ANALYSIS DESIGN GUIDELINES 8
Design Guidelines 8
Hydrograph Method 8
Design Storm 9
RUNOFF PARAMETERS 9
Curve Number 9
Time of Concentration 9
Basin Runoff 10
HYDRAULIC ANALYSIS AND DESIGN CHARACTERISTICS.. 1 11
System Characteristics 11
WATER QUALITY 11
Water Quality Guidelines 11
Water Quality Facilities 12
WATER QUANTITY 13
Water Quantity Guidelines 13
Water Quantity Facilities 14
DOWNSTREAM ANALYSIS 15
OPERATIONS \& MAINTENANCE 16
SUMMARY 16
TECHNICAL APPENDIX A
REFERENCES A
LIST OF FIGURES
Figure 1 - Vicinity Map 4
Figure 2 - Site Location 5
LIST OF TABLES
Table 1 - Soil Characteristics 5
Table 2 - Predeveloped Onsite Basin Areas 6
Table 3 - Post-Developed Onsite Basin Area 8
Table 4 - Design Storms 9
Table 5 - Existing Time of Concentration 9
Table 6 - Predeveloped Basin Runoff Rates 10
Table 7 - Post-Developed Basin Runoff Rates 10
Table 8 - Offsite Basin West Runoff Rates 10
Table 9 - Basins 1-3 Water Quality Runoff Rates 12
Table 10 - Proposed Water Quality Swales 12
Table 11 - BayFilter Cartridge Calculation 13
Table 12 - Water Quality Volume. 13
Table 13 -Allowable Release Rates 15

I hereby certify that this Preliminary Stormwater Management Plan for Crestview Crossing has been prepared by me or under my supervision and meets minimum standards of the City of Newberg, Oregon Department of Transportation, SLOPES V and normal standards of engineering practice. I hereby acknowledge and agree that the jurisdiction does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities designed by me.

EXECUTIVESUMMARY

The proposed project is located along OR 99W between Vittoria Way and NE Benjamin Rd in the City of Newberg, OR. The property consists of two tax lots (3216AC 13800 \& 1100). The total area of the two tax lots is 33.11 acres containing a private residence and several outbuildings. The rest of the property is used for farming and is undeveloped. All existing structures and the driveway will be demolished for the proposed development. A commercial development consisting of 4.40 acres will be developed by others and is not included in this project.

The proposed project will consist of subdividing the property into 248 single-family residential lots, a two-building apartment complex with clubhouse and new roads and sidewalks. A commercial development will be constructed by others and will not contribute stormwater to any of the proposed stormwater facilities discussed in this report. The existing intermittent stream running through the site will remain in place providing conveyance for upstream flows, as well as onsite stormwater discharge points.

Due to the need of filling wetland on the site, stormwater facilities have been designed to comply with the Standard Local Operating Procedures for Endangered Species (SLOPES V) by the U.S. Army Corps of Engineers (ACOE 2014). The treatment and detention requirements are as follows:

- Treat the volume of water equal to 50% of the cumulative rainfall from the 2 -year, 24 -hour storm event using a continuous rainfall/runoff (flow duration) model, equating to 1.25 inches of precipitation over 24 hours. Flow duration matching requires a continuous simulation hydrologic model; this has not been adopted by the City of Newberg or Yamhill County. Therefore, the stormwater modeling will use an event based peak flow matching method (Santa Barbara Urban Hydrograph).
- Capture and detain the 2-year, 24 -hour post developed runoff rate to $1 / 2$ of the 2 -year, 24 -hour predeveloped discharge rate.
- Capture and detain the 10 -year, 24 -hour post developed runoff to the 10 -year, 24 -hour predeveloped discharge rate.

In addition to the SLOPES V requirements, the City of Newberg requires the 25 -year post-developed runoff rate to match the 25-year predeveloped runoff rate. Also, since runoff enters a culvert crossing Highway 99W (Oregon Department of Transportation jurisdiction), the 50-year post-developed runoff rate is required to match the 50-year predeveloped runoff rate.

The project will discharge to the existing intermittent stream which is a tributary to Spring Brook and the Willamette River (Middle Willamette Basin). Spring Brook and the Willamette River are listed as a water quality limited streams for E. Coli. Typical pollutants from single-family residential projects include: nutrients, pesticides, metals, oil, grease, and other petroleum products, and sediment. Dissolved copper, dissolved zinc, and PAHs are typically the primary constituents of concern for stormwater in Oregon streams for their impact on ESA listed species.

Water quality treatment will occur through trapped catch basins, sedimentation water quality manholes, stormwater vegetated swales and rain gardens and an underground mechanical treatment facility.

Lots 8-248 will be treated in vegetated swales. The vegetated swales will be located in the bottom of each detention pond. Swales provide treatment through vegetation. Clean Water Services Design and Construction Standards will be utilized to design vegetated swales.

Water quality treatment and detention for lots 1-7 in the northern portion of the site will be provided on each lot. Treatment will be designed following Clean Water Services Low Impact Design Approach (LIDA) handbook and will consist of rain gardens or LIDA swales; treatment facilities will release to an underground detention system located on each lot designed to detain all storm events previously discussed.

Water quality treatment for the proposed multi-family apartment complex will be treated using an underground BaySaver BayFilter vault, which is an approved mechanical treatment approach approved by Clean Water Services.

The project site has been delineated into five sub-basins (sub-basin 5 consists off lots 1-7). The calculated peak water quality flow from the disturbed portion of the site, including ODOT Highway 99 W of impervious area is 4.57 cfs with approximately $158,068 \mathrm{ft}^{3}$ runoff volume. Water quantity control will occur with detention ponds and underground detention.

Stormwater conveyance will be designed in the final design phase of the development.
The proposed development will meet the requirements of the City of Newberg and ODOT as well as conform to Standard Local Operating Procedures for Endangered Species (SLOPES V) as part of the wetland fill permit with the Army Corp of Engineers.

PROJECT DESCRIPTION

The proposed project will consist of subdividing the property into 248 single-family residential lots, a two-building apartment complex with clubhouse and new roads and sidewalks. A commercial development will be constructed by others and will not contribute stormwater to any of the proposed stormwater facilities discussed in this report. The existing intermittent stream running through the site will remain in place providing conveyance for upstream flows, as well as onsite stormwater discharge points.

Figure 1 - Vicinity Map

Figure 2 - Site Location

EXISTING CONDITIONS

Site

The existing site contains a private residence, driveway and outbuildings. All existing structures will be demolished for the proposed development.

Flood Map

The site is located within Zone X (un-shaded) per flood insurance rate map (FIRM) community-panel number 41071C 0241D (See Technical Appendix: Exhibits - FIRM: 41071C 0241D). FEMA's definition of Zone X (un-shaded) is an area of minimal flood risk outside the 0.2% annual chance floodplain.

Site Geology

The soil types as classified by the United States Department of Agriculture Soil Survey of Washington County are identified in Table 1 (See Technical Appendix: Exhibits - Hydrologic Soil Group-Yamhill County, Oregon). Soils hydrologically categorized as C/D have been classified as D soils for this analysis.

Soil Type	Hydrologic Group	Percent of Site
Amity Silt Loam	C/D	51.4%
Woodburn Silt Loam	C	48.6%

Table 1 - Soil Characteristics

Geotechnical Report

A geotechnical investigation by GeoEngineers has been included in the Technical Appendix. Infiltration testing was conducted in two locations at depths 2 and 3 feet below ground surface. The field infiltration rates were 0.1 and $0.0 \mathrm{in} / \mathrm{hr}$, respectively. Therefore, GeoEngineers do not recommend stormwater infiltrating facilities.

Existing Site Storm

Runoff from the site generally sheet flows to the intermittent stream that flows from the northwest corner of the site to the south. A 24-inch culvert carries the runoff underneath OR 99W to a ditch that discharges to Spring Brook.

Existing Offsite Storm

Offsite basins discharge into the intermittent stream at three locations (See Technical Appendix: Exhibits - City of Newberg Public Utility Map).

Offsite Basin West drains towards the onsite property from the west (See Technical Appendix: Exhibits - Predeveloped Basin Delineation). The basin includes fourteen lots, roadway and sidewalks and Spring Meadow Park. Stormwater is discharged into an existing wetland onto the onsite property via an 8 -inch clay pipe. The wetland eventually drains to the intermittent stream.

Offsite Basin North conveys stormwater via a 15-inch pipe and discharges directly into the intermittent stream (See Technical Appendix: Exhibits - Offsite Basin North).

Offsite Basin Northwest on the northwest side of the property conveys stormwater via a 36-inch pipe and discharges directly into the intermittent stream (See Technical Appendix: Exhibits - Offsite Basin Northwest).

Predeveloped Basin Areas

Table 2 shows the basin areas for the property (See Technical Appendix: Exhibits - Predeveloped Basin Delineation). Predeveloped conditions have been used for analysis to determine runoff rates, therefore, it is assumed the property and area captured from ODOT Highway 99W is 100 percent pervious.

Basin	C Soils (CN=70), Acres	D Soils (CN=77), Acres
Basin 1	6.081	2.077
Basin 2	3.867	7.028
Basin 3	14.324	3.460
Basin 4	1.227	0.567
Basin 5	0.314	1.053
Total Predeveloped Area	15.813	14.184

${ }^{1}$ Includes 2.988 acres from ODOT Right-of-Way
Table 2 - Predeveloped Onsite Basin Areas

Approximately 1.701 acres will remain unchanged and consists of the intermittent stream, adjacent wetlands and construction buffer areas. Additionally, 4.40 acres will be developed by others and is not part of this development.

POST-DEVELOPEDCONDITIONS

Site

The existing intermittent stream with adjacent wetlands running through the site will remain in place and undisturbed to convey upstream flows and provide discharge points for the proposed stormwater management systems.

Water quality treatment will occur through trapped catch basins, sedimentation water quality manholes, stormwater vegetated swales and rain gardens and an underground mechanical treatment facility.

The vegetated swales will be located in the bottom of each detention pond. Swales provide treatment through vegetation. Clean Water Services Design and Construction Standards will be utilized to design vegetated swales.

Water quality treatment and detention for lots 1-7 in the northern portion of the site will be provided on each lot. Treatment will be designed following Clean Water Services Low Impact Design Approach (LIDA) handbook and will consist of rain gardens or LIDA swales; treatment facilities will release to an underground detention system located on each lot designed to detain all storm events previously discussed.

The existing 8-inch clay pipe in Offsite Basin West will be connected to the proposed onsite storm system conveying it to the Basin 2 pond. The flow control structure will sized to release the to the required predeveloped flows plus the runoff from Offsite Basin West.

Final conveyance sizing of the pipes will be provided in the final stormwater management plan.

Post-Developed Basin Areas

Table 3 shows the proposed impervious and pervious areas for each sub-basin (See Technical Appendix: Exhibits - Post-Developed Area Delineation). Per City of Newberg Design Standards, when the average lot size is less than $3,000 \mathrm{ft}^{2}$, the actual impervious area can be used. The average lot size for lots $19-248$ is $1,618 \mathrm{ft}^{2}$. Lots $1-18$, the average lot size exceeds $3,000 \mathrm{ft}^{2}$; therefore, the actual impervious area for lots 19-248 was used and 2,877 ft^{2} was used for lots 1-18.

Post-Developed Basin	C Soils (CN=74), Acres	D Soils (CN=80), Acres	Impervious Area (CN=98), Acres
1	3.090	0.919	4.149
2	1.789	3.330	5.777
3	1.062	1.231	5.489
4	0.387	0.209	1.199
5	0.189	0.715	0.462
Total Post-Developed Area	6.517	6.405	17.076

Table 3 - Post-Developed Onsite Basin Area

Of the disturbed portions of the property, including the ODOT Highway 99W, the proposed impervious area will be 56% of the total disturbed area. According to Figure 2-5 Future Conditions Land Use of the City's Stormwater Master Plan Update, dated June 2014, the property is zoned Commercial (85\% impervious) and Medium Density (60\%) impervious (See Technical Appendix: Exhibits - Figure 2-5 Future Conditions Land Use).

Offsite Basin West Area

Offsite Basin West has a total area of approximately 7.156 acres. Fourteen single family residences contribute runoff to the 8 -inch clay pipe with an average lot size greater than $3,000 \mathrm{ft}^{2}$; therefore, it was assumed that each lot has an impervious area of $2,877 \mathrm{ft}^{2}$. The total impervious and pervious area for the basin is approximately 1.761 acres 5.395 acres, respectively. Runoff rates were calculated for this basin since stormwater will be conveyed through the onsite system and drain to pond 2.

Offsite Basins North and Northwest

Runoff from these two basins will be conveyed directly to the intermittent stream in one storm line. The storm line will enter the stream on the north end of site and will not enter any of the stormwater detention facilities.

HYDROLOGIC ANALYSIS DESIGNGUIDELINES

Design Guidelines

The site is located within the jurisdiction of the City of Newberg. The hydrology and hydraulics modeling will follow the requirements of the City of Newberg's Design Standards, SLOPES V and ODOT.

Hydrograph Method

The Santa Barbara Urban Hydrograph (SBUH) method was used to develop runoff rates since the City and County do not have a continuous simulation model. The computer software XPSTORM was used in modeling the hydrology during the predeveloped and post-developed storm events to determine the required water quality treatment flows and detention volumes.

Design Storm

The rainfall distribution to be used for this area is the design storm of 24-hour duration based on the standard Type 1A rainfall distribution. Table 4 shows total precipitation depths for the storm events used in the analysis, which were used as multipliers for the Type 1A 24-hour rainfall distribution.

Recurrence Interval (Years)	Total Precipitation Depth (inches)
WQ	1.25
2	2.50
10	3.50
25	4.00
50	4.20

Table 4 - Design Storms

RUNOFF PARAMETERS

Curve Number

The major factors for determining the CN values are hydrologic soil group, cover type, treatment, hydrologic condition, and antecedent runoff condition. The curve number represents runoff potential from the ground. Table 2-2a and 2-2c from the TR55 Urban Hydrology for Small Watersheds were used to determine the appropriate curve numbers (See Technical Appendix: Exhibits - Table 2-2a and 2-2c Runoff Curve Numbers).

The predeveloped site was given a curve number of 70 for C soils and 77 for D soils, which corresponds to woods in good condition. The post-developed site and Offsite Basin West was given a curve number of 74 for C soils and 80 for D soils, which corresponds to open space in good condition. All impervious surface was given a curve number of 98 .

Time of Concentration

The time of concentration for each sub-basin was calculated using the TR-55 Method and the existing contours. See Table 5 for the time of concentration calculated for each sub-basin (See Technical Appendix: Calculations - Time of Concentration). A time of concentration for lots 1-18 (predeveloped and post), ODOT Highway 99W predeveloped and the post-developed conditions were assumed to be 5 minutes.

Post-Developed Onsite Basin Area	Time of Concentration (minutes)
1	22
2	24
3	24
4	25

Table 5 - Existing Time of Concentration

Basin Runoff

The predeveloped runoff rates for each basin are shown in Table 6 (See Technical Appendix: Hydrographs).

Basin	2-YR Runoff Rate (cfs)	10-YR Runoff Rate (cfs)	25-YR Runoff Rate (cfs)	50-YR Runoff Rate (cfs)
1	0.34	1.20	1.75	1.98
2	0.71	2.00	2.78	3.11
3	0.44	1.43	2.02	2.27
4	0.08	0.26	0.38	0.43
5	0.15	0.38	0.51	0.56
Total Preveveloped Runoff	$\mathbf{1 . 7 2}$	$\mathbf{5 . 2 7}$	$\mathbf{7 . 4 4}$	$\mathbf{8 . 3 5}$

Table 6 - Predeveloped Basin Runoff Rates
Table 7 below shows the post-developed peak runoff rates (without flow control mitigation).

Basin	2-YR Runoff Rate (cfs)	10-YR Runoff Rate (cfs)	25-YR Runoff Rate (cfs)	50-YR Runoff Rate (cfs)
1	2.78	4.46	5.35	5.71
2	4.03	6.37	7.59	8.09
3	3.45	5.19	6.09	6.45
4	0.76	1.15	1.35	1.44
5	0.40	0.68	0.84	0.90
Total Post- Developed Runoff	$\mathbf{1 1 . 4 2}$	$\mathbf{1 7 . 8 5}$	$\mathbf{2 1 . 2 2}$	$\mathbf{2 2 . 5 9}$

Table 7 - Post-Developed Basin Runoff Rates
Table 8 below shows the runoff rates for Offsite Basin West and will not be detained.

Recurrence Interval (Years)	Peak Runoff Rate
2	1.46
10	2.73
25	3.43
50	3.72

Table 8 - Offsite Basin West Runoff Rates

HYDRAULIC ANALYSIS
 AND
 DESIGN

CHARACTERISTICS

System Characteristics

The stormwater conveyance system will be sized in the final design phase of the project to convey all storm events up to and including the 100-year storm event without any out of system flooding.

Conveyance pipe sizing for Offsite Basins North and Northwest will be determined based on the capacity of the existing pipes, as well as assuming undetained flow from Lots 1-7. Conveyance for this system will be determined in the final design phase of the project.

WATER QUALITY

Water Quality Guidelines

The site is required to follow City of Newberg, SLOPES V, and ODOT Water Quality Standards. See below for each Jurisdictions standard.

- City of Newberg
- The stormwater quality only facilities shall be designed for a dry weather storm event totaling 1.0 inches of precipitation falling in 24 hours with an average storm return period of 96 hours.
- SLOPES V
- All stormwater quality treatment practices and facilities will be designed to accept and fully treat the volume of water equal to 50% of the cumulative rainfall from the 2-year, 24-hour storm for that site.
- ODOT
- Stormwater quality treatment facilities shall be designed to treat the water quality design flow rate or water quality design volume. The water quality storm is designated as a percentage of the 2 -year, 24 -hour design storm, depending on the location of the site. For the proposed site the water quality design storm is 50% of the 2 -year, 24 -hour design storm.

SLOPES V and ODOT have the same water quality design storm and the most stringent. The water quality facilities will be sized to treat 50% of the 2 -year, 24 -hour design storm.

The project will discharge to an existing intermittent stream which is a tributary to Spring Brook and the Willamette River (Middle Willamette Basin). Spring Brook and the Willamette River are listed as a water quality limited streams for E. Coli. Typical pollutants from single-family residential projects include: nutrients, pesticides, metals, oil, grease, and other petroleum products, and sediment. Dissolved copper, dissolved zinc, and PAHs are typically the primary constituents of concern for stormwater in Oregon streams for their impact on ESA listed species.

Water Quality Facilities

Lots 8-248 and All Roads and Sidewalks (Basins 1, 2 and 3)

Water quality treatment will occur through trapped catch basins, sedimentation water quality manholes and stormwater vegetated swales. The vegetated swales will be located in the bottom of each detention pond. Swales provide treatment through vegetation and will provide flow attenuation to reduce hydraulic impacts from urban developments on the downstream surface water systems. Clean Water Services Design and Construction Standards will be utilized to design vegetated swales.

Table 9 below shows the water quality flow rate as modeled in XPSTORM (See Technical Appendix: Hydrographs).

Basin	WQ Treatment Runoff Rate (cfs)
1	1.11
2	1.55
3	1.47

Table 9 - Basins 1-3 Water Quality Runoff Rates
Table 10 below shows the minimum dimensions for each swale (See Technical Appendix: Calculations - Swale Calculations). Each swale will have a minimum hydraulic residence time of 9 minutes and maximum depth of 0.50 feet during the water quality event.

Basin	Minimum Length $(\mathbf{f t})$	Minimum Bottom Width (ft)	Side Slopes $(\mathbf{H : V})$	Maximum Swale Slope $(\mathrm{ft} / \mathrm{ft})$
1	126.6	7.2	$4: 1$	0.005
2	184.2	7	$4: 1$	0.010
3	133.4	10	$4: 1$	0.005

Table 10 - Proposed Water Quality Swales

Basin 4

Water quality treatment flow rate for Basin 4 is 0.32 cfs. The proposed basin will utilize BayFilter by BaySaver Technologies, Inc to treat runoff (or equivalent). BayFilter is listed as an approved stormwater treatment technology for Clean Water Services. All runoff from the basin will be conveyed to a single BayFilter vault upstream of the underground detention facility where it will be treated using 4 (four) BayFilter Enhanced Media Cartridges. One cartridge is capable of treating up to 45 gpm of flow, which is equal to 0.10 cfs . Table 11 below shows the required number of cartridges needed to treat Water Quality flow of 0.32 cfs .

Facility	Water Quality Flow (cfs)	Quantity of Cartridges	Treatment Capacity of Facilities	Excess Treatment Capacity (cfs)
BayFilter Manhole	0.32	4	0.40 cfs	0.08

Table 11 - BayFilter Cartridge Calculation

Basin 5 (Lots 1-7)

Water Quality treatment on lots 1-7 will be achieved by implementing Low Impact Development Approaches (LIDA) following Clean Water Services LIDA Handbook. The LIDA Handbook utilizes a sizing ratio of 6% per $1 \mathrm{ft}^{2}$ of impervious area. Assuming $2,877 \mathrm{ft}^{2}$ of impervious area per lot, $173 \mathrm{ft}^{2}$ LIDA facility will be required. The water quality treatment flow rate using the SBUH method is 0.12 cfs .

Water Quality Treatment Volume

Table 12 shows the water quality volume for the post-developed site. Volume is based on the following calculation:

```
WQ Volume = }\underline{1.25 in X 1ft X Imp Area (ft2)
    12in
```

Basin	WQ Treatment Volume (cf)
1	18,826
2	47,184
3	64,756
4	18,498
5	8,805
Total Volume	158,068

Table 12 - Water Quality Volume

WATER QUANTITY

Water Quantity Guidelines

The site is required to meet the City of Newberg, SLOPES V and ODOT flow control requirements. See below for each Jurisdictions standard.

- City of Newberg
- Stormwater quantity on-site detention facilities shall be designed to capture runoff so the post-development runoff rates from the site do not exceed the pre-developed runoff rates from the site, based on 24-hour storm events ranging from $1 / 2$ the 2 -year return storm to the 25-year return storm. Specifically, the $1 / 2$ of the $2,2,10$, and 25 -year post-development runoff rates will not exceed their respective $1 / 2$ of the $2,2,10$, and 25-year pre-development runoff rates.
- SLOPES V
- The post-developed runoff rate for the 2-year design storm shall not exceed $1 / 2$ of the 2-year pre-development runoff rate. Additionally, the post-developed runoff rate for the 10-year design storm shall not exceed the 10-year pre-developed runoff rate.
- ODOT
- The post-developed runoff rate for the 2, 10, and 50-year design storm shall not exceed their respective pre-developed 2,10 , and 50 -year runoff rates.
The calculated water quantity volume for the northern portion of the site is approximately $72,885 \mathrm{ft}^{3}$ and the southern portion is approximately $36,945 \mathrm{ft}^{3}$. Flow control areas and structures will be fully designed at the final design phase.

Water Quantity Facilities

Lots 8-248 and All Roads and Sidewalks (Basins 1, 2 and 3)

Three detention ponds will be constructed to detain all required storm events. Each will have a flow control manhole which will control the release rate so that the following is met:

- The post-developed runoff rate for the 2-year design storm shall not exceed $1 / 2$ of the 2-year pre-development runoff rate.
- The post-developed runoff rate for the 10-year design storm shall not exceed the 10year pre-developed runoff rate.
- The post-developed runoff rate for the 25-year design storm shall not exceed the 25year pre-developed runoff rate.
- The post-developed runoff rate for the 50-year design storm shall not exceed the 50year pre-developed runoff rate.

The design of flow control structures and outfall protection will be provided in the final design phase.

Basins 4

Underground detention in the form of StormTech Chambers (or equivalent) will be provided under the proposed parking lot of the multi-family residential basin. Detention will be provided downstream of the water quality treatment and will release detained stormwater to the intermittent stream. The design of flow control structures will be provided in the final design phase.

Basin 5

Lots 1-7 will contain underground detention in the form of StormTech Chambers (or equivalent) under each LIDA facility. The detention facilities will release stormwater to the bypass storm line provided to convey offsite flows to the intermittent stream. The design of flow control structures will be provided in the final design phase.

Table 13 shows the allowable release rates from the site after development. The allowable release rate for basin 2 (pond 2) will be the combined allowable release rate from the predeveloped flows plus the runoff rates shown in Table 8.

Basin	2-YR Allowable Release Rate (cfs)	$\mathbf{1 0 - Y R}$ Allowable Release Rate (cfs)	$\mathbf{2 5 - Y R}$ Allowable Release Rate (cfs)	$\mathbf{5 0 - Y R}$ Allowable Release Rate (cfs)
1	0.17	1.20	1.75	1.98
2	$0.36+1.46$	$2.00+2.73$	$2.78+3.43$	$3.11+3.72$
3	0.22	1.43	2.02	2.27
4	0.04	0.26	0.38	0.43
5	0.08	0.38	0.51	0.56
Allowable Release Rates from Site	$\mathbf{2 . 3 3}$	$\mathbf{8 . 0 0}$	$\mathbf{1 0 . 8 7}$	$\mathbf{1 2 . 0 7}$

Runoff from Offsite Basin West
Table 13 -Allowable Release Rates

DOWNSTREAM ANALYSIS

According to the City's Design Manual, a certificate of investigation stating that the engineer has taken downstream impacts into consideration is required for each development constructing, collecting or discharging more than $500 \mathrm{ft}^{2}$ of new impervious area.

The City's Stormwater Master Plan (SWMP), dated June 2014, was used to investigate the downstream system to determine if there are currently any known downstream deficiencies in the system. According to the SWMP, the Spring Brook Subcatchment was delineated and analyzed for existing and future capacity issues (See Technical Appendix: Downstream Analysis - Figure 2-6 Drainage System and Study Area). The analysis utilized two methods to identify flooding problems. The first method modeled the existing storm systems using PC SWMM 2012. In addition to the existing flow modeling, the study utilized future conditions based on the zoning showing in Figure 2-5. The second method evaluated the storm systems through discussions with City staff and reviewing existing reports that documented potential problems.

Per Figure 3-1 Predicted Flooding: Existing Land Use, 10-YR Design Storm, the existing storm system does not experience any flooding during the 10-year storm event (See Technical Appendix: Downstream Analysis - Figure 3-1 Predicted Flooding: Existing Land Use, 10-YR Design Storm). Figure 3-1 depicts areas that have both major and minor flooding. Minor flooding was defined in the SWMP "as flooding that occurs for less than 2-hours during the peak 24-hour design storm", while major flooding occurs longer than 2-hours during the peak design storm. Additionally, Figure 3-2 Predicted Flooding: Future Land Use, $10-\mathrm{YR}$ Design Storm shows there are no predicted flooding in the downstream system for Spring Brook.

In discussions with the City, it was noted that flooding occurred at the Chehalem Glenn Golf Course during a January 2012 storm event.

The proposed stormwater management system for Crestview Crossing will detain all storm events to the required predeveloped release rates up to and including the 50-year storm events. Based on the City's SWMP, the proposed developed should not impact the downstream system.

OPERATIONS \& MAINTENANCE

The performance of the water quality treatment and detention facilities is very important to ensure prolonged use and functionality. Stormwater facilities will be operated and maintained privately by the homeowners and the apartment complex. Until an HOA can be created, please contact Jesse Nemec at 503-730-8620 or jnemec@jtsmithco.com about inspection and maintenance of the proposed stormwater facilities.

It's vital that the owners of the stormwater management systems insure proper maintenance and operation to ensure water quality facilities function to remove petroleum hydrocarbons, sediments, metals, bacteria and nutrients from stormwater runoff. Additionally, owners must ensure that detention facilities are regulating the release and volume of stormwater prior to leaving the property. See the Technical Appendix for the Operation and Maintenance Plan.

SUMMARY

The proposed stormwater management system design for the Crestview Crossing development followed the City of Newberg's Design Standards dated 2014. Additionally, the project will comply with the National Marine Fisheries Service criteria as part of the March 2014 Programmatic Biological Opinion and Essential Fish Habitat Consultation for the Standard Local Operating Procedures for Endangered Species (SLOPES V) as part of the Wetland Fill Permit with the Army Corp of Engineers.

TECHNICAL APPENDIX

Exhibits

- Oregon's 2012 Integrated Report
- FIRM: 41071C0241D
- Hydrologic Soil Group-Yamhill County
- Tables 2-2a Runoff Curve Numbers
- City of Newberg Public Utility Map
- Offsite Basin North
- Offsite Basin Northwest
- Figure 2-5 Future Conditions Land Use
- Existing Basin Delineation
- Proposed Conditions

Drawings

- \quad Sheet C210 - Overall Site Plan
- \quad Sheet C215 - Multi-Family Site Plan
- Sheet C300 - Composite Utility Plan
- Sheet C303 - Multi-Family Composite Utility Plan

Calculations

- Time of Concentration
- \quad Swale Calculation (Swale 1, 2, \& 3)

Hydrographs

- Existing Hydrographs
- Node - E-Basin 1, 2, 3, 4 \& 5
- Post-Developed Hydrographs
- Node - P-Basin 1, 2, 3, 4 \& 5
- Offsite Basin West

Downstream Analysis

- Figure 2-6 Drainage System and Study Area
- Figure 3-1 Predicted Flooding: Existing Land Use, 10-YR Design Storm
- Figure 3-1 Predicted Flooding: Future Land Use, 10-YR Design Storm

Operations \& Maintenance Plan

- Preliminary Operations \& Maintenance Plan

Geotechnical Report

- Geotechnical Engineering Report, GeoEngineers, March 12, 2018

REFERENCES

1. City of Newberg Design Standards Manual, 2014
2. City of Newberg Stormwater Master Plan, June 2014
3. Clean Water Services Design and Construction Standards, April 2017

4. Clean Water Services LIDA Handbook, 2016
5. Oregon Department of Transportation Hydraulics Manual, 2014

EXHIBITS

DEQHome / Water Quality Assessment / Oregon's 2012 Integrated Report / Database Search Results

2/7/2018 9:14:29 AM

Oregon's 2012 integrated Report

To select new search criteria click here - DO NOT USE THE BACK ARROW

To select new search criteria click here - DO NOT USE THE BACK ARROW.

NOTES TO USERS
 Nosele

 In tiven roscican.

 T 1

Nom

\qquad
Site Location

$=$ -

, minsume
 $(\vec{a}$ (6) - (a) (a)
 \qquad

\cdots

组这 $\overbrace{0}^{250}$

[^2]

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils		
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water F	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\cdots	Major Roads
Not rated or not available	-	Local Roads
Soil Rating Lines	Background	
$\rightarrow \mathrm{A}$		Aerial Photography
$\cdots \quad A / D$		
H B		
H/D		
$\rightarrow C$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL.
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Yamhill County, Oregon
Survey Area Data: Version 4, Sep 16, 2016
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2015-Sep 13, 2016

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Hydrologic Soil Group-Summary by Map Unit - Yamhill County, Oregon (OR071)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
2301A	Amity silt loam, 0 to 3 percent slopes	C/D	17.0	51.4\%
2310A	Woodburn silt loam, 0 to 3 percent slopes	C	7.3	21.9\%
2310 C	Woodburn silt loam, 3 to 12 percent slopes	C	8.7	26.3\%
2310D	Woodburn silt loam, 12 to 20 percent slopes	C	0.2	0.5\%
Totals for Area of Interest			33.2	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Chapter 2

Estimating Runoff

Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2a Runoff curve numbers for urban areas $1 /$

Cover description	Average percent impervious area $2 /$	Curve numbers for hydrologic soil group			
Cover type and hydrologic condition		A	B	C	D

Fully developed urban areas (vegetation established)

Open space (lawns, parks, golf courses, cemeteries, etc.) ${ }^{3 /}$:
Poor condition (grass cover < 50\%) ... 68
Fair condition (grass cover 50\% to 75\%) 49
Good condition (grass cover > 75\%) ...
Impervious areas:
Paved parking lots, roofs, driveways, etc.
(excluding right-of-way) ... 98
Streets and roads:
Paved; curbs and storm sewers (excluding
right-of-way) .. 98
Paved; open ditches (including right-of-way).
83
Gravel (including right-of-way) ... 76
Dirt (including right-of-way).
72
Western desert urban areas:
Natural desert landscaping (pervious areas only) 4/
63
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) .

96	96	96	96
89	92	94	95
81	88	91	93
77	85	90	92
61	75	83	87
57	72	81	86
54	70	80	85
51	68	79	84
46	65	77	82

Urban districts:	
Commercial and business	85
Industrial	72
Residential districts by average lot size:	
1/8 acre or less (town houses) .	65
1/4 acre	38
1/3 acre	30
1/2 acre	25
1 acre	20
2 acres	12

79	86	89
69	79	84
61	74	80
98	98	98
98	98	98
89	92	93
85	89	91
82	87	89
77	85	88
96	96	96
92	94	95
88	91	93
85	90	92
75	83	87
72	81	86
70	80	85
68	79	84
65	77	82
86	91	94

Developing urban areas

Newly graded areas
(pervious areas only, no vegetation) $5 /$
$77 \quad 86$
91
94
Idle lands (CN's are determined using cover types
similar to those in table 2-2c).

[^3]Table 2-2c Runoff curve numbers for other agricultural lands $1 /$

--------------------------------- Cover description	Hydrologic condition	Curve numbers for hydrologic soil group				
		A	B	C	D	
Pasture, grassland, or range - continuous forage for grazing. ${ }^{2 /}$	Poor	68	79	86	89	
	Fair	49	69	79	84	
	Good	39	61	74	80	
Meadow-continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ${ }^{3 /}$	Poor	48	67	77	83	
	Fair	35	56	70	77	
	Good	304	48	65	73	
Woods-grass combination (orchard or tree farm). $5 /$	Poor	57	73	82	86	
	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods. ${ }^{6 /}$	Poor	45	66	77	83	
	Fair	36	60	73	79	
	Good	304	55	70	77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	-	59	74	82	86	
1 Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$.						
2 Poor: <50\%) ground cover or heavily grazed with						
Fair: 50 to 75% ground cover and not heavily graz						
Good: $>75 \%$ ground cover and lightly or only occa						
3 Poor. <50\% ground cover.						
Fair: 50 to 75% ground cover.						
Good: >75\% ground cover.						
4 Actual curve number is less than 30 ; use $\mathrm{CN}=30$ for runoff computations.						
5 CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may ber from the CN's for woods and pasture.						
6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burninFair: Woods are grazed but not burned, and some forest litter covers the soil.Good: Woods are protected from grazing, and litter and brush adequately cover the soil.						

City of Newberg Public Utility Map
（i）About 圏 Content $:$ Legend
Legend
GISWEB＿Address＿Point
Storm Pipes

－Culvert

－OpenChannel
Storm Manholes

한）

2016＿Aerials
Newberg Aerial 2016
\square Red：Band＿1
Green：Band＿2
Blue：Band＿3

目 Save－Share $\sqrt{4}$ Print 気 Measure
민 Bookmarks

Pipes may or may not be RCP

OFFSITE BASIN NORTH

OFFSITE BASIN NORTHWEST

園Details｜㫛Basemap｜
（1）About 图 Content

DRAWINGS

CALCULATIONS

TIME OF CONCENTRATION

PROJECT NO. 17393	BY KEF	DATE 4/30/2018

SHEET FLOW			
INPUT	BASIN 1	BASIN 2 \& 3	BASIN 4
Surface Description	Type Grass (Bermudagrass)	Type Grass (Bermudagrass)	Type Grass (Bermudagrass)
Manning's "n"	0.41	0.41	0.41
Flow Length, L	100 ft	100 ft	100 ft
2-Yr 24 Hour Rainfall, P_{2}	2.5 in	2.5 in	2.5 in
Land Slope, s	$0.038 \mathrm{ft} / \mathrm{ft}$	$0.032 \mathrm{ft} / \mathrm{ft}$	$0.021 \mathrm{ft} / \mathrm{ft}$
OUTPUT			
Travel Time	0.32 hr	0.34 hr	0.40 hr
SHALLOW CONCENTRATED FLOW			
INPUT	VALUE	VALUE	VALUE
Surface Description	Unpaved	Unpaved	Unpaved
Flow Length, L	397 ft	562 ft	82 ft
Watercourse Slope*, s	$0.024371 \mathrm{ft} / \mathrm{ft}$	$0.028 \mathrm{ft} / \mathrm{ft}$	$0.065 \mathrm{ft} / \mathrm{ft}$
OUTPUT			
Average Velocity, V	$2.52 \mathrm{ft} / \mathrm{s}$	2.71 ft/s	$4.11 \mathrm{ft} / \mathrm{s}$
Travel Time	0.044 hr	0.058 hr	0.006 hr

CHANNEL FLOW

INPUT	VALUE	VALUE	VALUE
Cross Sectional Flow Area, a	$0 \mathrm{ft}^{2}$	$0 \mathrm{ft}^{2}$	$0 \mathrm{ft}^{2}$
Wetted Perimeter, P_{w}	0 ft	0 ft	0 ft
Channel Slope, s	$0 \mathrm{ft} / \mathrm{ft}$	$0 \mathrm{ft} / \mathrm{ft}$	$0 \mathrm{ft} / \mathrm{ft}$
Manning's "n"	0.24	0.24	0.24
Flow Length, L	0 ft	0 ft	0 ft
OUTPUT			
Average Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	$0.00 \mathrm{ft} / \mathrm{s}$	$0.00 \mathrm{ft} / \mathrm{s}$
Hydraulic Radius, $\mathrm{r}=\mathrm{a} / \mathrm{P}_{\mathrm{w}}$	1.00 ft	1.00 ft	1.00 ft
Travel Time	0.00 hr	0.00 hr	0.00 hr
Watershed or Subarea $\mathrm{T}_{\mathrm{c}}=$	0.36 hr	0.40 hr	0.41 hr
Watershed or Subarea $\mathrm{T}_{\mathrm{c}}=$	22 minutes	24 minutes	25 minutes

	SWALE CALCU SWALE	$\frac{1}{2} \text { AT\\|ON: }$
PROJECT NO.	17393 BY KEF	DATE 5/17/2018
Q	Peak design storm discharge	1.55 cfs
n	Roughness factor	0.24
B	Swale width at base (Min Width = 2')	7 ft
Z	Side Slopes X:1 (4:1 for WQ Flow)	$4 \mathrm{H}: 1 \mathrm{~V}$
s	Slope of channel (ft/ft, 0.005 minimum)	$0.01 \mathrm{ft} / \mathrm{ft}$
t	Minimum hydraulic residence time (Min HRT $=9 \mathrm{~min}$)	9 min
Flow Results (Q)		
Input		Value
Y	Normal depth (Max Depth @ WQ Event = 0.50')	0.50 ft
P	Wetted perimeter	11.16 ft
A	Cross section flow area	$4.54 \mathrm{ft}^{2}$
R	Hydraulic radius	0.41 ft
W	Width of water surface in Swale	11.03 ft
V	Velocity	$0.34 \mathrm{ft} / \mathrm{s}$
L	Length (Min Length = 100')	184.21 ft

	SWALE CALCU S W ALE	- ATION:
PROJECT NO.	17393 BY KEF	DATE 5/17/2018
Swale Characteristics		
Input		Value
Q	Peak design storm discharge	1.47 cfs
n	Roughness factor	0.24
B	Swale width at base (Min Width = 2')	10 ft
Z	Side Slopes X:1 (4:1 for WQ Flow)	$4 \mathrm{H}: 1 \mathrm{~V}$
s	Slope of channel (ft/ft, 0.005 minimum)	$0.005 \mathrm{ft} / \mathrm{ft}$
t	Minimum hydraulic residence time (Min HRT = 9 min)	9 min
Flow Results (Q)		
Input		Value
Y	Normal depth (Max Depth @ WQ Event = 0.50')	0.50 ft
P	Wetted perimeter	14.09 ft
A	Cross section flow area	$5.95 \mathrm{ft}^{2}$
R	Hydraulic radius	0.42 ft
W	Width of water surface in Swale	13.97 ft
V	Velocity	$0.25 \mathrm{ft} / \mathrm{s}$
L	Length (Min Length = 100')	133.41 ft

HYDROGRAPHS

EXISTING HYDROGRAPHS

Node - E-BASIN 1

2-Year[Max 0.344]

Node - E-BASIN 2

Node - E-BASIN 3

Node - E-BASIN 4

Node - E-BASIN 5

POST-DEVELOPED HYDROGRAPHS

Node - P-BASIN 1

Node - P-BASIN 2

Node - P-BASIN 3

Node - P-BASIN 4

Node - P-BASIN 5

Node - OFFSITE BASIN WEST

DOWNSTREAMANALYSIS

OPERATIONS \&
 MAINTENANCE

June 6, 2018

Prepared For:
JT Smith Companies
5285 Meadows Road
Lake Oswego, OR 97035

Prepared By:
3J Consulting, Inc.
5075 Griffith Drive, Suite 150
Beaverton, Oregon 97005
Project No: 17393
KEF

PURPOSE

The purpose of this Operations and Maintenance (O\&M) Plan is to bring attention to the on-going needs of the storm water management facilities that will be located at the proposed Crestview Crossing. In order for the facilities to operate as intended and increase the environmental benefits, a high quality maintenance program is required.

This document has been prepared to provide the Crestview Crossing development with a Preliminary single source document that will explain the maintenance requirements of the storm water facilities. This also serves the regulatory agencies in which legal requirements have been placed on this site. A formal maintenance agreement and O\&M plan will be prepared and submitted as part of the CC\&R's upon completion of construction.

STORMWATER FACILITIES

Water quality treatment will occur through trapped catch basins, sedimentation water quality manholes, stormwater vegetated swales and rain gardens and an underground mechanical treatment facility.

The vegetated swales will be located in the bottom of each detention pond. Water quality treatment and detention for lots 1-7 in the northern portion of the site will be provided on each lot. Treatment will consist of rain gardens or LIDA swales; treatment facilities will release to an underground detention system located on each lot designed to detain all storm events previously discussed.

Stormwater facility locations will be fully identified in the final O\&M plan.

INSPECTION/MAINTENANCE SCHEDULE

Each part of the system shall be inspected and maintained quarterly and within 48 hours after each major storm event for the first three (3) years and at least twice thereafter. For this O\&M plan, a major storm event is defined as at least 1.0 inch of rain in 24 hours or more. All components of the storm system as described above must be inspected and maintained frequently or they will cease to function effectively. All stormwater must drain out of the catch basins within 24 -hours after rainfall ends. All structural components including inlets and outlets must freely convey stormwater. Desirable vegetation in the swales must cover at least 90% of the facility, excluding dead or stressed vegetation, dry grass or other plants and weeds.

The facility owner shall keep a log, recording all inspection dates, observations, and maintenance activities. Receipts shall be saved when maintenance is performed and there is a record of expense. The stormwater facilities will be operated and maintained by the Crestview Crossing HOA once construction has been completed. Prior to completion, Jesse Nemec from JT Smith Companies will be the responsible party.

Jesse Nemec Phone No: 503-730-8620
City of Newberg Public Works Maintenance Dept: 503-538-8321

Sedimentation Manhole and Catch Basins

- Remove sediment, oil, and debris from catch basins when $1 / 3$ full and from gutters, inlets, outlets and pipes.
- Inspect and clean grate from catch basins. Remove debris and sediment.
- Manholes: remove oil, sediment and debris when sediment is 30% of the capacity or soil is 1 inch deep.

Maintenance Schedule:

- Summer: Make any structural repairs. Remove sediment, oil and debris from conveyance system and manholes.
- Winter: Monitor water levels and sediment level.

Vegetated Facilities (See excerpts from Clean Water Services Low Impact Development Approaches Handbook)

- Remove sediment when:
- Sediment depth reaches 4 inches.
- Sediment depth is damaging or killing vegetation
- Sediment is preventing the facility from draining in the time specified.

Maintenance Schedule:

- Summer: Make any structural repairs. Improve filter medium as needed. Clear drain. Irrigate as needed.
- Fall: Replant exposed soil and replace dead plants. Remove sediment and plant debris.
- Winter: Monitor infiltration/flow-through rates. Clear inlets and outlets/overflows to maintain conveyance.
- Spring: Remove sediment and plant debris. Replant exposed soil and replace dead plants. Mulch.
- All seasons: Weed as necessary.

Baysaver Bayfilter ${ }^{T M}$ Vault

The Vault shall be inspected and maintained quarterly for the first 2 years of operation and once per year thereafter. Additionally the vault shall be inspected within 48 hours after each major storm event.

- Maintenance should be performed per the attached BayFilter maintenance document).

StormTech Chambers - After the first 2 years of operation:

- The Chamber shall be inspected and maintained quarterly for the first 2 years of operation and once per year thereafter. Additionally the vault shall be inspected within 48 hours after each major storm event.
- Inspect per StormTech Chamber Inspection and Maintenance Guidance (Table 10).

Source Control

Measures should be taken to prevent pollutants from mixing with stormwater. Typically non-structural control measures include raking and removing leaves, sweeping, vacuum sweeping and limited controlled application of pesticides, herbicides and fertilizers.

Spill Prevention

Spill prevention measurements shall be exercised when handling substances that can contaminate stormwater. Activities that pose the chance of hazardous material spills shall not take place on or near any catch basins or inlets. Contact the proper authority and the property owner immediately if a spill is observed.

Flow Control

All facilities shall drain within 96 hours. Time/date, weather, and site conditions when ponding occurs shall be recorded.

Pollution Prevention

All sites shall implement best management practices to prevent hazardous wastes, litter, or excessive oil and sediment from contaminating stormwater. Contact City of Newberg Public Works Maintenance Department at 503-538-8321 for immediate assistance with responding to spills. Record time/date, weather, and site conditions if site activities are found to contaminate stormwater.

Vectors (mosquitoes and rodents)

Stormwater facilities shall not harbor mosquito larvae or rats that pose a threat to public health or that undermine the facility structure. Monitor standing water for small wiggling sticks perpendicular to the water's surface. Note holes/burrows in and around facilities. Call City of Newberg Public Works Maintenance Department at 503-538-8321 for immediate assistance with eradicating vectors. Record time/date, weather, and site conditions when vector activity is observed.

ELEMENTS

This document contains the following information.

1. Sheets C210, C215, C300 \& C303
2. Vegetated Swale Operations and Maintenance Plan (CWS Low Impact Development Approaches Handbook)
3. Extended Dry Basin Operations and Maintenance Plan (CWS Low Impact Development Approaches Handbook)
4. Maintenance of the BayFilter ${ }^{\text {TM }}$ System
5. 13.0 Inspection and Maintenance StormTech
6. Maintenance Logs

Vegetated Swale Operation and Maintenance Plan Annual inspections are required．It is recommended that the facility is inspected on a monthly basis to ensure proper function．The plan below inspection and maintenance activities，and may be used as an inspection log．Contact the design engineer，Clean Water Services or City represer more information．				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Obstructed Inlet／Outlet	Material such as vegetation，sediment is blocking more than 10\％of Inlet／ outlet pipe or basin opening	Remove blockages from facility	w类 $_{\text {M }}$蔡筑 WINTER SPRING	
Flow not distributed evenly	Flows unevenly distributed through swale due to uneven or clogged flow spreader	Level and clean the spreader so that flows spread evenly over entire swale width	米粦 ＊學底 WINTER SPRING	
Sediment Accumulation in Treatment Area	Sediment depth in treatment area exceeds 3 inches	Remove sediment from treatment area．Ensure facility is level from side to side and drains freely toward outlet；no standing water once inflow has ceased	SUMMER FALL Ideally in the dry season	
Tree／Shrub Growth	Tree／shrub growth shades out wetland／emergent grass in treatment area．Interferes with access for maintenance／inspection	Prune trees and shrubs that block sun from reaching treatment area．Remove trees that block access points． Do not remove trees that are not interfering with access or maintenance without first contacting Clean Water Services or local City	Ideal timing for pruning is winter	
Hazard Trees	Observed dead，dying or diseased trees	Remove hazard trees．A certified arborist may be needed to determine health of tree or removal requirements	As Needed	

Vegetated Swale Operation and Maintenance Plan (continued) Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City represer more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Erosion	Erosion or channelization that impacts or effects the function of the facility or creates a safety concern	Repair eroded areas and stabilized using proper erosion control measures. Establish appropriate vegetation as needed.	1. 䘳紫	
Poor Vegetation Coverage	80% survival of approved vegetation and no bare areas large enough to affect function of facility	Determine cause of poor growth and correct the condition. Replant per the approved planting plan and applicable standards at time of construction. Remove excessive weeds and all invasive plants.	Ideal time to plant is spring and fall seasons	
Invasive Vegetation as outlined in Appendix A	Invasive vegetation is found in facility. Examples include: Himalayan Blackberry; Reed Canary Grass; Teasel; English Ivy; Nightshade; Clematis; Cattail; Thistle; Scotch Broom	Remove excessive weeds and all invasive plants. Attempt to control even if complete eradication is not feasible. Refer to Clean Water Services Integrated Pest Management Plan for appropriate control methods, including proper use of chemical treatment		
Excessive Vegetation	Vegetation grows so tall it competes with or shades approved emergent wetland grass/shrubs; interferes with access or becomes fire danger	Cut tall grass to $4^{\prime \prime}$ to $6^{\prime \prime}$ and remove clippings. Prune emergent wetland grass/shrubs that have become overgrown.	Ideal time to prune emergent wetland grass is spring. Cut grass in dry months	
Trash and Debris	Visual evidence of trash, debris or dumping	Trash and debris removed from facility. Dispose of properly		

Vegetated Swale Operation and Maintenance Plan (continued) Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City represer more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Standing Water	Standing water in the swale between storms that does not drain freely	Remove sediment or trash blockages; improve grade from end to end of swale; no standing water 24 hours after any major storm (1 -inch in 24 hours)	Inspect after any major storm (1-inch in 24 hours)	
Vector Control	Evidence of rodents or water piping through facility via rodent holes. Harmful insects such as wasps and hornets interfere with maintenance/ inspection activities	Repair facility if damaged. Remove harmful insects, use professional if needed. Refer to Clean Water Services Integrated Pest Management Plan for management options	As Needed	
Contamination and Pollution	Evidence of oil, gasoline, contaminants, or other pollutants. Look for sheens, odor or signs of contamination	If contaminants or pollutants present, coordinate removal/ cleanup with local jurisdiction		
Grate Damaged, missing or not in place	Grate is missing or only partially in place, may have missing or broken grate members	Grate must be in place and meet design standards. Replace or repair any open structure, replace grate if missing.	As Needed	
Damage to Outlet Structure	Frame not sitting flush on top slab (more than $3 / 4$ inch between frame and top slab); frame not securely attached	Ensure frame is firmly attached and sits flush on riser rings or on top of slab. Structure replaced or repaired to design standards	As Needed	

Vegetated Swale Operation and Maintenance Plan (continued) Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City repres more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Damage to Outlet Structure	Fractures or Cracks in Walls or Bottom. Maintenance person determines the structure is unsound. Soil entering structure through cracks	Structure replaced or repaired to design standards	As Needed	
Damage to Outlet Structure	Settlement or Misalignment. Failure of basin has created a safety, function, or design problem	Structure replaced or repaired to design standards	As Needed	

Extended Dry Basin Operation and Maintenance Plan Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City represer more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Trash and Debris	Visual evidence of trash, debris or dumping	Remove trash and debris from facility. Dispose of properly		
Contamination and Pollution	Evidence of oil, gasoline, contaminants, or other pollutants. Look for sheens, odor or signs of contamination	Locate source of contamination and correct. Remove oil using oil-absorbent pads or vactor truck. If low levels of oil persist plant wetland plants that can uptake small concentrations of oil such as Juncus effuses. (soft rush) If high levels of contaminants or pollutants are present, coordinate removal/ cleanup with local jurisdiction		
Invasive vegetation as outlined in Appendix A.	Invasive vegetation found in facility. Examples include: Himalayan Blackberry, Reed Canary Grass, Teasel, English Ivy, Nightshade, Clematis, Cattail, Thistle, Scotch Broom	Remove excessive weeds and all invasive plants. Attempt to control even if complete eradication is not feasible; refer to Clean Water Services Integrated Pest Management Plan for appropriate control methods, including proper use of chemical treatment		
Obstructed Inlet/Outlet	Material such as vegetation, trash, sediment is blocking more than 10\% of inlet/outlet pipe or basin opening	Remove blockages from facility	$3)^{2}$小incera WINTER SPRING Inspect after major storm (1-inch in 24 hours)	
Poor Vegetation Cover	80% survival of approved vegetation and no bare areas large enough to affect function of facility.	Determine cause of poor growth and correct the condition. Replant with plugs or containerized plants per the approved planting plan and applicable standards at time of construction. Remove excessive weeds and all invasive plants.	Ideal time to plant is spring and fall seasons	

Extended Dry Basin Operation and Maintenance Plan (continued) Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City represer more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Vector Control	Evidence of rodents or water piping through facility via rodent holes. Harmful insects present such as wasps and hornets that interfere with maintenance/ inspection activities	Repair facility if damaged. Remove harmful insects, use professional if needed. Refer to Clean Water Services Integrated Pest Management Plan for management options	As Needed	
Tree/Shrub Growth	Tree/shrub growth shades out wetland/ emergent grass in treatment area. Interferes with access for maintenance/ inspection	Prune trees and shrubs that block sun from reaching treatment area. Remove trees that block access points. Do not remove trees that are not interfering with access or maintenance without first contacting Clean Water Services or local City	Ideal time for pruning is winter	
Hazard Trees	Observed dead, dying or diseased trees	Remove hazard trees. A certified Arborist may need to determine health of tree or removal requirements	As Needed	
Excessive Vegetation	Vegetation grows so tall that it competes with approved emergent wetland grass/shrubs, interferes with access or becomes a fire danger	Cut tall grass $4^{\prime \prime}$ to $6^{\prime \prime}$ and remove clippings. Prune emergent wetland grass/shrubs that have become overgrown.	Ideal time to prune emergent wetland grass is spring. Cut grass in dry months	
Erosion	Erosion or channelization that impacts or effects the function of the facility or creates a safety concern	Repair eroded areas and stabilize using proper erosion control measures. Establish appropriate vegetation as needed		

Extended Dry Basin Operation and Maintenance Plan (continued) Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City repre more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Settlement of Pond Dike/ Berm	Look for any part of dike/berm that has settled 4 inches or more lower than the design elevation	Repair dike/berm to approved design specifications. A licensed civil engineer should be consulted to determine the source of the settlement	As Needed	
Blockage of Emergency Overflow/ Spillway	Blockage of overflow/ spillway by trees, vegetation or other material. Blockages may cause the berm to fail due to uncontrolled overtopping	Remove blockage. Small root system (base less than 4 inches) may be left in place; otherwise, roots are removed. A licensed civil engineer should be consulted for proper berm/spillway restoration.	\quad Inspect after major storm (1-inch in 24 hours)	
Erosion of Emergency Overflow/Spillway	Native soil is exposed at the spillway, or there is only one layer of rock in an area of 5 square feet or larger	Restore rock and pad depth to appropriate depth. Refer to design specifications	Inspect after major storm (1-inch in 24 hours)	
Blockage of Overflow Structure/ Orifice Plate	Excessive standing water or water is not detained for required time.	Inspect and if needed clear orifice plate for proper drainage or re-install to ensure required detention.	Inspect after major storm (1-inch in 24 hours)	
Sediment Accumulation in Pond Bottom	Sediment accumulation in pond bottom exceeds 6 inches or affects facility inlet/ outlet or plant growth in treatment area	Remove sediment from pond bottom. Re-establish designed pond shape and depth. Establish appropriate vegetation in treatment area	SUMMER FALL Ideally in the dry season	

Extended Dry Basin Operation and Maintenance Plan (continued) Annual inspections are required. It is recommended that the facility is inspected on a monthly basis to ensure proper function. The plan below inspection and maintenance activities, and may be used as an inspection log. Contact the design engineer, Clean Water Services or City repres more information.				
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	\checkmark Task Complete Comments
Grate Damaged, missing or not in place	Grate is missing or only partially in place, may have missing or broken grate members.	Grate must be in place and meet design standards. Replace or repair any open structure, replace grate if missing	As Needed	
Damage to Outlet Structure	Damage to Frame or Top Slab. Frame not sitting flush on top slab (more than $3 / 4$ inch between frame and top slab); frame not securely attached	Ensure frame is firmly attached and sits flush on the riser rings or top slab	As Needed	
Damage to Outlet Structure	Fractures or Cracks in Walls or Bottom. Maintenance person determines the structure is unsound. Soil entering structure through cracks.	Structure replaced or repaired to design standards.	As Needed	
Damage to Outlet Structure	Settlement or Misalignment of Basin. Failure of basin has created a safety, function, or design problem	Structure replaced or repaired to design standards	As Needed	

Maintenance of the BayFilter™ System

The BayFilter ${ }^{\text {TM }}$ system requires periodic maintenance to continue operating at the design efficiency. The maintenance process comprises the removal and replacement of each BayFilter ${ }^{\mathrm{TM}}$ cartridge and drain down module and the cleaning of the vault or manhole with a vacuum truck. BayFilter ${ }^{\text {TM }}$ maintenance should be performed by a BaySaver Technologies, Inc. certified maintenance contractor.

The maintenance cycle of the BayFilter ${ }^{\mathrm{TM}}$ system will be driven mostly by the actual solids load on the filter. The system should be periodically monitored to be certain it is operating correctly. Since stormwater solids loads can be variable, it is possible that the maintenance cycle could be more or less than the projected duration.

The BayFilter systems in New Development applications are designed to treat the WQv in 24 hours initially. Later in the cycle these cartridges will flow at a slower rate, and when the WQv does not drain down within $+/-40$ hours after the storm event, the system must be maintained.

When a BayFilter ${ }^{\mathrm{TM}}$ system is first installed, it is recommended that it be inspected every six (6) months. When the filter system exhibits flows below design levels the system should be maintained. Filter cartridge replacement should also be considered when sediment levels are at or above the level of the 4 inch manifold system. Please contact the BaySaver Technologies Inc. Engineering Department for maintenance cycle estimations or assistance at 1.800.229.7283.

Maintenance Procedures

1. Remove the manhole covers and open all access hatches.
2. Before entering the system make sure the air is safe per OSHA Standards or use a breathing apparatus. Use low O_{2}, high CO, or other applicable warning devices per regulatory requirements.
3. Using a vacuum truck remove any liquid and sediments that can be removed prior to entry.
4. Using a small lift or the boom of the vacuum truck, remove the used cartridges by lifting them out.
5. Any cartridges that cannot be readily lifted directly out of the vault should be removed from their location and carried to the lifting point using the Trolley system installed in the Vault (if applicable).
6. When all cartridges and drain down modules are removed, remove the balance of the solids and water; then loosen the stainless clamps on the Fernco couplings in the pipe manifold; remove the drain pipes as well. Carefully cap the manifold and the Fernco's and rinse the floor removing the balance of the collected solids.
7. Clean the manifold pipes, inspect, and reinstall.
8. Install the exchange cartridges and close all covers.
9. The used cartridges must be sent back to BaySaver Technologies, Inc. for exchange/recycling and credit on undamaged units.

13.1 TREATMENT TRAIN INSPECTION AND MAINTENANCE

The StormTech recommended treatment train inlet system has three tiers of treatment upstream of the StormTech chambers. It is recommended that inspection and maintenance (I\&M) be initiated at the furthest upstream treatment tier and continue downstream as necessary. The following I\&M procedures follow this approach providing I\&M information in the following order: Tier 1 - Pretreatment (BMP); Tier 2 - StormTech Isolator Row, and ; Tier 3 Eccentric Pipe Header System.

13.2 CATCHBASIN/MANHOLE I\&M

Typically a stormwater system will have catchbasins and manholes upstream of the detention/retention system. In some cases these may be the only pre-treatment devices. Regular I\&M of catchbasins and manholes should be scheduled and performed as part of a site's routine maintenance plan.

Catchbasin/Manhole - Step-by-Step
 Maintenance Procedures

1) Inspect catch basins and manholes upstream of StormTech chambers for sediment
2) Remove grate or cover
3) Skim off oils and floatables
4) Using a stadia rod, measure the depth of sediment
5) If sediment is at a depth greater than 6" proceed to step 6. If not proceed to step 7.
6) Vacuum or manually remove sediment
7) Replace grate
8) Record depth \& date and schedule next inspection

Figure 17 - Catchbasin/Manhole I\&M Steps

13.3 PRE-TREATMENT DEVICE I\&M

Manufacturer's I\&M procedures should be followed for proprietary pretreatment devices such as baffle boxes, swirl concentrators, oil-water separators, and filtration units. Table $\mathbf{1 0}$ provides some general guidelines but is not a substitute for a manufacturer's specific instructions.

TABLE 10 - Pretreatment Inspection and Maintenance Guidelines

SEDIMENT CONTROL INSPECTION	INSPECTION*	MAINTENANCE**
StormTech IsolatorTM Row	Bi-Annually	JetVac - Culvert Cleaning Nozzle Preferred
Sediment Basin	Quarterly or after large storm event	Excavate sediment
Catch Basin Sump	Quarterly	Excavate,pump, or vacuum
Sedimentation Structure	Quarterly	Excavate,pump, or vacuum
Catch Basin Filter Bags	After all storm events	Clean and/or replace filter bags
Porous Pavement	Quarterly	Sweep Pavement
Pipe Header Design	Quarterly	Excavate,pump, or vacuum
Water Quality Inlet	Quarterly	Excavate,pump, or vacuum
Sand Filters	Quarterly or after storm event	Remove \& replace sand filter

13.0 Inspection \& Maintenance

13.4 ISOLATORTM ROW INSPECTION

Regular inspection and maintenance are essential to assure a properly functioning stormwater system. Inspection is easily accomplished through the manhole or optional inspection ports of an Isolator Row. Please follow local and OSHA rules for a confined space entry.

Inspection ports can allow inspection to be accomplished completely from the surface without the need for a confined space entry. Inspection ports provide visual access to the system with the use of a flashlight. A stadia rod may be inserted to determine the depth of sediment. If upon visual inspection it is found that sediment has accumulated to an average depth exceeding 3 inches, cleanout is required.

A StormTech Isolator Row should initially be inspected immediately after completion of the site's construction. While every effort should be made to prevent sediment from entering the system during construction, it is during this time that excess amounts of sediments are most likely to enter any stormwater system. Inspection and maintenance, if necessary, should be performed prior to passing responsibility over to the site's owner. Once in normal service, a StormTech Isolator Row should be inspected bi-annually until an understanding of the sites characteristics is developed. The site's maintenance manager can then revise the inspection schedule based on experience or local requirements.

13.5 ISOLATOR ROW MAINTENANCE

JetVac maintenance is required if sediment has been collected to an average depth of 3 inches or more inside the Isolator Row. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, a wave of suspended sediments is flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least $45^{\prime \prime}$ are best. Most JetVac reels have a minimum of 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Rows that have AASHTO class 1 woven geotextile over their angular base stone.

STORMTECH ISOLATOR"' ROW - STEP-BY-STEP MAINTENANCE PROCEDURES

Step 1) Inspect Isolator Row for sediment
A) Inspection ports (if present)
i. Remove lid from floor box frame
ii. Remove cap from inspection riser
iii. Using a flashlight and stadia rod, measure depth of sediment
iv. If sediment is at, or above, 3 inch depth proceed to Step 2. If not proceed to step 3.
B) All Isolator Rows
i. Remove cover from manhole at upstream end of Isolator Row
ii. Using a flashlight, inspect down Isolator Row through outlet pipe

1. Mirrors on poles or cameras may be used to avoid a confined space entry
2. Follow OSHA regulations for confined space entry if entering manhole
iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches) proceed to Step 2. If not proceed to Step 3.
Step 2) Clean out Isolator Row using the JetVac process
A) A fixed culvert cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
B) Apply multiple passes of JetVac until backflush water is clean
C) Vacuum manhole sump as required

Step 3) Replace all caps, lids and covers
Step 4) Inspect \& clean catch basins and manholes upstream of the StormTech system following the procedures for Classic Manifold Inlet System

Figure 18
StormTech Isolator Row (not to scale)

13.0 Inspection \& Maintenance

13.6 ECCENTRIC PIPE HEADER INSPECTION

Theses guidelines do not supercede a pipe manufacturer's recommended I\&M procedures. Consult with the manufacturer of the pipe header system for specific I\&M procedures. Inspection of the header system should be carried out quarterly. On sites which generate higher levels of sediment more frequent inspections may be necessary. Headers may be accessed through risers, access ports or manholes. Measurement of sediment may be taken with a stadia rod or similar device. Cleanout of sediment should occur when the sediment volume has reduced the storage area by 25% or the depth of sediment has reached approximately 25% of the diameter of the structure.

13.7 ECCENTRIC PIPE HEADER MAINTENANCE

Cleanout of accumulated material should be accomplished by vacuum pumping the material from the header. Cleanout should be accomplished during dry weather. Care should be taken to avoid flushing sediments out through the outlet pipes and into the chamber rows.

Eccentric Header Step-by-Step Maintenance Procedures

1. Locate manholes, access ports or risers connected to the header system
2. Remove grates or covers
3. Using a stadia rod, measure the depth of sediment
4. If sediment is at a depth of about 25% pipe volume or 25% pipe diameter proceed to step 5 . If not proceed to step 6.
5. Vacuum pump the sediment. Do not flush sediment out inlet pipes.
6. Replace grates and covers
7. Record depth \& date and schedule next inspection

Figure 19 - Manifold Maintenance

SAMPLE:

Month: Year: Date	Flow Control Manhole	Bayfilter Facilities	Catch Basins	Perfilter Facilities	Storm Tech System	Spill Kit	Drainblock er/cover	Document if materials are removed from catch basins
January								
February								
March								
April								
May								
June								
July								
August								
September								
October								
November								
December								

Geotechnical Engineering Report

Crestview Crossing Development
Newberg, Oregon
for
J.T. Smith Companies

March 12, 2018

GeoEngineers

1200 NW Naito Parkway, Suite 180
Portland, Oregon 97209
503.624.9274

Geotechnical Engineering Report Crestview Crossing Development Newberg, Oregon

File No. 6748-002-00
March 12, 2018

Prepared for:
J.T. Smith Companies
c/o 3J Consulting, Inc.
5075 SW Griffith Drive, Suite 150
Beaverton, Oregon 97005
Attention: Aaron Murphy, PE

Prepared by:

GeoEngineers, Inc.
1200 NW Naito Parkway, Suite 180
Portland, Oregon 97209
503.624.9274

-

Table of Contents

INTRODUCTION 1
SCOPE OF SERVICES 1
SITE CONDITIONS 3
Site Geology 3
Surface Conditions 3
Slope Conditions 3
Subsurface Conditions 4
Hwy 99W Pavement Explorations 4
Site Test Pits and Hand Augers 5
Groundwater 5
CONCLUSIONS 5
General 5
EARTHWORK RECOMMENDATIONS 7
Site Preparation 7
Demolition 7
Clearing and Grubbing 7
Stripping 8
Subgrade Improvement for the Tilled Zone 8
Subgrade Evaluation 9
Subgrade Protection and Wet Weather Considerations 9
Soil Amendment with Cement. 10
Separation Geotextile Fabric 11
Erosion Control 12
Excavation 12
Dewatering 12
Permanent Slopes 12
Trench Cuts and Trench Shoring 12
Fill Materials 13
General 13
On-Site Soils 13
Imported Select Structural Fill. 13
Aggregate Base 14
Aggregate Subbase 14
Trench Backfill 14
Fill Placement and Compaction 14
INFILTRATION TESTING 15
Testing Methods and Results 15
Suitability of Infiltration System 17
PAVEMENT RECOMMENDATIONS 17
Dynamic Cone Penetrometer (DCP) Field Testing and Resilient Modulus (Mr) 17
On-Site Local Roads 18
Hwy 99W Widening Pavement 20
STRUCTURAL DESIGN RECOMMENDATIONS 21
Foundation Support Recommendations 21
Foundation Subgrade Preparation 21
Bearing Capacity - Spread Footings 21
Foundation Settlement 22
Lateral Resistance 22
Drainage Considerations 22
Floor Slabs 22
Conventional Retaining Walls 23
Drainage 23
Design Parameters 23
Seismic Design 24
Liquefaction Potential 24
DESIGN REVIEW AND CONSTRUCTION SERVICES 25
LIMITATIONS 25
REFERENCES 25

LIST OF FIGURES

Figure 1. Vicinity Map
Figure 2. Site Plan

APPENDICES

Appendix A. Field Explorations and Laboratory Testing
Figure A-1. Key to Exploration Logs
Figures A-2 through A-35. Logs of Explorations
Figure A-36. Atterberg Limits Test Results
Figures A-37 through A-44. Logs of DCP
Figures A-45 and A-46. Logs of Infiltration Testing

Appendix B. Asphalt Core Photographs

Figures B-1 through B-5. Asphalt Core Photographs
Appendix C. Report Limitations and Guidelines for Use

INTRODUCTION

This geotechnical report summarizes our geotechnical engineering services provided for the proposed Crestview Crossing development in Newberg, Oregon. The proposed project is located north of Pacific Highway West (Hwy 99W) between Vittoria Way and North Harmony Lane. The site is currently undeveloped and is approximately 33 acres.

A preliminary site development drawing for Crestview Crossing was provided to us by 3J Consulting Engineers (3J). The plan is titled "Crestview Planned Development - Preliminary Zoning Map," dated June 2017. The preliminary zoning plan indicates the project will consist of multi-story apartment buildings, residential lots, commercial buildings, new City streets and shared access roadways, utilities associated with site development and off-site road improvements. The off-site road improvements include widening and intersection improvements along Hwy 99W adjacent to the site to the south.

Our recommendations for earthwork and retaining structures assume that maximum cuts and fills will be less than 10 feet each and that on-site retaining walls will be less than 10 feet in height.

Our structural design recommendations are based on the following:

- For commercial buildings, we assumed that maximum column and wall loads will be on the order of 40 kips per column and 2 kips per lineal foot (klf) respectively and that floor loads for slabs on grade will be 100 pounds per square foot (psf) or less.
- For apartments, we assumed typical light wood-frame structural loads.

The purpose of our services was to provide geotechnical design and construction recommendations for general site development (infrastructure development, overall site grading and design recommendations) and for proposed commercial and apartment buildings. Our report should not be used for individual residential lot development. Depending on building type, lot configuration and location, and final grading and site development as it varies across the site, lot-specific evaluation and additional geotechnical investigations may be required for future development for individual residential lots and near retaining walls, or for critical facilities if they are developed on site.

SCOPE OF SERVICES

The purpose of our services was to evaluate soil and groundwater conditions as a basis for developing geotechnical engineering design recommendations for general site development. Our proposed scope of services included the following:

1. Reviewed selected information regarding subsurface soil and groundwater at the site.
2. Coordinated and managed the field explorations, including public utility notification and scheduling of subcontractors and GeoEngineers' field staff.
3. Explored subsurface soil and groundwater conditions at the site by conducting:
a. Twenty-one test pit explorations in proposed building and parking areas to depths of 8 to 12 feet below the ground surface (bgs).
b. Nine pavement explorations (on the shoulder lane) along the proposed lane widening of Hwy 99 W to depths between 4 and $61 / 2$ feet bgs.
c. Four direct cone penetration tests (DCP) tests in four of the pavement explorations.
d. Four hand augers and DCP in on-site new roadway areas to depths between 3 and $41 / 2$ feet bgs.
e. Two infiltration tests near the proposed enhanced wetland areas.
4. Obtained samples at representative intervals from the explorations, observed groundwater conditions and maintained detailed logs in general accordance with ASTM International (ASTM) Standard Practices Test Method D 2488. Qualified staff from our office observed and documented field activities.
5. Performed laboratory tests on selected soil samples obtained from the explorations to evaluate pertinent engineering characteristics.
6. Performed a general geologic assessment of slopes at the site relative to existing stability and impact on proposed site development.
7. Provided a geotechnical evaluation of the site and design recommendations in this geotechnical report to address the following geotechnical engineering components:
a. A general description of site topography, geology and subsurface conditions.
b. An opinion, from a geotechnical engineering standpoint, as to the adequacy of the encountered soils to support the proposed development based on our recommendations.
c. Recommendations for site preparation measures, including disposition of undocumented fill and unsuitable native soils, recommendations for temporary cut slopes and constraints for wet weather construction.
d. Recommendations for temporary excavation and temporary excavation protection, such as excavation sheeting and bracing.
e. Recommendations for earthwork construction, including use of on-site and imported structural fill and fill placement and compaction requirements.
f. Geotechnical engineering recommendations for use in designing conventional retaining walls, including backfill and drainage requirements.
g. Recommendations for foundations to support proposed structures, including minimum width and embedment, design soil bearing pressures, settlement estimates (total and differential), coefficient of friction and passive earth pressures for sliding resistance. We assumed that shallow foundations could be used to adequately support the structures.
h. Recommendations for supporting on-grade slabs, including aggregate base, capillary break and modulus of subgrade reaction.
i. Seismic design parameters, including soil site class evaluation in accordance with the current version of the International Building Code (IBC).
j. Infiltration test results at infiltration facility locations provided by the project civil engineer.
k. Pavement recommendations for widening Hwy 99W meeting Oregon Department of Transportation (ODOT) Pavement Design recommendations.
I. Pavement recommendations for constructing asphaltic concrete (AC) pavements for proposed on-site roadways, including subgrade, drainage, base rock and pavement section.

SITE CONDITIONS

Site Geology

The project site is located within the western edge of the Willamette Basin physiographic province near the border with the Chehalem Mountains that separate the Willamette and Tualatin Basins. The project site is located within the Chehalem Creek Valley, a broad alluvial drainage that forms an embayment of the Willamette Valley extending north and northwest into the Chehalem Mountains.

The Engineering Geology of the Tualatin Valley Region, Oregon (Schlicker and Deacon 1967) shows the Newberg area mantled by "Willamette Silt," the term used by this publication for what is now more typically referred to as "fine-grained flood deposits" (Madin 1990). This alluvial sediment is described as "unconsolidated beds and lenses of fine sand, silt and clay." The mapping shows the project site within an area mapped as mantled by more clayey materials that are reported to accumulate in low-lying areas (Schlicker and Deacon 1967). The topography of the site and our field investigation suggests that the area of clay mantling is incorrectly mapped at this location but that the near-surface site geology is otherwise generally consistent with published geologic mapping.

Surface Conditions

A representative of GeoEngineers performed a general visual reconnaissance of the site. The site was accessed from a driveway located just off Hwy 99W that leads up to the single-family residence identified as 4505 East Portland Road. The residence appeared abandoned at the time of our field reconnaissance.

The site is approximately 33 acres of undeveloped land aside from the single-family residence, a barn and several small structures (animal coops/pens or storage sheds). The site appears to have been farmland that was used for pasture/hay, with a smaller portion (approximately 3 acres) in the southwest corner used as an orchard. Portions of the site appear to have been used as a tree farm in the past; however, in recent years much of the subject property appears to have been left fallow.

Site vegetation is variable and consists of tall grasses, brush, shrubs and trees. The trees are small to large (semi-mature to mature) individual trees, dense stands of trees and an old orchard area.

Surrounding properties are generally residential and farmland (orchards and other crops) with a commercial development (Providence Medical Center) to the south of the site across Hwy 99W. The area immediately north of the site is generally single-family residential properties. The area to the east of the site is generally single-family residential with farmland. The area west of the site is generally single-family residential properties.

Slope Conditions

In addition to our general site reconnaissance, we performed a visual geologic reconnaissance on September 29, 2017, to observe existing slope conditions. Site topography is undulatory to gently sloping, with maximum gradients typically less than $4 \mathrm{H}: 1 \mathrm{~V}$ (horizontal to vertical) to as low as $10 \mathrm{H}: 1 \mathrm{~V}$ or flatter. The
exception to this is the cut slope along the Hwy 99W right-of-way that has been constructed to gradients as steep as 1H:1V locally.

The interior site slopes appear planar to convex and regular. We did not observe indications of large, deeplyseated, recent or active slope instability such as concave, steeply-inclined bare-soil scarps, bulging or hummocky topography, anomalous drainage features or vegetation. Minor sloughing or slumping along a portion of the Hwy 99W cut slope appears related to localized oversteepening of the slope cut. The exposed soils in this cut are fine-grained soils that correspond to the same silt soil unit we encountered in the site test pits.

Light Detection and Ranging (LiDAR) landslide hazard mapping has not been completed for the Newberg area. The Oregon State Landslide Information Layer (SLIDO) (Oregon Department of Geology and Mineral Industries 2017) shows a large area of "landslide topography" extending to within $1 / 4$ mile of the site. The SLIDO layer states that this is based on the hazard mapping of Schlicker and Deacon (1967), but a close examination of the hazard map from the earlier publication shows that the investigators did not extend the "landslide area" as far south as shown on the SLIDO database. Our observations likewise do not support the proximity of this old or ancient landslide to the project site.

Subsurface Conditions

We completed field explorations at the site on September 20, 21 and 26, 2017. Our explorations included:

- Twenty-one test pit (TP) explorations, TP-1 to TP-21, to depths of 8 to 12 feet bgs.
- Nine pavement borings, B-1 to B-9, to depths between 4 and $61 / 2$ feet bgs, with four DCP tests completed in four of the borings ($B-2, B-4, B-6$ and $B-8$).
- Four hand augers with DCP to depths between 3 and $41 / 2$ feet bgs.
- Two infiltration tests near the proposed onsite enhanced wetlands.

The approximate locations of the explorations are shown in the Site Plan, Figure 2. A member of our professional staff maintained detailed logs of the soils encountered and gathered representative soil samples. Appendix A summarizes our exploration methods and presents our exploration logs and DCP results. Laboratory test results are provided in the exploration logs and described in Appendix A.

Hwy 99W Pavement Explorations

In general, our Hwy 99W pavement explorations encountered typical pavement sections (AC underlain by aggregate base) over native subgrade material. Specifically, the ground surface at the pavement explorations consisted of 3 to $91 / 2$ inches of AC. The AC was underlain by gravel fill (aggregate base) having a variable thickness between approximately $111 / 2$ and 26 inches. In six of the pavement explorations, the gravel fill was underlain by native medium stiff brown silt. However, we encountered additional layers of fill materials underlying the pavement section in three of the borings, $B-6, B-8$ and $B-9$. The reader is referred to the boring logs and DCP results in Appendix A for more detailed information about the soils encountered in the pavement explorations.

Site Test Pits and Hand Augers

In general, our test pit and hand-auger explorations conducted on the proposed development site encountered a topsoil layer, underlain by a tilled soil zone, which was in turn underlain by native soil materials. The topsoil is approximately 6 inches thick and consists of brown to dark brown silt with roots and organic material.

The material underlying the topsoil is a tilled zone typical of previously farmed land and extends approximately 12 inches below the topsoil. The tilled zone is brown and gray silt classified as soft in consistency based on its disturbed state.

The tilled zone is underlain by native soils consisting primarily of medium stiff to stiff brown and gray silt. The consistency of the silt material has some variability with depth based on encountering some areas of stiff silt in addition to the medium stiff silt in several explorations. The silt also had zones of yellow, orange and red mottling. Although the primary native material observed in our test pits was silt, we encountered clay in two of our test pits, TP-3 and TP-8. The reader is referred to the exploration logs and DCP results for more detailed information about the soils encountered in the pavement explorations.

Groundwater

Our explorations revealed the following information about groundwater:

- Areal groundwater was not observed in most of our explorations.
- We did observe groundwater in boring B-7, which was drilled in Hwy 99W. Based on adjacent site grades (uphill to the north on to the site from Hwy 99W), and the nature of the native fine-grained silt and clay to perch groundwater, downslope areas may encounter perched groundwater above the level of permanent groundwater.
- The site soils, particularly the near-surface soils, contain high amounts of moisture.

Based on our site explorations, we expect that groundwater will be present at shallow depths in a perched condition during wet times of the year or during extended periods of wet weather. Some artesian-type groundwater conditions (upward flowing from perched conditions upslope) may be encountered in downslope areas. Groundwater conditions at the site are expected to vary seasonally due to rainfall events and other factors not observed in our explorations. For example, our past experience with agricultural sites indicates that remnant drainage features, such as buried clay tiles and cisterns, can produce local groundwater and temporary strong flow into excavations where drain tiles are pierced.

CONCLUSIONS

General

Based on our explorations, testing and analyses, it is our opinion that the site is suitable for the proposed project from a geotechnical standpoint, provided the recommendations in this report are incorporated into the project design and implemented during construction. We offer the following conclusions regarding geotechnical engineering design and construction at the site.

- Existing site structures and structural features designated for removal should be demolished and completely removed from the site.
- Existing utilities below proposed structural areas, including proposed buildings and roads, should be relocated or abandoned and grouted full if left in place.
- Surface conditions at the site consist primarily of vegetated areas covered with grasses, shrubs and trees; therefore, clearing, stripping and grubbing will be required. We anticipate a stripping depth of approximately 6 inches bgs to remove the topsoil layer. Grubbing and deeper excavations up to several feet will be required to remove the root zones of shrubs and trees. Portions of the site are heavily vegetated and previously buried roots are also expected, even in the current grassy areas of the site. Cleared, stripped and grubbed materials should be hauled off-site and properly disposed unless otherwise allowed by the project specifications for other uses such as landscaping, stockpiling or onsite burning.
- A "tilled zone" mantels the site from previous agriculture land use. The tilled zone consists of moist loose silt with trace roots and extends to a depth of approximately 18 inches bgs. The tilled zone is too loose to support structures, including buildings, foundations, floor slabs, pavements and other settlement-sensitive structures. Therefore, in areas designated to receive fill, and in areas where site cuts do not extend below the tilled zone, it should be either: (1) scarified, moisture-conditioned and compacted in place during the dry season; or (2) removed and replaced with Imported Select Structural Fill if construction occurs during the wet season or at other times when the material cannot be compacted in place.
- The soils at the site below the topsoil zone are suitable to use as structural fill if they are properly moisture conditioned and compacted. Because the site soils have a moisture content that is currently wet of optimum, they will become significantly disturbed from construction traffic, particularly during wet weather. Wet weather construction practices will be required over exposed native soils and to protect exposed subgrades, except during the dry summer months.
- Previously farmed areas can have buried features that are not encountered in geotechnical borings and test pits, for example: old foundations, structures, agricultural drain pipes and cisterns. We recommend a budget contingency for removing old buried features.
- Groundwater was not encountered during our explorations, but based on our experience and our observations, perched groundwater may be present during periods of persistent rainfall.
- Proposed commercial and apartment structures can be satisfactorily supported on continuous and isolated shallow foundations supported on the firm native soils encountered below the tilled zone, or on structural fill that extends to the firm native soils.
- Slabs on grade for proposed commercial and apartment structures can be satisfactorily supported on Aggregate Base that is founded on the firm native soils encountered below the tilled zone, or on structural fill that extends to the firm native soils. We recommend that slabs-on-grade be provided with proper moisture control by constructing the aggregate base as a capillary break and providing a vapor barrier for moisture-sensitive applications.
- Based on the assumed design loads described in the "Introduction" section of this report, we estimate total settlements will be less than 1 inch for foundations constructed as recommended. If larger structural loads are anticipated, we should review and reassess the estimated settlement.
- As stated earlier, our report should not be used for individual residential lot development. Lot-specific studies and additional geotechnical assessment/investigations may be required for future development for individual residential lots.
- Standard pavement sections as summarized in this report, consisting of AC over Aggregate Base and/or Aggregate Subbase, over properly prepared subgrade, can be used to support the estimated traffic loads provided the pavement sections are designed and constructed as recommended in this report.

EARTHWORK RECOMMENDATIONS

In general, site preparation and earthwork operations will include the following:

- Demolishing and disposing of debris from existing structures and hardscapes.
- Removing or relocating existing site utilities if present.
- Clearing to remove vegetation and grubbing to remove roots.
- Site stripping.
- Recompacting (dry weather) or replacing (wet weather) the tilled zone.
- Cutting and filling for mass grading.
- Excavating and filling for grade separators, such as retaining walls and slopes.
- Excavating and filling for roads and pavements.
- Excavating and filling for foundations and site utilities.
- Fine-grading to establish final surface grades.

Site Preparation

In general, site preparation will include demolishing existing structures, removing or relocating existing site utilities, grubbing and stripping.

Demolition

All structures and belowground structures to be demolished should be completely removed from proposed structural areas and for a margin of at least 3 feet around proposed structural areas. Proposed structural areas are areas where new structures will be built, including building pads and roadways. Existing utilities that will be abandoned on site should be identified prior to construction. Abandoned utility lines should be completely removed or filled with grout if abandoned and left in place to reduce potential settlement or caving in the future. Materials generated during demolition should be transported off site and properly disposed.

Clearing and Grubbing

Site clearing will be required to remove site vegetation, including grass, shrubs and trees that are designated for removal. Following clearing, grubbing and excavations up to several feet will be required to remove the root zones of shrubs and trees. Deeper excavations, up to 6 or 8 feet may be required to remove the root zones of large trees. Roots larger than $1 / 2$ inch in diameter should be removed. Excavations to
remove root zones should be done with a smooth-bucket to minimize subgrade disturbance. Portions of the site are heavily vegetated and previously buried roots are also expected, even in the current grassy areas of the site. Grubbed materials should be hauled off site and properly disposed unless otherwise allowed by the project specifications for other uses such as landscaping, stockpiling or on-site burning.

Existing voids and new depressions created during demolition, clearing, grubbing or other site preparation activities, should be excavated to firm soil and backfilled with Imported Select Structural Fill. Greater depths of disturbance should be expected if site preparation and earthwork are conducted during periods of wet weather.

Stripping

Based on our observations at the site, we estimate that the depth of stripping should be on the order of about 6 inches. Greater stripping depths may be required to remove localized zones of loose or organic soil, and in areas where moderate to heavy vegetation are present, or where surface disturbance from prior use has occurred. The actual stripping depth should be based on field observations at the time of construction. Stripped material should be transported off site for disposal unless otherwise allowed by the project specifications for other uses such as landscaping.

Subgrade Improvement for the Tilled Zone

A "tilled zone" mantels the site from previous agriculture land use. The tilled zone consists of disturbed soil comprised of moist, loose silt with trace roots and extends to a depth of approximately 18 inches bgs. The tilled zone is too loose to support structures, including buildings, foundations, floor slabs, pavements and other settlement-sensitive structures. Therefore, if the tilled zone remains in place to receive site fills during mass grading, it should be either: (1) scarified, moisture-conditioned and compacted in-place during the dry season; or (2) removed and replaced with Imported Select Structural Fill if construction occurs during the wet season, or at other times when the material cannot be compacted in place. If the tilled zone is cut away (cuts extend below the tilled zone) as a part of mass grading, recompaction or removal of in-place undisturbed soils is not required.

The tilled zone soil will be generally loose, especially when wet and will provide marginal to poor support for construction equipment. Wet weather construction practices will be required when improving the tilled zone, except during the dry summer months.

Subgrade improvement for the tilled zone can be accomplished by removing and replacing or scarifying and re-compacting the tilled zone. Scarification is typically performed by ripping with agricultural discs and aerating the soils to dry them during dry weather periods. Considerable soil processing, including moisture conditioning (primarily drying - to reduce the existing moisture content), should be expected to adequately compact the tilled zone. If the soil cannot be properly moisture conditioned (dried), the subgrade should be removed and replaced with Imported Select Structural Fill. If the project specifications allow, the tilled zone can be cement amended as described in "Soil Amendment with Cement" section of this report. Cement amendment is typically performed to depths of 12 to 18 inches. When performed in silty soils, such as those at the site, multiple tilling and application passes may be required to adequately blend and amend the soils.

Subgrade Evaluation

As described above, disturbed material may be present after demolition and site stripping are complete. Subgrade areas to be developed should be prepared to be in a uniformly firm and unyielding condition prior to placing structural fill or structural elements. We recommend that prepared subgrades be observed by a member of our firm, who will evaluate the suitability of the subgrade and identify areas of yielding, which are indicative of soft or loose soil.

Subgrades, including subgrades to receive fill, should be proof-rolled with heavy rubber-tired equipment and/or probed with a $1 / 2$-inch-diameter steel rod, as appropriate depending on prevailing conditions. If soft, yielding or otherwise unsuitable areas revealed during probing or proof-rolling cannot be compacted to a stable and uniformly firm condition, we recommend that: (1) the subgrade soils be scarified, aerated and recompacted; or (2) the unsuitable soils be removed and replaced with Structural Fill.

Subgrade Protection and Wet Weather Considerations

The soils at the site are highly susceptible to moisture. Wet weather construction practices will be necessary if work is performed during periods of wet weather. If site grading will occur during wet weather conditions, it will be necessary to use track-mounted equipment, load removed material into trucks supported on gravel haul roads, use gravel working pads and employ other methods to reduce ground disturbance. The contractor should be responsible to protect the subgrade during construction.

Earthwork planning should include considerations for minimizing subgrade disturbance. We provide the following recommendations if wet weather construction is considered:

- The ground surface in and around the work area should be sloped so that surface water is directed to a sump or discharge location. The ground surface should be graded such that areas of ponded water do not develop. Measures should be taken by the contractor to prevent surface water from collecting in excavations and trenches. Measures should be implemented to remove surface water from the work areas.
- Earthwork activities should not take place during periods of heavy precipitation.
- Slopes with exposed soils should be covered with plastic sheeting or similar means.
- The site soils should not be left in a disturbed or uncompacted state and exposed to moisture. Sealing the surficial soils by rolling with a smooth-drum roller prior to periods of precipitation may reduce the extent to which these soils become wet or unstable.
- Construction activities should be scheduled so that the length of time that soils are left exposed to moisture is reduced to the extent practicable.
- Construction traffic should be restricted to specific areas of the site, preferably areas that are not susceptible to wet weather disturbance such as haul roads and areas that are adequately surfaced with working pad materials.
- When on-site soils are wet of optimum, they are easily disturbed and will not provide adequate support for construction traffic nor for the proposed development. The use of granular haul roads and staging areas will be necessary to support heavy construction traffic. Generally, a 12- to 16-inch-thick mat of Imported Select Structural Fill should be sufficient for light staging areas for the building pad and light staging activities but is not expected to be adequate to support repeated heavy equipment or truck
traffic. The thickness of the Imported Select Structural Fill for haul roads and areas with repeated heavy construction traffic should be increased to between 18 and 24 inches. The actual thickness of haul roads and staging areas should be determined at the time of construction and based on the contractor's approach to site development and the amount and type of construction traffic.
- The base rock (Aggregate Base and Aggregate Subbase) thicknesses described in the "Pavement Recommendations" sections of this report are intended to support post-construction design traffic loads. The design base rock thicknesses will likely not support repeated heavy construction traffic during site construction or during pavement construction. A thicker base rock section as described above for haul roads will likely be required to support construction traffic.
- During periods of wet weather, concrete should be placed as soon as practical after preparing foundation excavations. Foundation bearing surfaces should not be exposed to standing water. Should water infiltrate and pool in the excavation, the water should be removed, and the foundation subgrade should be re-evaluated before placing reinforcing steel or concrete. Foundation subgrade protection, such as a 3- to 4-inch thickness of Aggregate Base/Aggregate Subbase or lean concrete, may be necessary if footing excavations are exposed to extended wet weather conditions.

During wet weather, or when the exposed subgrade is wet or unsuitable for proof-rolling, the prepared subgrade should be evaluated by observing excavation activity and probing with a steel foundation probe. Observations and probing should be performed by a member of our staff. Wet soil that has been disturbed due to site preparation activities, or soft or loose zones identified during probing, should be removed and replaced with Imported Select Structural Fill.

Soil Amendment with Cement

As an alternative to the using Imported Select Structural Fill material for wet weather structural fill, an experienced contractor may be able to amend the on-site soil with portland cement concrete (PCC) to obtain suitable support properties. It is often less costly to amend on-site soils than to remove and replace soft soils with imported granular materials. We also considered lime amendment for the site soils. However, based on our experience on nearby sites, in-place soil moisture contents, observed soil types and processing speed, cement amendment would be more suitable at this site than lime amendment. Single pass tilling depths for cement amendment equipment is typically 18 inches or less. However, multiple tilling passes may be required to adequately blend in the cement with the soils and to sufficiently process the soils. It may also be necessary to place the recommended cement quantities in multiple passes between tilling passes, which requires intermediate compaction.

The contractor should be responsible for selecting the means and methods to construct the amended soil without disturbing exposed subgrades. We recommend low ground-pressure (such as balloon-tired) cement spreading equipment be required. We have observed other methods used for spreading that have resulted in significant site disturbance and high remedial costs. For example, we have observed amendment efforts using a spreader truck equipped with road tires pulled by track-mounted equipment that resulted in significant disturbance to the work area and required re-working large areas of cement-amended product at additional expense.

Some areas of the site, notably in the vicinity of test pits TP-3 and TP-8 appear to have higher clay contents, which typically results in higher cement volumes than in areas of predominantly silt and will likely require
multiple tilling and cement spreading passes, as well as higher cement volumes in order to achieve target soil strengths and required levels of compaction.

Areas of standing water, or areas where traffic patterns are concentrated and disturbing the subgrade, will also create a need for higher amounts of cement to be applied and additional tilling for better mixing and cement hydration prior to final compaction.

Successful use of soil amendment depends on the use of correct mixing techniques, the soil moisture content at the time of amendment and amendment quantities. Specific recommendations, based on exposed site conditions for soil amending, can be provided if necessary. However, for preliminary planning purposes, it may be assumed that a minimum of 5 percent cement (by dry weight, assuming a unit weight of 100 pounds per cubic foot [pcf]) will be sufficient for improving on-site soils. Treatment depths of 12 to 16 inches are typical (assuming a seven-day unconfined compressive strength of at least 80 pounds per square inch [psi]), although they may be adjusted in the field depending on site conditions. Soil amending should be conducted in accordance with the specifications provided in Oregon Structural Specialty Code (OSSC) 00344 (Treated Subgrade).

We recommend a target strength for cement-amended soils of 80 psi . The amount of cement used to achieve this target generally varies with moisture content and soil type. It is difficult to predict field performance of soil-to-cement amendment due to variability in soil response and we recommend laboratory testing to confirm expectations. However, for preliminary design purposes, 4 to 5 percent cement by weight of dry soil can generally be used when the soil moisture content does not exceed approximately 20 percent. If the soil moisture content is in the range of 20 to 35 percent, 5 to 7 percent by weight of dry soil is recommended. The amount of cement added to the soil should be adjusted based on field observations and performance.

PCC-amended soil is hard and has low permeability; therefore, this soil does not drain well nor is it suitable for planting. Future landscape areas should not be cement amended, if practical, or accommodations should be planned for drainage and planting. Cement amendment should not be used if runoff during construction cannot be directed away from adjacent low-lying wet areas and active waterways and drainage paths.

When used for constructing pavement, staging, or haul road subgrades, the amended surface should be protected from abrasion by placing a minimum 4-inch thickness of base rock material (Aggregate Base/Aggregate Subbase). To prevent strength loss during curing, cement-amended soil should be allowed to cure for a minimum of four days prior to placing the base rock. The base rock typically becomes contaminated with soil during construction. Contaminated base rock should be removed and replaced with clean base rock in pavement areas to meet the required thickness(es) in the "Pavement Recommendations" section to this report.

It is not possible to amend soil during heavy or continuous rainfall. Work should be completed during suitable weather conditions.

Separation Geotextile Fabric

A separation geotextile fabric should be placed as a barrier between the subgrade and granular fill materials in staging areas, haul road areas and in areas of repeated construction traffic. The geotextile should have
a minimum Mullen burst strength of 250 psi for puncture resistance and an apparent opening size (AOS) between U.S. Standard No. 70 and No. 100 sieves.

Erosion Control

Erosion control measures should be implemented in accordance with the City of Newberg's "Erosion and Sediment Control Manual."

Excavation

Based on the materials encountered in our subsurface exploration, it is our opinion that conventional earthmoving equipment in proper working condition should be capable of making necessary general excavations.

The earthwork contractor should be responsible for reviewing this report, including the boring logs, providing their own assessments and providing equipment and methods needed to excavate the site soils while protecting subgrades.

Dewatering

As discussed in the "Groundwater" section of this report, groundwater was not encountered in our explorations, and we do not expect groundwater to be a major factor during shallow excavations and earthwork. Excavations that extend into saturated/wet soils, or excavations that extend into perched groundwater, should be dewatered. Sump pumps are expected to adequately address groundwater encountered in shallow excavations. In addition to groundwater seepage, surface water inflow to the excavations during the wet season can be problematic. Provisions for surface water control during earthwork and excavations should be included in the project plans and should be installed prior to commencing earthwork.

Permanent Slopes

Permanent cut and fill slopes, where incorporated into the grading plan, should not exceed $2 \mathrm{H}: 1 \mathrm{~V}$. The slopes should be planted with appropriate vegetation to provide protection against erosion as soon as possible after grading. Buildings, access roads and pavements should be located at least 10 feet from the top of new fill slopes or existing slopes. Placement of fill near the top of the existing slope should be limited to 2 feet or less in thickness. If the grading plan requires additional fill, we should be contacted to evaluate the impact of the additional loading on the slope. Surface water runoff should be collected and directed away from slopes to prevent water from running down the face of the slope.

Trench Cuts and Trench Shoring

All trench excavations should be made in accordance with applicable Occupational Safety and Health Administration (OSHA) and state regulations. In our opinion, native soils are generally OSHA Type B. Temporary excavations deeper than 4 feet should be shored or laid back at an inclination of 1H:1V or flatter if workers are required to enter. Excavations made to construct footings or other structural elements should be laid back or shored at the surface as necessary to prevent soil from falling into excavations.

It should be expected that unsupported cut slopes will experience some sloughing and raveling if exposed to water. Plastic sheeting, placed over the exposed slope and directing water away from the slope, will reduce the potential for sloughing and erosion of cut slopes during wet weather.

The contractor is responsible for shoring methods and shoring system design. Shoring systems should be designed by a professional engineer before installation.

In our opinion, the contractor will be in the best position to observe subsurface conditions continuously throughout the construction process and to respond to the soil and groundwater conditions. Construction site safety is generally the sole responsibility of the contractor, who also is solely responsible for the means, methods, and sequencing of the construction operations and choices regarding excavations and shoring.

Under no circumstances should the information provided by GeoEngineers be interpreted to mean that GeoEngineers is assuming responsibility for construction site safety or the contractor's activities; such responsibility is not being implied and should not be inferred.

Fill Materials

General

Structural areas include areas beneath foundations, floor slabs, pavements, and any other areas intended to support structures or within the influence zone of structures. Fill intended for use in structural areas should meet the criteria for structural fill presented below. All structural fill soils should be free of debris, clay balls, roots, organic matter, frozen soil, man-made contaminants, particles with greatest dimension exceeding 4 inches (3 -inch-maximum particle size in building footprints) and other deleterious materials.

The suitability of soil for use as structural fill will depend on the gradation and moisture content of the soil. As the amount of fines in the soil matrix increases, the soil becomes increasingly more sensitive to small changes in moisture content and achieving the required degree of compaction becomes more difficult or impossible. Recommendations for suitable fill material are provided in the following sections.

On-Site Soils

The on-site soil is generally suitable for use as structural fill if it meets the requirements set forth in OSSC 00330.12 (Borrow Material). However, it will be very difficult to achieve adequate compaction during periods of wet weather or when the moisture content is above optimum. Accordingly, extended dry weather will be required to adequately condition and place the soils as structural fill.

The site soil is very sensitive to small changes in moisture content and highly susceptible to disturbance when wet. Use of the on-site soils as structural fill will be very difficult or may not be possible during wet weather (see the "Subgrade Protection and Wet Weather Considerations" section of this report).

The properly prepared and compacted on-site soils in the tilled zone qualify as structural fill provided they meet the recommendations in the "Subgrade Improvement for the Tilled Zone" section of this report.

Imported Select Structural Fill

Imported Select Structural Fill may be used as structural fill and should consist of pit or quarry run rock, crushed rock, or crushed gravel and sand that is fairly well-graded between coarse and fine sizes (approximately 25 to 65 percent passing the U.S. No. 4 sieve). It should have less than 5 percent passing the U.S. No. 200 sieve and have a minimum of 75 percent fractured particles according to American Association of State Highway and Transportation Officials (AASHTO) TP-61.

Aggregate Base

Aggregate Base material located under floor slabs and pavements, crushed rock used in footing overexcavations and retaining wall backfill should consist of imported clean, durable, crushed angular rock. Such rock should be well-graded, have a maximum particle size of 1 inch, have less than 5 percent passing the U.S. No. 200 sieve (3 percent for retaining walls) and meet the gradation requirements in Table 1. The gradations shown in Table 1 meet the requirements of ODOT Standard Section 02630. In addition, Aggregate Base shall have a minimum of 75 percent fractured particles according to AASHTO TP-61 and a sand equivalent of not less than 30 percent based on AASHTO T-176.

TABLE 1. RECOMMENDED GRADATION FOR AGGREGATE BASE

| Sieve size | Percent Passing
 (by weight) |
| :---: | :---: | :---: |
| 1 inch | 100 |
| $1 / 2$ inch | 50 to 65 |
| No. 4 | 40 to 60 |
| No. 40 | 5 to 15 |
| No. 200 | 0 to 5 |

Aggregate Subbase

Aggregate Subbase material should consist of imported, clean, durable, crushed angular rock. Such rock should be well-graded, have a maximum particle size of $11 / 2$ inch, have less than 5 percent passing the U.S. No. 200 sieve and meet the gradation requirements in ODOT Standard Section 00331. In addition, Aggregate Base shall have a minimum of 75 percent fractured particles according to AASHTO TP-61 and a sand equivalent of not less than 30 percent based on AASHTO T-176.

Trench Backfill

Backfill for pipe bedding and in the pipe zone should consist of well-graded granular material with a maximum particle size of $3 / 4$ inch and less than 5 percent passing the U.S. No. 200 sieve. The material should be free of organic matter and other deleterious materials. Further, the backfill should meet the pipe manufacturer's recommendations. Above the pipe zone backfill, Imported Select Structural Fill may be used as described above.

Fill Placement and Compaction

Structural fill should be compacted at moisture contents that are within 3 percent of the optimum moisture content as determined by ASTM Test Method D 1557 (Modified Proctor). The optimum moisture content varies with gradation and should be evaluated during construction. Fill material that is not near the optimum moisture content should be moisture conditioned prior to compaction.

Fill and backfill material should be placed in uniform, horizontal lifts and compacted with appropriate equipment. The appropriate lift thickness will vary depending on the material and compaction equipment used. Fill material should be compacted in accordance with Table 2. It is the contractor's responsibility to
select appropriate compaction equipment and place the material in lifts that are thin enough to meet these criteria. However, in no case should the loose lift thickness exceed 18 inches.

TABLE 2. COMPACTION CRITERIA

Fill Type	Compaction Requirements		
	Percent Maximum Dry Density Determined by ASTM Test Method D 1557 at \pm 3\% of Optimum Moisture		
	0 to 2 Feet Below Subgrade	> 2 Feet Below Subgrade	Pipe Zone
Fine-grained soils (non-expansive)	92	92	----
Imported Granular, maximum particle size < $1 \frac{1}{4}$ inch	95	95	----
Imported Granular, maximum particle size $1 \frac{1}{4}$ inch to 6 inches (3-inch-maximum under building footprints)	n / a (proof-roll)	n / a (proof-roll)	----
Retaining Wall Backfill*	92	92	------
Nonstructural Zones	90	90	90
Trench Backfill	95	90	90

Note:

* Measures should be taken to prevent overcompaction of the backfill behind retaining walls. We recommend placing the zone of backfill located within 5 feet of the wall in lifts not exceeding about 6 inches in loose thickness and compacting this zone with handoperated equipment such as a vibrating plate compactor or a jumping jack.

A representative from GeoEngineers should evaluate compaction of each lift of fill. Compaction should be evaluated by compaction testing unless other methods are proposed for oversized materials and are approved by GeoEngineers during construction. These other methods typically involve procedural placement and compaction specifications together with verification requirements such as proof-rolling.

INFILTRATION TESTING

As requested, we conducted infiltration testing to assist in evaluating the site for design for stormwater infiltration. We conducted infiltration testing in general accordance with the City of Portland Stormwater Design Manual (2014 version) at depths between 2 and 3 feet bgs, marked as IT-1 and IT-2 in Figure 2. Testing was conducted using the encased falling head and open pit infiltration testing procedures.

Testing Methods and Results

For the encased falling head testing a 6-inch-layer of pea gravel was placed in the pipe prior to adding water to diminish disturbance from water flowing at the base of the pipe interior. The test area was pre-soaked over a 4-hour period by adding water into the pipe when necessary. A good seal was present between the base of the pipe and the underlying soil, in our opinion.

For the open pit infiltration testing, test pits were 2 feet wide and 2 to 3 feet long with a testing depth of 1 foot. Approximately 2 inches of clean rock was placed in the bottom of the test locations to help minimize disturbance of the fine-grained materials in the excavation while adding water. Between 12 and 14 inches of water was added to the test pits for a period of 4 hours to saturate the underlying soils.

After the saturation period, the test locations were filled with clean water to at least 1 foot above the bottom of the pipe or excavation. The drop-in water level was measured over a period of 1 hour after the soak period. In the case where the water level falls during the time-measured testing, infiltration rates diminish as a result of less head from the water column in the test. In this test, we observed zero to negligible drops in the water level during the testing period. The field test results are summarized in Table 3.

TABLE 3. INFILTRATION RESULTS

Infiltration Test No.	Test Method	Depth (feet)	USCS Material Type	Field Measured Infiltration Rate ${ }^{1}$ (inches/hour)
IT-1	Open Pit	2	ML	0.1
IT-2	Encased Falling Head	3	ML	0.0

Notes:
${ }^{1}$ Appropriate factors should be applied to the field-measured infiltration rate, based on the design methodology and specific system used.
USCS = Unified Soil Classification System

Based on the test results, we do not recommend on-site stormwater disposal unless additional testing is performed and yields higher infiltration rates in other areas of the site, or at different elevations.

The infiltration rates shown in Table 3 are field-measured infiltration rates. These represent a relatively short-term measured rate taken after the required saturation period, and factors of safety have not been applied for the type of infiltration system being considered, or for variability that may be present in the onsite soil. In our opinion, and consistent with the state of the practice, correction factors should be applied to this measured rate to reflect the small area of testing and the number of tests conducted.

During infiltration testing, we observed negligible infiltration rates (effectively zero). If other textural-based infiltration rates (even if they are very low infiltration rates) are used for design, appropriate correction factors should also be applied by the project civil engineer to account for long-term infiltration parameters. From a geotechnical perspective, we recommend a factor of safety (correction factor) of at least 3 be applied to the infiltration values derived from field observations to account for potential soil variability with depth and location within the area tested. In addition, the stormwater system design engineer should determine and apply appropriate remaining correction factor values, or factors of safety, to account for repeated wetting and drying that occur in this area, degree of in-system filtration, frequency and type of system maintenance, vegetation, potential for siltation and bio-fouling, etc., as well as system design correction factors for overflow or redundancy and base and facility size.

The actual depths, lateral extent and estimated infiltration rates can vary from the values presented above. Field testing/confirmation during construction is often required in large or long systems or other situations where soil conditions may vary within the area where the system is constructed. The results of this field testing might necessitate that the infiltration locations be modified to achieve the design infiltration rate.

Also, infiltration flow rate of a focused stormwater system typically diminishes over time as suspended solids and precipitates in the stormwater further clog the void spaces between the soil particles or cake on the infiltration surface. The serviceable life of an infiltration media in a stormwater system can be extended by pre-filtering or with on-going accessible maintenance. Eventually, most systems will fail and will need to be replaced or have media regenerated or replaced. We recommend that infiltration systems include an overflow that is connected to a suitable discharge point. Also, infiltration systems can cause localized high groundwater levels and should not be located near basement walls, retaining walls, or other embedded structures unless these are specifically designed to account for the resulting hydrostatic pressure. Infiltration locations should not be located on sloping ground, unless it is approved by a geotechnical engineer, and should not be infiltrated at a location that allows for flow to travel laterally toward a slope face, such as a mounded water condition or too close to a slope face.

Suitability of Infiltration System

Successful design and implementation of stormwater infiltration systems and whether a system is suitable for a development depend on several site-specific factors. Stormwater infiltration systems are generally best suited for sites having sandy or gravelly soil with saturated hydraulic conductivities greater than 2 inches per hour. Sites with silty or clayey soil such as encountered at this site, are generally not wellsuited for stormwater infiltration. Soils that have fine-grained matrices are susceptible to volumetric change and softening during wetting and drying cycles. Fine-grained soils also have large variations in the magnitude of infiltration rates because of bedding and stratification that occurs during alluvial deposition, and often have thin layers of less permeable or impermeable soil within a larger layer.

Based on the fine-grained soil conditions and very low to negligible measured infiltration rates, we recommend infiltration of stormwater not be used as the sole method of stormwater management at this site unless those design factors can be otherwise accounted for.

PAVEMENT RECOMMENDATIONS

Our pavement recommendations are based on the results of our field testing and analysis. The Hwy 99W pavement analysis and recommendations were developed in general accordance with the ODOT Pavement Design Guide.

The recommended pavement sections assume that final improvements surrounding the pavement will be designed and constructed such that stormwater or excess irrigation water from landscape areas does not infiltrate below the pavement section into the base rock materials.

Dynamic Cone Penetrometer (DCP) Field Testing and Resilient Modulus (M_{R})

We conducted four DCP tests onsite near the proposed locations of the new roadway and four DCP tests in the north shoulder of Hwy 99W for widening the road. The tests were conducted in general accordance with ASTM D 6951 to estimate the subgrade support value, Mr. At each test location, we recorded penetration depths of the cone versus hammer blow counts. The DCP tests were terminated at depths between 3 and 5 feet bgs. The resilient modulus was estimated in general accordance with the ODOT Pavement Design Guide using a conversion coefficient, C_{f}, of 0.35 .

Table 4 lists the estimated subgrade resilient modulus at each test location based on data obtained in the upper 18 inches below the proposed pavement section. Field DCP data are summarized in Figures A-37 through A-44.

TABLE 4. ESTIMATED SUBGRADE RESILIENT MODULI BASED ON DCP TESTING

Boring Number	Estimated Resilient Modulus $(\mathbf{p s i})$
HA-1	4,800
HA-2	3,900
HA-3	5,000
HA-5	4,500
B-2	4,600
B-4	4,800
B-6	5,200
B-8	5,000

On-Site Local Roads

Pavement subgrades should be prepared in accordance with the "Earthwork Recommendations" section of this report. Our pavement recommendations at the site are based on estimated average daily traffic provided by the project traffic engineer. We have based our design analysis for truck traffic percentages from a nearby traffic count on Hwy 99W provided by ODOT.

Our pavement recommendations are based on the following assumptions and design parameters included in the ODOT Pavement Design Guide:

- The pavement subgrades, fill subgrades and site earthwork used to establish road grades below the Aggregate Subbase and Aggregate Base materials have been prepared as described in the "Earthwork Recommendations" section of this report.
- A resilient modulus of 20,000 psi has been estimated for compacted Aggregate Subbase and Aggregate Base materials.
- A resilient modulus of 4,200 psi was estimated for firm native soils below the tilled zone or structural fill placed on firm native soils below the tilled zone.
- Initial and terminal serviceability indices of 4.2 and 2.0, respectively.
- Reliability and standard deviations of 75 percent and 0.49 , respectively.
- Structural coefficients of 0.42 and 0.10 for the asphalt and base rock, respectively.
- A 20-year design life.
- Estimated traffic levels based on annul average daily traffic (AADT) provided by the project traffic engineer. The design Equivalent Single Axle Loads (ESAL) calculated from the AADT are 1,190,805 from

Hwy 99W to the roundabout and 1,069,585 for the remaining on-site roads, for a 20 -year design life, 2 percent growth and single-lane, one-way traffic.

- Estimated combined truck percentage of 5.4 percent is based on nearby ODOT traffic counts on Hwy 99W.

If any of the noted assumptions vary from project design use, our office should be contacted with the appropriate information so that the pavement designs can be revised or confirmed adequate.

The recommended minimum pavement sections are provided in Table 5. Pavement recommendations for "On-Site Local Roads" are for roadways within the development.

The alternate pavement section using Aggregate Subbase material is provided because it may be more applicable during wet-weather construction where a gravel haul road or working surface is needed to support construction traffic. Wet weather construction recommendations are provided in the "Earthworks Recommendations" section of this report. The sub-base material can be incorporated into the gravel working blankets and haul roads provided the material meets the minimum thickness in Table 5 and meets the specifications for Aggregate Subbase. Working blanket and haul road materials that pump excessively, or have excessive fines from construction traffic, should be removed and replaced with specified materials prior to constructing roadways over those areas.

If cement amendment is used during site development, as described in the "Earthwork Recommendations" section of this report, it may be possible to reduce the amount of aggregate base for the pavement sections. This will depend on several factors, including the prevailing weather conditions, depth of amendment and condition of the subgrade after amendment. GeoEngineers can provide additional information for on-site pavement sections if cement amendment will be used during construction.

TABLE 5. MINIMUM PAVEMENT SECTIONS FOR ON-SITE ROADS

| Road Section | Minimum Asphalt
 Thickness
 (inches) | Minimum Aggregate
 Base Thickness
 (inches) | Minimum Aggregate
 Sub-Base Thickness
 (inches) |
| :--- | :---: | :---: | :---: | :---: |
| On-site Local Road
 between Hwy 99W and
 Roundabout | 6.0 | 17.5 | 0.0 |
| Other On-site Local Roads | 6.0 | 8.0 | 12.0 |
| O.0 | 6.0 | 15.5 | 0.0 |

The aggregate base course should conform to the "Aggregate Base" section of this report and be compacted to at least 95 percent of the maximum dry density (MDD) determined in accordance with AASHTO T-180/ASTM Test Method D 1557.

The AC pavement should conform to Section 00745 of the most current edition of the ODOT Standard Specifications for Highway Construction. The Job Mix Formula should meet the requirements for a $1 / 2$-inch Dense Graded Level 2 Mix. The AC should be PG 64-22 grade meeting the ODOT Standard Specifications for Asphalt Materials. AC pavement should be compacted to 92.0 percent at Maximum Theoretical Unit Weight (Rice Gravity) of AASHTO T-209.

Hwy 99W Widening Pavement

Project development includes widening Hwy 99W to include a turn lane into the development. Widening the roadway will involve raising the current grade to match the existing roadway elevation. Fill placement to raise subgrade elevations and pavement subgrades should be prepared in accordance with the "Earthwork Recommendations" section of this report.

Our pavement recommendations for the right turn lane are based on estimated ADT provided by the traffic engineers. We have based our design analysis for truck traffic percentages from a nearby traffic count on Hwy 99W provided by ODOT.

Our pavement recommendations are based on the following assumptions and design parameters included in the ODOT Pavement Design Guide:

- The pavement subgrades, fill subgrades and site earthwork used to establish road grades below the Aggregate Subbase and Aggregate Base materials have been prepared as described in the "Earthwork Recommendations" section of this report.
- A resilient modulus of 20,000 psi has been estimated for compacted Aggregate Base.
- A resilient modulus of 4,800 psi was estimated for subgrade prepared and compacted as recommended.
- Initial and terminal serviceability indices of 4.2 and 2.5, respectively.
- Reliability and standard deviations of 85 percent and 0.49 , respectively.
- Structural coefficients of 0.42 and 0.10 for the asphalt and base rock, respectively.
- A 20-year design life.
- Estimated traffic levels based on estimated AADT from the traffic engineer. Estimated combined truck percentage of 5.4 percent is based on nearby ODOT traffic counts on Hwy 99W. The design ESALs calculated from the AADT are 2,907,533 for a 20 -year design life, 3.4 percent growth and single-lane, one-way traffic.
- Truck traffic consists of a range of 2- to 6-axle trucks with the distribution equaling the truck counts at the ODOT traffic counts on Hwy 99W.

Road widening AC pavement recommendations are for the turn lane widening entering the development. The recommended pavement sections are provided in Table 6. If any of the noted assumptions vary from project design use, our office should be contacted with the appropriate information so that the pavement designs can be revised or confirmed adequate.

TABLE 6. MINIMUM PAVEMENT SECTIONS FOR HWY 99W TURN LANE

Minimum Asphalt Thickness (inches)	Minimum Aggregate Base Thickness (inches)	Minimum Aggregate Sub- Base Thickness (inches)
7.0	18.0	0.0
7.0	8.5	12.0

The AC pavement should conform to Section 00745 of the most current edition of the ODOT Standard Specifications for Highway Construction. The Job Mix Formula should meet the requirements for a $1 / 2$-inch Dense Graded Level 2 Mix. The AC should be PG 70-22 grade meeting the ODOT Standard Specifications for Asphalt Materials. AC pavement should be compacted to 91.0 percent at Maximum Theoretical Unit Weight (Rice Gravity) of AASHTO T-209.

STRUCTURAL DESIGN RECOMMENDATIONS

Foundation Support Recommendations

Proposed commercial and apartment structures can be satisfactorily founded on continuous wall or isolated column footings supported on firm native soils encountered below the tilled zone, or on structural fill placed over firm native soils. Exterior footings should be established at least 18 inches below the lowest adjacent grade. The recommended minimum footing depth is greater than the anticipated frost depth. Interior footings can be founded a minimum of 12 inches below the top of the first-floor slab. Isolated column and continuous wall footings should have minimum widths of 24 and 18 inches, respectively. We have assumed that the column loads will be 40 kips or less, wall loads will be 2 klf or less, and floor loads for slabs on grade will be 100 psf or less for the proposed buildings. If design loads exceed these values, our recommendations may need to be revised.

Foundation Subgrade Preparation

The subgrades beneath proposed structural elements should be prepared as described below and in the "Earthworks Recommendations" section of this report. We recommend loose or disturbed soils resulting from foundation excavation be removed before placing reinforcing steel and concrete. Foundation bearing surfaces should not be exposed to standing water. If water infiltrates and pools in the excavation, the water, along with any disturbed soil, should be removed before placing reinforcing steel and concrete. A thin gravel layer consisting of Aggregate Base or Aggregate Subbase material can be placed at the base of foundation excavations to help protect the subgrade from weather and light foot traffic. The layer thickness for the gravel layer should be determined at the time of construction but is typically 3 to 4 inches. The gravel layer should be compacted as described in the "Fill Placement and Compaction" section.

We recommend GeoEngineers observe all foundation subgrades before placing concrete forms and reinforcing steel to determine that bearing surfaces have been adequately prepared and the soil conditions are consistent with those observed during our explorations.

Bearing Capacity - Spread Footings

We recommend conventional footings be proportioned using a maximum allowable bearing pressure of $2,500 \mathrm{psf}$ if supported on firm native soils below the tilled zone, or on structural fill placed over firm native soils. This bearing pressure applies to the total of dead and long-term live loads and may be increased by one-third when considering earthquake or wind loads. This is a net bearing pressure. The weight of the footing and overlying backfill can be ignored in calculating footing sizes.

Foundation Settlement

Foundations designed and constructed as recommended are expected to experience settlements of less than 1 inch. Differential settlements of up to one half of the total settlement magnitude can be expected between adjacent footings supporting comparable loads.

Lateral Resistance

The ability of the soil to resist lateral loads is a function of frictional resistance, which can develop on the base of footings and slabs, and the passive resistance, which can develop on the face of below-grade elements of the structure as these elements tend to move into the soil. For footings and floor slabs founded in accordance with the recommendations presented above, the allowable frictional resistance may be computed using a coefficient of friction of 0.30 applied to vertical dead-load forces. Our analysis indicates that the available passive earth pressure for footings confined by on-site soil and structural fill is 350 pcf, modeled as an equivalent fluid pressure. Typically, the movement required to develop the available passive resistance may be relatively large; therefore, we recommend using a reduced passive pressure of 250 pcf equivalent fluid pressure. In addition, in order to rely on passive resistance, a minimum of 10 feet of horizontal clearance must exist between the face of the footings and adjacent downslopes.

The passive earth pressure and friction components may be combined provided that the passive component does not exceed two-thirds of the total. The passive earth pressure value is based on the assumptions that the adjacent grade is level and that groundwater remains below the base of the footing throughout the year. The top foot of soil should be neglected when calculating passive lateral earth pressures unless the foundation area is covered with pavement or slab-on-grade. The lateral resistance values include a safety factor of approximately 1.5.

Drainage Considerations

We recommend the ground surface be sloped away from the buildings at least 2 percent. All downspouts should be tightlined away from the building foundation areas and should be discharged into a stormwater system. Downspouts should not be connected to footing drains.

Although not required based on groundwater depths observed in our explorations, if perimeter footing drains are used for below-grade structural elements or walls or to capture perched groundwater resulting from downslope cuts, they should be installed at the base of the exterior footings. The perimeter footing drains should be provided with cleanouts and should consist of at least 4-inch-diameter perforated pipe placed on a 3-inch bed of, and surrounded by, 6 inches of granular drainage material. Aggregate Base can be used for the granular pipe bedding and drainage materials provided the material has less than 3 percent passing the U.S. No. 200 sieve. The drainage material should be enclosed in a non-woven geotextile such as Mirafi 140 N (or approved alternate) to prevent fine soil from migrating into the drain material. We recommend against using flexible tubing for footing drainpipes. The perimeter drains should be sloped to drain by gravity to a suitable discharge, preferably a storm drain. We recommend that the cleanouts be covered and placed in flush-mounted utility boxes. Water collected in roof downspout lines must not be routed to the footing drain lines.

Floor Slabs

Satisfactory subgrade support for floor slabs on grade supporting the planned 100 psf floor loads can be obtained provided the floor slab subgrade is described in the "Earthworks Recommendations" section of
this report. Slabs should be reinforced according to their proposed use and per the structural engineer's recommendations. Subgrade support for concrete slabs can be obtained from the firm native soils underlying the tilled zone or on structural fill placed over firm native soils.

We recommend that on-grade slabs be underlain by a minimum 6-inch-thickness of Aggregate Base acting as a capillary break material to reduce the potential for moisture migration into the slab. The capillary break material should be placed as recommended in the "Fill Placement and Compaction" section of this report.

If dry on-grade slabs are required, for example at interior spaces where adhesives are used to anchor carpet or tile to the slab, a waterproof liner may be placed as a vapor barrier below the slab. The vapor barrier should be selected by the structural engineer and should be accounted for in the design floor section and mix design selection for the concrete, to accommodate the effect of the vapor barrier on concrete slab curing. Load-bearing concrete slabs should be designed assuming a modulus of subgrade reaction (k) of 150 psi per inch. We estimate that concrete slabs constructed as recommended will settle less than $1 / 2$ inch. Floor slab subgrades should be evaluated according to the "Subgrade Evaluation" section of this report.

Conventional Retaining Walls

Drainage

Positive drainage is imperative behind retaining structures. This can be accomplished by providing a drainage zone behind the wall consisting of free-draining material and perforated pipes to collect and dispose the water. The drainage material should consist of Aggregate Base having less than 3 percent passing the U.S. No. 200 sieve. The wall drainage zone should extend horizontally at least 18 inches from the back of the wall.

A perforated smooth-walled rigid drainpipe having a minimum diameter of 4 inches should be placed at the bottom of the drainage zone along the entire length of the wall, with the pipe invert at or below the base of the wall footing. The drainpipes should discharge to a tightline leading to an appropriate collection and disposal system. An adequate number of cleanouts should be incorporated into the design of the drains to provide access for regular maintenance. Roof downspouts, perimeter drains, or other types of drainage systems should not be connected to retaining wall drain systems.

Design Parameters

The pressures presented assume that backfill placed within 2 feet of the wall is compacted by handoperated equipment to a density of 90 percent of the MDD and that wall drainage measures are included as previously recommended. For walls constructed as described above, we recommend using an active lateral earth pressure corresponding to an equivalent fluid density of 35 pcf for the level backfill condition. For walls with backfill sloping upward behind the wall at $2 \mathrm{H}: 1 \mathrm{~V}$, an equivalent fluid density of 55 pcf should be used. This assumes that the tops of the walls are not structurally restrained and are free to rotate. For the at-rest condition (walls restrained from movement at the top) an equivalent fluid density of 55 pcf should be used for design. For seismic conditions, we recommend a uniform lateral pressure of 4 H (where H is the height of the wall) psf be added to these lateral pressures. If the retaining system is designed as a braced system but is expected to yield a small amount during a seismic event, an active earth pressure condition may be assumed and combined with the uniform seismic surcharge pressure.

The recommended pressures do not include the effects of surcharges from surface loads. If vehicles will be operated within one-half the height of the wall, a traffic surcharge should be added to the wall pressure. The traffic surcharge can be approximated by the equivalent weight of an additional 2 feet of backfill behind the wall. Additional surcharge loading conditions should also be considered on a case-by-case basis.

Retaining walls founded on native soil, or structural fill extending to these materials, may be designed using the allowable soil bearing values and lateral resistance values presented above in the "Shallow Foundations" section of this report. We estimate settlement of retaining structures will be similar to the values previously presented for building foundations.

Seismic Design

We recommend seismic design be performed using the procedure outlined in the 2012/2015 IBC and the 2014 OSSC. The parameters provided in Table 7 are based on the conditions encountered during our subsurface exploration program and should be used in preparation of response spectra for the proposed structures.

TABLE 7. SEISMIC DESIGN PARAMETERS

Parameter	Value
Site Class	D
Spectral Response Acceleration, S_{s}	0.95 g
Spectral Response Acceleration, S_{1}	0.43 g
Site Coefficient, Fa_{a}	1.12
Site Coefficient, F_{v}	1.57
Spectral Response Acceleration (Short Period), S_{Ds}	0.71 g
Spectral Response Acceleration (1-Second Period) $\mathrm{S}_{\mathrm{D} 1}$	0.45 g

Liquefaction Potential

Liquefaction is a phenomenon caused by a rapid increase in pore water pressure that reduces the effective stress between soil particles to near zero. The excessive buildup of pore water pressure results in the sudden loss of shear strength in a soil. Granular soil, which relies on interparticle friction for strength, is susceptible to liquefaction until the excess pore pressures can dissipate. Sand boils and flows observed at the ground surface after an earthquake are the result of excess pore pressures dissipating upwards, carrying soil particles with the draining water. In general, loose, saturated sand soil with low silt and clay contents is the most susceptible to liquefaction. Low plasticity, silty sand may be moderately susceptible to liquefaction under relatively higher levels of ground shaking.

Based on our analysis, the site soils are not prone to liquefaction during the design level earthquake. Accordingly, lateral spreading or liquefaction induced deformations are not expected.

DESIGN REVIEW AND CONSTRUCTION SERVICES

Recommendations provided in this report are based on the assumptions and preliminary design information stated herein. We welcome the opportunity to review and discuss construction plans and specifications for this project as they are being developed. In addition, GeoEngineers should be retained to review the geotechnical-related portions of the plans and specifications to evaluate whether they are in conformance with the recommendations provided in this report.

Satisfactory foundation and earthwork performance depends to a large degree on quality of construction. Sufficient monitoring of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications. Subsurface conditions observed during construction should be compared with those encountered during the subsurface explorations. Recognition of changed conditions often requires experience; therefore, qualified personnel should visit the site with sufficient frequency to detect whether subsurface conditions change significantly from those anticipated.

We recommend that GeoEngineers be retained to observe construction at the site to confirm that subsurface conditions are consistent with the site explorations, and to confirm that the intent of project plans and specifications relating to earthwork, pavement and foundation construction are being met.

LIMITATIONS

We have prepared this report for the exclusive use of 3J Consulting, Inc., J.T. Smith Companies and their authorized agents and/or regulatory agencies for the proposed Crestview Crossing Development at located north of Hwy 99W between Vittoria Way and North Harmony Way in Newberg, Oregon.

This report is not intended for use by others and the information contained herein is not applicable to other sites. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted practices in the area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

REFERENCES

International Code Council. 2012. 2012 International Building Code.

International Code Council. 2014. 2014 Oregon Structural Specialty Code.

Madin, I. P. 1990. Earthquake Hazard Geology Maps of the Portland Metropolitan Area, Oregon: Test and Map Explanation, DOGAMI Open File Report 0-90-2.

Occupational Safety and Health Administration (OSHA) Technical Manual Section V: Chapter 2, Excavations: Hazard Recognition in Trenching and Shoring:
http://www.osha.gov/dts/osta/otm/otm v/otm v 2.html.

Oregon Department of Geology and Mineral Industries. SLIDO: Statewide Landslide Information Layer for Oregon: accessed online at https://gis.dogami.oregon.gov/slido/, October 18, 2017 at 11:05 a.m.

Schlicker, H.G. and R.J. Deacon. 1967. Engineering Geology of the Tualatin Valley Region, Oregon: Oregon Department of Geology and Mineral Industries, Bulletin 60, p. 103, 4 plates, 1:62,500 scale.

GeoEngineers

ApPENDIX A
 Field Explorations and Laboratory Testing

APPENDIX A

FIELD EXPLORATIONS AND LABORATORY TESTING

Field Explorations

Soil and groundwater conditions at the proposed Crestview Crossing Development locations were explored on August 20, 21 and 26, 2017, by completing nine borings (B-1 through B-9), twenty-one test pits (TP-1 through TP-21), four hand augers (HA-1 through HA-4), two infiltration tests (IT-1 and IT-2) and eight DCP soundings. Boring depths extended between 4 and $61 / 2$ feet bgs, test pits were extended to depths between 8 and 12 feet bgs, hand augers were extended to depth between 3 and $41 / 2$ feet bgs, and DCP soundings were extended to depths between 3 and 4 feet bgs at the approximate locations shown in Figure 2.

The borings were advanced using solid stem drilling techniques using a trailer-mounted drill rig owned and operated by Dan Fischer Excavating of Banks, Oregon. Test pits were excavated using a mini-excavator owned and operated by K\&E Excavating out of Salem, Oregon.

The drilling was continuously monitored by a staff engineer from our office who maintained a detailed log of subsurface explorations, visually classified the soil encountered and obtained representative soil samples from the borings. Representative soil samples were obtained from each boring at approximate $21 / 2$ - to 5 -foot-depth intervals using a standard split spoon sampler. The samplers were driven into the soil using an automatic 140-pound hammer, free-falling 30 inches on each blow. The number of blows required to drive the sampler each of three, 6 -inch increments of penetration were recorded in the field. The sum of the blow counts for the last two, 6-inch increments of penetration is reported on the boring logs as the ASTM D 1556 Standard Penetration Test (SPT) N-value.

The test pit excavations were continuously monitored by an engineer from our office who maintained a detailed log of subsurface explorations, visually classified the soil encountered and obtained representative soil samples from the test pits, from the sidewalls above a depth of 4 feet bgs and from excavation spoil below that depth.

DCP soundings were performed by a staff geotechnical engineer from our office who recorded blow count versus cumulative penetration depth. This penetration resistance data was compared to the nearby borings where a detailed log of subsurface explorations was maintained, the soils encountered were visually classified and representative soil samples from the borings were obtained. The results of the DCP soundings are presented in Figures A-3 through A-10.

Recovered soil samples from exploratory borings were visually classified in the field in general accordance with ASTM D 2488 and the classification chart listed in Key to Exploration Logs, Figure A-1. Logs of the borings are presented in Figures A-2 through A-10. Logs of the test pits are presented in Figures A-11 through A-31. Logs of the hand augers are presented in Figures A-32 through A-35. The logs are based on interpretation of the field and laboratory data and indicate the depth at which subsurface materials or their characteristics change, although these changes might actually be gradual.

Laboratory Testing

Soil samples obtained from the explorations were visually classified in the field and in our laboratory using the USCS and ASTM classification methods. ASTM Test Method D 2488 was used to visually classify the soil samples, while ASTM D 2487 was used to classify the soils based on laboratory tests results. Moisture
content tests were performed in general accordance with ASTM D 2216-05. Atterberg limits test (ASTM 4813) were completed on representative soil samples. Results of the moisture contents testing are presented in the appropriate exploration logs at the respective sample depths and the Atterberg limits results in Figure A-36 in this appendix.

SOIL CLASSIFICATION CHART

MAJOR DIVISIONS			SYMBOLS		TYPICAL DESCRIPTIONS
			GRAPH	LETTER	
COARSE GRAINED SOILS	GRAVELANDGRAVELLYSOILSMORE THAN 50%OF COAREFRACTINN REATNEDON NO. 4 SIEVE	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL SAND MIXTURES
		(LItLe or no fines)	$\begin{array}{llll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
		GRAVELS WITH FINES	$0 F 10$	GM	SILTY GRAVELS, GRAVEL - SAND SILT MIXTURES
		$\underset{\substack{\text { (APPRECIABLE Amount } \\ \text { OF FINES) }}}{\text { (}}$	\square	GC	CLAYEY GRAVELS, GRAVEL - SAND CLAY MIXTURES
MORE THAN 50\% RETAINED ON NO. 200 SIEVE	SAND AND SANDY SOILS MORE THAN 50\% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	CLEAN SANDS (LITLEE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS
				SP	POORLY-GRADED SANDS, GRAVELLY SAND
		SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
		$\underset{\substack{\text { (APPRECIABLE Amount } \\ \text { OF FINES) }}}{ }$		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
$\begin{aligned} & \text { FINE } \\ & \text { GRAINED } \\ & \text { SOILS } \end{aligned}$	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYŚ, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
$\begin{aligned} & \text { MORE THAN } 50 \% \\ & \text { PASSSING } \\ & \text { N. } 200 \text { SIEVE } \end{aligned}$	SILTS AND CLAYS	$\underset{\text { THAN } 50}{\text { LIQUID LIMI GREATER }}$		MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
				CH	INORGANIC CLAYS OF HIGH PLASTICITY
				OH	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
HIGHLY ORGANIC SOILS			urus	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)
Shelby tube
Piston
Direct-Push
Bulk or grab
Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.
"P" indicates sampler pushed using the weight of the drill rig.
"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYMBOLS		TYPICAL DESCRIPTIONS
GRAPH	LETTER	(

Groundwater Contact

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer
Graphic Log Contact
_ـ Distinct contact between soil strata
Approximate contact between soil strata
Material Description Contact
Contact between geologic units
Contact between soil of the same geologic
unit

Laboratory / Field Tests

Percent fines
Percent gravel
Atterberg limits
Chemical analysis
Laboratory compaction test
Consolidation test
Dry density
Direct shear
Hydrometer analysis
Moisture content
Moisture content and dry density
Mohs hardness scale
Organic content
Permeability or hydraulic conductivity
Plasticity index
Pocket penetrometer
Sieve analysis
Triaxial compression
Unconfined compression
Vane shear

Sheen Classification

No Visible Sheen
Slight Sheen
Moderate Sheen
Heavy Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

Log of Boring B-1/C-1

Log of Boring B-2/C-2

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

$\begin{array}{cc} \hline & \text { Start } \\ \text { Drilled } & 9 / 21 / 2017 \end{array}$	$\begin{aligned} & \text { End } \\ & 9 / 21 / 2017 \end{aligned}$	Total Depth (ft)	6.5	Logged By Checked By	$\begin{aligned} & \text { TAP } \\ & \text { TAP } \end{aligned}$	Driller Dan Fischer Excavating, Inc.		Drilling Method Solid-stem Auger
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 211 \\ \text { NAVD88 } \end{gathered}$			Hammer Data	Rope \& Cathead 140 (lbs) / 30 (in) Drop		Drilling Equipment	Portable Beaver Drill Trailer Mounted
Easting (X) Northing (Y)		5553		System Datum		OR State Plane North NAD83 (feet)	Groundwat	not observed at time of exploration
Notes:								

Log of Boring B-3/C-3

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

$\begin{array}{cc} \hline & \text { Start } \\ \text { Drilled } & 9 / 21 / 2017 \end{array}$	$\begin{aligned} & \text { End } \\ & 9 / 21 / 2017 \end{aligned}$	Total Depth (ft)	6.5	Logged By Checked By	$\begin{aligned} & \text { TAP } \\ & \text { TAP } \end{aligned}$	Driller Dan Fischer Excavating, Inc.		Drilling Method	Solid-stem Auger
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 213 \\ \text { NAVD88 } \end{gathered}$			Hammer Data	Rope \& Cathead 140 (lbs) / 30 (in) Drop		Drilling Equipment	Porta	le Beaver Drill Tra
Easting (X) Northing (Y)	$\begin{gathered} 7575736 \\ 608651 \end{gathered}$			System Datum	OR State Plane North NAD83 (feet)		Groundwater not observed at time of exploration		
Notes:									

Log of Boring B-4/C-4

$\begin{array}{cc} \hline & \text { Start } \\ \text { Drilled } & 9 / 21 / 2017 \end{array}$	$\begin{aligned} & \text { End } \\ & 9 / 21 / 2017 \end{aligned}$	Total Depth (ft)	6.5	Logged By Checked By	$\begin{aligned} & \text { TAP } \\ & \text { TAP } \end{aligned}$	Driller Dan Fischer Excavating, Inc.		Drilling Method	Solid-stem Auger
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 202 \\ \text { NAVD88 } \end{gathered}$			Hammer Data	Rope \& Cathead 140 (lbs) / 30 (in) Drop		Drilling Equipment	Porta	le Beaver Drill Tra
Easting (X) Northing (Y)	$\begin{aligned} & 7575936 \\ & 608735 \end{aligned}$			System Datum	OR State Plane North NAD83 (feet)		Groundwater not observed at time of exploration		
Notes:									

Log of Boring B-5/C-5

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Boring B-6/C-6

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Boring B-7/C-7

Log of Boring B-8/C-8

Log of Boring B-9/C-9

Log of Test Pit TP-2

GeoEngineers (1)
Project: Crestview Crossing Project Location: Newberg, Oregon
Project Number: 6748-002-00

Date Excavated 9/21/2017	Total Depth (ft)	9.5	$\begin{array}{ll}\text { Logged By } & \text { DMH } \\ \text { Checked By } & \text { TAP }\end{array}$	Excavator Dan Fischer Excavating, Inc. Equipment CAT 305 E Mini-excavator		Groundwater not observed Caving not observed
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 207 \\ \text { NAVD88 } \end{gathered}$		Easting (X) Northing (Y)	7575434	Coordinate System Horizontal Datum	OR State Plane North NAD83 (feet)

Test pit completed at $91 / 2$ feet below ground surface

Log of Test Pit TP-3

Project: Crestview Crossing Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Test Pit TP-4

Project: Crestview Crossing Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Test Pit TP-5

Project: Crestview Crossing Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Test Pit TP-7

GeoEngineers (1)
Project: Crestview Crossing Project Location: Newberg, Oregon
Project Number: 6748-002-00

$\begin{array}{ll}\text { Date } & \text { 9/21/2017 } \\ \text { Excavated }\end{array}$	$\begin{aligned} & \text { Total } \\ & \text { Depth (ft) } \end{aligned} 9.5$	$\begin{array}{ll}\text { Logged By } & \text { DMH } \\ \text { Checked By } & \text { TAP }\end{array}$	Excavator Dan Fischer Excavating, Inc. Equipment CAT 305 E Mini-excavator		Groundwater not observed Caving not observed
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 202 \\ \text { NAVD88 } \end{gathered}$	Easting (X) Northing (Y)	$\begin{gathered} 7575716 \\ 609019 \end{gathered}$	Coordinate System Horizontal Datum	OR State Plane North NAD83 (feet)

Log of Test Pit TP-8

Log of Test Pit TP-10

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Test Pit TP-11

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Date Excavated	9/20/2017	Total Depth (ft)	8	Logged By Checked By	DMH TAP	Excavator Equipment
Surface Elevation (ft) Vertical Datum Fischer Excavating, Inc.	198 NAVD88	Easting (X) Northing (Y)	7575909 609174	Groundwater not observed Caving not observed		

Log of Test Pit TP-12

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

$\begin{array}{ll}\text { Date } & \text { 9/20/2017 } \\ \text { Excavated }\end{array}$	$\begin{aligned} & \text { Total } \\ & \text { Depth (ft) } \end{aligned} \quad 8.5$	$\begin{array}{ll}\text { Logged By } & \text { DMH } \\ \text { Checked By } & \text { TAP }\end{array}$	Excavator Dan Fischer Excavating, Inc. Equipment CAT 305 E Mini-excavator		Groundwater not observed Caving not observed
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 206 \\ \text { NAVD88 } \end{gathered}$	Easting (X) Northing (Y)	$\begin{gathered} 7575998 \\ 609673 \end{gathered}$	Coordinate System Horizontal Datum	OR State Plane North NAD83 (feet)

Log of Test Pit TP-14

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Test Pit TP-15

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Date Excavated	9/20/2017	Total Depth (ft)	8.5	Logged By Checked By	DMH TAP	Excavator Equipment
Surface Elevation (ft) Vertical Datum Fischer Excavating, Inc.	196 NAVD88	Easting (X) Northing (Y)	7576133 609366	Groundwater not observed Caving not observed		

Log of Test Pit TP-16

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Test Pit TP-17

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Date Excavated 9/20/2017	Total Depth (ft)	8	$\begin{array}{lc} \text { Logged By } & \text { DMH } \\ \text { Checked By } & \text { TAP } \end{array}$	Excavator Dan Fischer Excavating, Inc. Equipment CAT 305 E Mini-excavator		Groundwater not observed Caving not observed
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 187 \\ \text { NAVD88 } \end{gathered}$		Easting (X) Northing (Y)	$\begin{gathered} 7576405 \\ 609031 \end{gathered}$	Coordinate System Horizontal Datum	OR State Plane North NAD83 (feet)

Log of Test Pit TP-18

GeoEngineers
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

$\begin{array}{ll}\text { Date } & \text { 9/20/2017 } \\ \text { Excavated }\end{array}$	$\begin{aligned} & \text { Total } \\ & \text { Depth (ft) } \end{aligned}$	$\begin{array}{ll}\text { Logged By } & \text { DMH } \\ \text { Checked By } & \text { TAP }\end{array}$	Excavator Dan Fischer Excavating, Inc. Equipment CAT 305 E Mini-excavator		Groundwater not observed Caving not observed
Surface Elevation (ft) Vertical Datum	$\begin{gathered} 191 \\ \text { NAVD88 } \end{gathered}$	Easting (X) Northing (Y)	$\begin{gathered} 7576483 \\ 609162 \end{gathered}$	Coordinate System Horizontal Datum	OR State Plane North NAD83 (feet)

Log of Test Pit TP-19

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Date Excavated	9/20/2017	Total Depth (ft)	9.5	Logged By Checked By	DMH TAP
Surface Elevation (ft) Vertical Datum	Excavator Equipment	Dan Fischer Excavating, Inc. CAT 305 E Mini-excavator	Groundwater not observed Caving not observed		

Notes: See Figure A-1 for explanation of symbols.

The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to $1 / 2$ foot.
Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM

Log of Test Pit TP-20

GeoEngineers ()
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Date Excavated	9/20/2017	Total Depth (ft)	8.5	Logged By Checked By	TAP TAP	Excavator Equipment
Surface Elevation (ft) Vertical Datum Fischer Excavating, Inc.	195 NAVD88	Easting (X) Northing (Y)	7576442 609391	Groundwater not observed Caving not observed		

Test pit completed at $81 / 2$ feet below ground surface

Log of Test Pit TP-21

GeoEnginetrs (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Hand Auger HA-1

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Hand Auger HA-2

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Hand Auger HA-3

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Log of Hand Auger HA-4

GeoEngineers (1)
Project: Crestview Crossing
Project Location: Newberg, Oregon
Project Number: 6748-002-00

Test increment	Number of blows	Cumulative blows	surface	increment	penetration	Cummulative Penetration	blow set	per blow	factor	OCP Index	DCP Index	CBR	M_{R}
\#	\#	\#	(in)	(mm)	(mm)	(in)	(in)	(in)	1 for 8 -kg 2 for	in/blow	mm/bow	\%	psi
1	1	2	1.2	31.0	31.0	1.2	1.2	1.22		2.44	62.00	3	3431
2	1	3	1.8	14.0	45.0	1.8	0.6	0.55	2	1.10	28.00	7	4678
3	1	4	2.4	17.0	62.0	2.4	0.7	0.67	2	1.34	34.00	6	4337
4	1	5	3.0	15.0	77.0	3.0	0.6	0.59	2	1.18	30.00	6	4554
5	1	6	3.7	17.0	94.0	3.7	0.7	0.67	2	1.34	34.00	6	4337
6	1	7	4.1	11.0	105.0	4.1	0.4	0.43	2	0.87	22.00	9	5140
7	1	8	4.6	13.0	118.0	4.6	0.5	0.51	2	1.02	26.00	8	4815
8	1	9	5.2	13.0	131.0	5.2	0.5	0.51	2	1.02	26.00	8	4815
9	1	10	5.5	9.0	140.0	5.5	0.4	0.35	2	0.71	18.00	11	5558
10	1	11	5.9	10.0	150.0	5.9	0.4	0.39	2	0.79	20.00	10	5334
11	1	12	6.2	8.0	158.0	6.2	0.3	0.31	2	0.63	16.00	13	5819
12	2	14	6.9	18.0	176.0	6.9	0.7	0.35	2	0.71	18.00	11	5558
13		16	7.6	17.0	193.0	7.6	0.7	0.33	2	0.67	17.00	12	5683
14	2	18	8.2	15.0	208.0	8.2	0.6	0.30	2	0.59	15.00	14	5967
15		20	8.5	9.0	217.0	8.5	0.4	0.18	2	0.35	9.00	25	7283
16	2	22	8.9	10.0	227.0	8.9	0.4	0.20	2	0.39	10.00	22	6990
17	3	25	9.5	15.0	24.0	9.5	0.6	0.20	2	0.39	10.00	22	6990
18		28	10.0	12.0	254.0	10.0	0.5	0.16	2	0.31	8.00	28	7625
19	3	31	10.6	15.0	269.0	10.6	0.6	0.20	2	0.39	10.00	22	6990
20	3	34	11.0	11.0	280.0	11.0	0.4	0.14	2	0.29	7.33	31	7889
21	4	38	11.6	14.0	294.0	11.6	0.6	0.14	2	0.28	7.00	33	8033
22	4	42	12.2	15.0	309.0	12.2	0.6	0.15	2	0.30	7.50	31	7820
23	5	47	12.8	15.0	324.0	12.8	0.6	0.12	2	$\stackrel{0}{0.24}$	6.00	39	8531
24	5	52	13.3	15.0	339.0	13.3	0.6	0.12	2	0.24	6.00	39	8531
25	5	57	13.9	15.0	354.0	13.9	0.6	0.12	2	0.24	6.00	39	8531
26	5	62	14.6	16.0	370.0	14.6	0.6	0.13	2	0.25	6.40	37	8319
27	5	67	15.2	15.0	385.0	15.2	0.6	0.12	2	0.24	6.00	39	8531
28	6	73	16.1	23.0	408.0	16.1	0.9	0.15	2	0.30	7.67	30	7753
29	6	79	17.0	23.0	431.0	17.0	0.9	0.15	2	0.30	7.67	30	7753
30	6	85	17.9	23.0	454.0	17.9	0.9	0.15	2	0.30	7.67	30	7753
31	6	91	18.8	24.0	478.0	18.8	0.9	0.16	2	0.31	8.00	28	7625
32	6	97	19.8	26.0	504.0	19.8	1.0	0.17	2	0.34	8.67	26	7391
33	6	103	20.9	26.0	530.0	20.9	1.0	0.17	2	0.34	8.67	26	7391
34	6	109	21.9	27.0	557.0	21.9	1.1	0.18	2	0.35	9.00	25	${ }^{7283}$
35	6	115	23.0	28.0	585.0	23.0	1.1	0.18	2	0.37	9.33	24	7180
36	6	121	24.5	37.0	622.0	24.5	1.5	0.24	2	0.49	12.33	18	6441
37	6	127	26.0	38.0	660.0	26.0	1.5	0.25	2	0.50	12.67	17	6374
38	6	133	28.0	52.0	712.0	28.0	2.0	0.34	2	0.68	17.33	12	5640
39	2	135	28.8	20.0	732.0	28.8	0.8	0.39	2	0.79	20.00	10	5334
40	2	137	29.5	17.0	749.0	29.5	0.7	0.33	2	0.67	17.00	12	5683
41		139	32.0	63.0	812.0	32.0	2.5	1.24	2	2.48	63.00	3	3410
42	2	141	32.6	15.0	827.0	32.6	0.6	0.30	2	0.59	15.00	14	5967
43	2	143	33.1	15.0	842.0	33.1	0.6	0.30	2	0.59	15.00	14	5967
44	2	145	33.8	16.0	858.0	33.8	0.6	0.31	2	0.63	16.00	13	5819
45	2	147	34.4	15.0	873.0	34.4	0.6	0.30	2	0.59	15.00	14	5967

Test increment	Number of blows	Cumulative blows	surface	increment	penetration	Cummulative Penetration	blow set	per blow	factor	DCP Index	OCP Index	CBR	M_{R}
\#	\#	\#	(in)	(mm)	(mm)	(in)	(in)	(in)	1 for 8-kg 2 for	in/blow	mm/bow	\%	psi
1	1	2	16.7	44.0	44.0	1.7	1.7	1.73		3.46	88.00	2	2993
2	1	3	17.9	30.0	74.0	2.9	1.2	1.18	2	2.36	60.00	3	3475
3	1	4	18.8	22.0	96.0	3.8	0.9	0.87	2	${ }_{1}^{1.73}$	44.00	4	3922
4	1	5	19.4	17.0	113.0	4.4	0.7	0.67	2	1.34	34.00	6	4337
5	1	6	20.1	17.0	130.0	5.1	0.7	0.67	2	1.34	34.00	6	4337
6	1	7	20.7	14.0	144.0	5.7	0.6	0.55	2	1.10	28.00	7	4678
7	1	8	21.2	13.0	157.0	6.2	0.5	0.51	2	1.02	26.00	8	4815
8	1	9	21.9	18.0	175.0	6.9	0.7	0.71	2	1.42	36.00	5	4241
9	1	10	23.0	28.0	203.0	8.0	1.1	1.10	2	2.20	56.00	3	3570
10	1	11	24.8	47.0	25.0	9.8	1.9	1.85	2	3.70	94.00	2	2917
11	1	12	26.9	52.0	302.0	11.9	2.0	2.05	2	4.09	104.00	2	2804
12	1	13	28.0	28.0	330.0	13.0	1.1	1.10	2	2.20	56.00	3	3570
13	1	14	28.6	15.0	345.0	13.6	0.6	0.59	2	1.18	30.00	6	4554
14	1	15	29.1	14.0	359.0	14.1	0.6	0.55	2	1.10	28.00	7	4678
15	1	16	29.6	12.0	371.0	14.6	0.5	0.47	2	0.94	24.00	8	4968
16	2	18	30.4	21.0	392.0	15.4	0.8	0.41	2	0.83	21.00	10	5234
17	2	20	31.3	22.0	414.0	16.3	0.9	0.43	2	0.87	22.00	,	5140
18	2	22	32.1	21.0	435.0	17.1	0.8	0.41	2	0.83	${ }^{21.00}$	10	5234
19	2	24	33.1	24.0	459.0	18.1	0.9	0.47	2	0.94	24.00	\%	4968
20	2	26	34.1	25.0	484.0	19.1	1.0	0.49	2	0.98	25.00	8	4890
21	2	28	35.0	23.0	507.0	20.0	0.9	0.45	2	0.91	${ }^{23.00}$	9	5051
22	2	30	35.9	25.0	532.0	20.9	1.0	0.49	2	0.98	25.00	8	4890
23	2	32	36.8	22.0	554.0	21.8	0.9	0.43	2	0.87	22.00	9	5140
24	2	34	37.6	20.0	574.0	22.6	0.8	0.39	2	0.79	20.00	10	5334
25	2	36	38.4	21.0	595.0	23.4	0.8	0.41	2	0.83	21.00	10	5234
26	2	38	39.2	19.0	614.0	24.2	0.7	0.37	2	0.75	19.00	11	5442
27	2	40	39.9	18.0	632.0	24.9	0.7	0.35	2	0.71	${ }^{18.00}$	${ }^{11}$	5558
28	2	42	40.7	22.0	654.0	25.7	0.9	0.43	2	0.87	22.00	9	5140
29	2	44	41.5	18.0	672.0	26.5	0.7	0.35	2	0.71	18.00	11	5558
30	2	46	42.2	20.0	692.0	27.2	0.8	0.39	2	0.79	20.00	10	5334
31	2	48	43.0	20.0	712.0	28.0	0.8	0.39	2	0.79	20.00	10	5334
32	2	50	43.8	20.0	732.0	28.8	0.8	0.39	2	0.79	20.00	10	5334
33	2	52	44.5	17.0	749.0	29.5	0.7	0.33	2	0.67	17.00	12	5683
34	2	54	45.1	15.0	764.0	30.1	0.6	0.30	2	0.59	15.00	14	5967
35	2	56	45.9	20.0	784.0	30.9	0.8	0.39	2	0.79	20.00	10	5334
36	2	58	46.5	15.0	799.0	31.5	0.6	0.30	2	0.59	15.00	14	5967
37	2	60	47.0	15.0	814.0	32.0	0.6	0.30	2	0.59	15.00	14	5967

Location: Crestview, Newber, OR
Depth to bottom: $13^{\prime \prime}$
Tester's Name: TAP
Tester's Company: GeoEngineers, Inc.
Tester's Contact No: 503-951-1810
Test Hole Number: B-2
GeoEngineers Job: 6748-002-00

Depth, feet		Silty Gravel Fill
$0.13^{\prime \prime}$	Srown Silt trace sand	
$13^{\prime \prime-6.5}$		

Test increment	Number of blows	Cumulative blows	Depth below ground surface	Cummulative Penetration	Penetration per blow set	Penetration per blow	Hammer bow factor	DCP Index	DCP Index	CBR	M_{R}
\#	\#	\#	(in)	(in)	(in)	(in)	1 for 8 -kg 2 for 4.6-kg hammer	in/blow	mm/blow	\%	psi
1	1	1	14.2	1.2	1.2	1.2		1.2	30.48	6.357496	4525.87
2	1	2	15.2	2.2	1.0	1	1	1	25.4	7.797746	4859.401
3	1	3	16.1	3.1	0.9	0.9		0.9	22.86	8.774401	5063.236
4	1	4	17.2	4.2	1.1	1.1	1	1.1	27.94	7.00824	4682.089
5	1	5	18.2	5.2	1.0				25.4	7.797746	4859.401
6	1	6	19.3	6.3	1.1	1.1	1	1.1	27.94	7.008245	4682.089
7	1	7	20.5	7.5	1.2	1.2		1.2	30.48	6.357496	4525.87
8	1	8	21.6	8.6	1.1	1.1	1	1.1	27.94	7.008245	4682.089
	1	9	22.6	9.6	1.0				25.4	7.797746	4859.401
10	1	10	23.6	10.6	1.0	1	1	1	25.4	7.797746	4859.401
11	1	11	24.7	11.7	1.1	1.1		1.1	27.94	7.008245	4682.089
12	1	12	25.5	12.5	0.8	0.8	1	0.8	20.32	10.01171	5301.243
13	1	13	26.2	13.2	0.7	0.7	1	0.7	17.78	11.62678	5584.632
14	1	14	26.8	13.8	0.6	0.6	1	0.6	15.24	13.81883	5930.67
15	1	15	28.1	15.1	1.3	1.3	1	1.3	33.02	5.81236	4386.77
16		16	29.3	16.3	1.2	1.2	1	1.2	30.48	6.357496	4525.87
17	1	17	30.6	17.6	1.3	1.3	1	1.3	33.02	5.81236	4386.77
18		18	31.8	18.8	1.2	1.2	1	1.2	30.48	6.357496	4525.87
19	1	19	33	20	1.2	1.2	1	1.2	30.48	6.357496	4525.87
20		20	34.1	21.1	1.1	1.1	1	1.1	27.94	7.008245	4682.089
21	1	21	35.1	22.1	1.0	1		1	25.4	7.797746	4859.401
22		22	36.1	23.1	1.0	1			25.4	7.79774	4859.401
23		23	37	24	0.9	0.9		0.9	22.86	8.774401	5063.236
24	1	24	37.9	24.9	0.9	0.9	${ }^{1}$	0.9	22.86	8.774401	5063.236

Location: Crestview, Newber, OR
Depth to bottom: $26^{\prime \prime}$
Tester's Name: TAP
Date: 9/21/2017

Tester's Company: GeoEngineers, Inc.

Test increment	Number of blows	Cumulative blows	$\underset{\substack{\text { Depth below ground } \\ \text { surface }}}{ }$	Cummulative Penetration	netration per blow set	Penetration per blow	ammer blow factor	DCP Index	DCP Index	CBR	M_{R}
\#	\#	\#	(in)	(in)	(in)	(in)	1 for 8-kg 2 for $4.6-\mathrm{kg}$ hammer	in/blow	mm/bow	\%	psi
1	1	1	27.8	1.8	1.8	1.7716545		1.771655	45.00002	4.109458	3887.899
2	1	2	29.2	3.2	1.5	1.4566937	1	1.456694	37.00002	5.116779	4196.325
3	1	3	30.3	4.3	1.1	1.1023628	1	1.102363	28.00002	6.991423	4678.172
4	1	4	31.2	5.2	0.8	0.8267721		0.826772	21.00001	9.649326	5233.622
5	1	5	32.0	6.0	0.8	0.8267721	1	0.826772	21.00001	9.649326	5233.622
6	1	6	32.9	6.9	0.9	0.9055123	1	0.905512	23.00001	8.714599	5051.193
7	1	7	33.9	7.9	1.0	0.9842525		0.984253	25.00001	7.93761	4889.576
8	1	8	34.7	8.7	0.8	0.787402		0.787402	20.00001	10.1912	5334.161
9	1	9	35.5	9.5	0.8	0.8267721		0.826772	21.00001	9.649326	5233.622
10	1	10	36.5	10.5	1.0	0.9842525		0.984253	25.00001	7.93761	4889.576
11	1	11	37.4	11.4	0.9	0.9055123		0.905512	23.00001	8.714599	5051.193
12	1	12	38.2	12.2	0.9	0.8661422		0.866142	22.00001	9.159446	5139.525
13	1	13	39.2	13.2	0.9	0.9448824		0.944882	24.00001	8.308947	4968.044
14	1	14	40.0	14.0	0.8	0.8267721		0.826772	21.00001	9.649326	5233.622
15	1	15	40.9	14.9	0.9	0.9055123		0.905512	23.00001	8.714599	5051.193
16	1	16	41.6	15.6	0.6	0.6299216	1	0.629922	16.00001	13.08483	5819.17
17	1	17	42.3	16.3	0.7	0.7480319		0.748032	19.00001	10.7939	5441.942
18	1	18	43.1	17.1	0.8	0.8267721	1	0.826772	21.00001	9.649326	5233.622
19	1	19	43.7	17.7	0.6	0.5905515		0.590552	15.00001	14.06567	5967.498
20	1	20	44.4	18.4	0.7	0.7086618	1	0.708662	18.00001	11.46773	5557.911
21	1	21	45.0	19.0	0.6	0.5905515		0.590552	15.00001	14.06567	5967.498
22	1	22	45.6	19.6	0.6	0.6299216		0.629922	16.00001	13.08483	5819.17
23	1	23	46.2	20.2	0.6	0.5905515		0.590552	15.00001	14.06567	5967.498
24	1	24	46.9	20.9	0.6	0.6299216	1	0.629922	16.00001	13.08483	5819.17

(after Webster et al., 1992)
Webster, S.L.L., Grau, R. . H., and Williams, T. P. (1992). Description and application of dual mass dynamic cone penetrometer.

Location: Newberg, OR Depth to bottom: 2^{\prime}

Tester's Name: Danny Hess

Date: 9/21/2018
Dimension: 6"

Test Hole Number: IT-1
Test Method: Open Pit Fallin Head GeoEngineers Job: 6748-002-00

Depth		
	$0-21$	Brown silt

Time of Day	Time Interval (min)	Total Time (min)	Depth to Water from Top of Pipe (inches)	Dist. Interval (inches)	Infiltration (inches/hour)	
10:43	0		1.17			Test \#1
10:44	1	1	1.21	0.04	2.4	
10:45	1	2	1.23	0.02	1.2	
10:46	1	3	1.25	0.02	1.2	
10:47	1	4	1.27	0.02	1.2	
10:48	1	5	1.29	0.02	1.2	
10:49	1	6	1.31	0.02	1.2	
10:50	1	7	1.33	0.02	1.2	
10:51	1	8	1.36	0.03	1.8	
10:52	1	9	1.38	0.02	1.2	
10:53	1	10	1.38	0.00	0.0	
10:58	5	15	1.44	0.06	0.7	
11:03	5	20	1.50	0.06	0.7	
11:08	5	25	1.54	0.04	0.5	
11:13	5	30	1.58	0.04	0.5	
11:23	10	40	1.64	0.06	0.4	
11:33	10	50	1.70	0.06	0.4	
11:43	10	60	1.74	0.04	0.2	

Location: Newberg, OR Depth to bottom: 3^{\prime}

Tester's Name: Danny Hess Tester's Company: GeoEngineers, Inc.

Date: 9/21/2018
Dimension: 6"

Test Hole Number: IT-2
Test Method: Encased Falling Head GeoEngineers Job: 6748-002-00

Depth		Soil Texture				
	0-3'	Brown silt				
Time of Day	Time Interval (min)	Total Time (min)	Depth to Water from Top of Pipe (inches)	Dist. Interval (inches)	Infiltration (inches/hour)	
15:00			3.98			
15:10	10	10	3.98	0.00	0.0	
15:20	10	20	3.98	0.00	0.0	
15:30	10	30	3.98	0.00	0.0	Test \#1
15:40	10	40	3.98	0.00	0.0	
15:50	10	50	3.99	0.01	0.1	
16:00	10	60	3.99	0.00	0.0	

APPENDIX B
 Asphalt Core Photographs

Asphalt Core Photographs

Crestview Crossing Development
Newberg, Oregon
GeoEngineers
Figure B-1

Asphalt Core Photographs	
Crestview Crossing Development	
Newberg, Oregon	
GeoEngineers	

Asphalt Core Photographs	
Crestview Crossing Development Newberg, Oregon	
GeoEngineers	

Appendix C
 Report Limitations and Guidelines for Use

APPENDIX C

REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) rely on professional judgment and opinion to a greater extent than other engineering and natural science disciplines, where more precise and/or readily observable data may exist. To help clients better understand how this difference pertains to our services, GeoEngineers includes the following explanatory "limitations" provisions in its reports. Please confer with GeoEngineers if you need to know more how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for 3J Consulting, Inc., J.T. Smith Companies and their authorized agents and/or regulatory agencies for the project specifically identified in the report. The information contained herein is not applicable to other sites or projects.

GeoEngineers structures its services to meet the specific needs of its clients. No party other than the party to whom this report is addressed may rely on the product of our services unless we agree to such reliance in advance and in writing. Within the limitations of the agreed scope of services for the Project, and its schedule and budget, our services have been executed in accordance with our Agreement with J.T. Smith Companies dated June 29, 2017 and generally accepted geotechnical practices in this area at the time this report was prepared. We do not authorize, and will not be responsible for, the use of this report for any purposes or projects other than those identified in the report.

A Geotechnical Engineering or Geologic Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the proposed Crestview Crossing Development north of Hwy 99W between Vittoria Way and North Harmony Lane in Newberg, Oregon. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

[^4]For example, changes that can affect the applicability of this report include those that affect:

- the function of the proposed structure;
- elevation, configuration, location, orientation or weight of the proposed structure;
- composition of the design team; or
- project ownership.

If changes occur after the date of this report, GeoEngineers cannot be responsible for any consequences of such changes in relation to this report unless we have been given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Environmental Concerns Are Not Covered

Unless environmental services were specifically included in our scope of services, this report does not provide any environmental findings, conclusions, or recommendations, including but not limited to, the likelihood of encountering underground storage tanks or regulated contaminants.

Subsurface Conditions Can Change

This geotechnical or geologic report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the site, new information or technology that becomes available subsequent to the report date, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. If more than a few months have passed since issuance of our report or work product, or if any of the described events may have occurred, please contact GeoEngineers before applying this report for its intended purpose so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Geotechnical and Geologic Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations from widely spaced sampling locations at the site. Site exploration identifies the specific subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied its professional judgment to render an informed opinion about subsurface conditions at other locations. Actual subsurface conditions may differ, sometimes significantly, from the opinions presented in this report. Our report, conclusions and interpretations are not a warranty of the actual subsurface conditions.

Geotechnical Engineering Report Recommendations Are Not Final

We have developed the following recommendations based on data gathered from subsurface investigation(s). These investigations sample just a small percentage of a site to create a snapshot of the subsurface conditions elsewhere on the site. Such sampling on its own cannot provide a complete and accurate view of subsurface conditions for the entire site. Therefore, the recommendations included in this report are preliminary and should not be considered final. GeoEngineers' recommendations can be finalized only by observing actual subsurface conditions revealed during construction. GeoEngineers cannot assume responsibility or liability for the recommendations in this report if we do not perform construction observation.

We recommend that you allow sufficient monitoring, testing and consultation during construction by GeoEngineers to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes if the conditions revealed during the work differ from those anticipated, and to evaluate whether earthwork activities are completed in accordance with our recommendations. Retaining GeoEngineers for construction observation for this project is the most effective means of managing the risks associated with unanticipated conditions. If another party performs field observation and confirms our expectations, the other party must take full responsibility for both the observations and recommendations. Please note, however, that another party would lack our projectspecific knowledge and resources.

A Geotechnical Engineering or Geologic Report Could Be Subject to Misinterpretation

Misinterpretation of this report by members of the design team or by contractors can result in costly problems. GeoEngineers can help reduce the risks of misinterpretation by conferring with appropriate members of the design team after submitting the report, reviewing pertinent elements of the design team's plans and specifications, participating in pre-bid and preconstruction conferences, and providing construction observation.

Do Not Redraw the Exploration Logs

Geotechnical engineers and geologists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. The logs included in a geotechnical engineering or geologic report should never be redrawn for inclusion in architectural or other design drawings. Photographic or electronic reproduction is acceptable but separating logs from the report can create a risk of misinterpretation.

Give Contractors a Complete Report and Guidance

To help reduce the risk of problems associated with unanticipated subsurface conditions, GeoEngineers recommends giving contractors the complete geotechnical engineering or geologic report, including these "Report Limitations and Guidelines for Use." When providing the report, you should preface it with a clearly written letter of transmittal that:

- advises contractors that the report was not prepared for purposes of bid development and that its accuracy is limited; and
- encourages contractors to confer with GeoEngineers and/or to conduct additional study to obtain the specific types of information they need or prefer.

Contractors Are Responsible for Site Safety on Their Own Construction Projects

Our geotechnical recommendations are not intended to direct the contractor's procedures, methods, schedule or management of the work site. The contractor is solely responsible for job site safety and for managing construction operations to minimize risks to on-site personnel and adjacent properties.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Crestview Crossing

Newberg, Oregon

Final

June 2018

Transportation Impact Analysis

Crestview Crossing

Newberg, Oregon

Prepared For:
3J Consulting, Inc.
5075 SW Griffith Dr, Suite 150
Beaverton, OR 97005
(503) 946-9365

Prepared By:
Kittelson \& Associates, Inc.
851 SW $6^{\text {th }}$ Avenue, Suite 600
Portland, OR 97204
(503) 228-5230

Project Manager: Diego Arguea, PE
Project Principal: Matt Hughart, AICP
Project Analyst: Zachary Bugg, PhD

Project No. 21709

June 2018

TABLE OF CONTENTS

Executive Summary 1
Findings 1
Recommendations 4
Introduction 7
Project Description 7
Scope and Analysis Methodology 7
Existing Conditions 12
Site Conditions and Adjacent Land Uses 12
Transit Facilities 14
Traffic Volumes And Peak Hour Operations 14
Transportation Impact Analysis 19
Year 2020 Background Traffic Conditions 19
Proposed Development Plan 25
Year 2020 Total Traffic Conditions 26
Future Phase II Development Sensitivity Analysis 33
Conclusions and Recommendations 38
Recommendations 41
References 43

LIST OF FIGURES

Figure 1: Site Vicinity 8
Figure 2: Proposed Site Plan 9
Figure 3: Existing Lane Configurations and Traffic Control Devices 13
Figure 4: Existing Traffic Conditions, Weekday AM and PM Peak Hours 15
Figure 5: Year 2020 Background Traffic Volumes, Weekday AM \& PM Peak Hours 21
Figure 6: Reassigned Traffic, Weekday AM \& PM Peak Hours 22
Figure 7: Year 2020 Background Traffic Conditions with Reassigned Traffic, Weekday AM \& PM Peak Hours 23
Figure 8: Assumed Lane Configurations and Traffic Control Devices 24
Figure 9: Site-Generated Trips, Weekday AM \& PM Peak Hours 28
Figure 10: Year 2020 Total Traffic Conditions, Weekday AM \& PM Peak Hours 29
Figure 11: Year 2020 Total Traffic Conditions with Mitigation, Weekday AM \& PM Peak Hours 30
Figure 12: Year 2020 Total Traffic Conditions - Phase II Sensitivity Analysis, Weekday AM and PM Peak Hours 36

LIST OF TABLES

Table 1: OR 99W Mobility Targets 10
Table 2: Existing transportation facilities and roadways in the study area 12
Table 3: ODOT-Reported Crash Data (January 1, 2011 to December 31, 2015) 17
Table 4: Proposed Trip Generation 25
Table 5: Summary of 95th-percentile Queues 31
Table 6: Trip Generation Including Phase II 34
Table 7: Summary of $95^{\text {th }}$-percentile Queues Including Phase II. 35

APPENDICES

Appendix A	Scoping Memorandum
Appendix B	Turning Movement Counts
Appendix C	Year 2017 Existing Conditions Level of Service Worksheets
Appendix D	ODOT Crash Data
Appendix E	In-Process Developments
Appendix F	Year 2020 Background with Reassigned Traffic Conditions Level of Service Worksheets
Appendix G	Select Zone Analysis Results
Appendix H	Year 2020 Total Conditions Level of Service Worksheets
Appendix I	Year 2020 Total Conditions with Mitigation Level of Service Worksheets
Appendix J	SimTraffic Queuing Worksheets
Appendix K	Year 2020 Phase II Sensitivity Analysis Level of Service Worksheets

Section 1 Executive Summary

EXECUTIVE SUMMARY

JT Smith Companies proposes to develop a 33.13-acre property in Newberg, Oregon into a residential development consisting of up to 260 single-family homes and 48 apartment units. The development is occurring adjacent to a 4.43 -acre commercial property that is not included as part of this development application. The site is located on the north side of OR 99W (Portland Road) near the intersection with Providence Drive and will include an extension of Crestview Drive to the south through the property and connecting to OR 99W to form the north leg of the OR 99W/Providence Drive intersection.

The subject property is currently occupied by farm land and one single-family home. It is bordered by residential uses to the west, north, and east and by OR 99W to the south. No direct accesses to the residential units or civic space are proposed on OR 99W or the Crestview Drive extension-these will instead be accessed via new internal local roadways and one new east-west connector that will connect to Crestview Drive north of OR 99W. Completion and occupancy of the development as described in this report is expected to occur by 2020.

The results of this study indicate that the proposed Crestview Crossing development can be constructed while maintaining acceptable traffic operations and safety at the study intersections, assuming provision of the recommended mitigation measures.

FINDINGS

Year 2017 Existing Conditions

- All of the study intersections currently meet City of Newberg (and Oregon Department of Transportation, where applicable) mobility targets during the weekday AM and PM peak hours, with the following exceptions:
- The Springbrook Road/OR 99W intersection currently experiences a volume-to-capacity ratio (v / c) of 0.86 during the weekday AM peak hour, which exceeds the ODOT mobility standard of 0.85 . The intersection also operates at level of service (LOS) E during the weekday PM peak hour, which exceeds the City standard of LOS D under current conditions.
- The southbound stop-controlled approach to the Vittoria Way/OR 99W intersection currently operates at LOS E during the weekday PM peak hour, which exceeds the City standard of LOS D.
- A review of historical crash data did not reveal any patterns or trends in the site vicinity that require mitigation associated with this project.
- One fatal crash was reported at the Springbrook Road/Crestview Drive roundabout-this crash occurred when a southbound motorcyclist struck a curb and was thrown from the vehicle. The crash report lists the cause as driver error-driving too fast for conditions.
- Based upon a 2016 analysis, the Springbrook Road/OR 99W intersection is currently within the top five percent of the highest-scoring intersections in Region 2.

Since 2016, pavement marking improvements and an additional westbound left turn lane on OR 99W were added to this intersection, and the proposed Crestview Crossing development is expected to result in a net decrease in traffic at this intersection due to the reassignment of traffic to the Crestview Drive extension.

Year 2020 Background Conditions

- A two-percent annual growth rate was applied to the existing mainline traffic volumes on OR 99 W to reflect general background growth in the area before any in-process traffic was considered.
- Traffic generated by the Oregon Clinic, to be located on the west side of Providence Drive south of Providence Newberg Medical Center, was included in the background traffic volumes as in-process traffic.

Background traffic conditions with the assumed build-out of the north leg of the Providence Drive/OR 99W intersection (and no site-added traffic) were assumed as the base case against which future traffic conditions are compared.

- The proposed development will extend Crestview Drive south through the property and to the existing Providence Drive/OR 99W intersection, where it will form the north leg.
- Traffic volumes were assigned to the Crestview Drive extension based upon existing turning movement volumes at the study intersections and the Newberg Transportation System Plan.
- The background traffic condition includes rerouted traffic from the proposed Crestview Drive extension but does not include trips associated with new land uses within the proposed development.
- All of the study intersections are expected to continue operating acceptably during the weekday AM and PM peak hours under 2020 background traffic conditions with reassigned traffic, with the following exceptions:
- The Springbrook Rd/OR 99W intersection is forecast to operate with a v/c ratio of 0.88 during the weekday PM peak hour, which exceeds the ODOT mobility standard of 0.85 .
- The weekday AM and PM peak hour v/c ratios at the Providence Drive/OR 99W intersection are forecast to be 0.89 and 0.92 , respectively, which both exceed the ODOT mobility standard of 0.80 .

Proposed Development Plan

- The proposed development is expected to generate approximately 4,126 weekday daily trips, of which approximately 213 ($53 \mathrm{in}, 160$ out) are forecast to occur during the AM peak hour and approximately 285 ($180 \mathrm{in}, 105$ out) are forecast to occur during the PM peak hour.
- A select-zone analysis of the Newberg Transportation Planning Model was used to develop a trip distribution pattern for the proposed development.

Year 2020 Total Conditions

- All of the study intersections are expected to continue operating acceptably during the weekday AM and PM peak hours under 2020 total traffic volumes, with the following exceptions:
- The Springbrook Rd/OR 99W intersection is forecast to operate with a v/c ratio of 0.86 during the weekday PM peak hour, which exceeds the ODOT mobility standard of 0.85 but does not exceed the v / c ratio under background conditions with reassigned traffic.
- The weekday AM and PM peak hour v/c ratios at the Providence Drive/OR 99W intersection are forecast to be 0.98 and 1.08, respectively, which both exceed the ODOT mobility standard of 0.80 .
- The new proposed Crestview Diver/East-West Connector intersection within the Crestview Crossing development is expected to operate acceptably as a single-lane roundabout.

Year 2020 Total Mitigated Conditions

- The Crestview Drive/Providence Drive/OR 99W intersection was analyzed under total traffic conditions with the following additional lane improvements:
- Add an exclusive left turn lane on southbound Crestview Drive,
- Add an exclusive right turn lane on southbound Crestview Drive,
- Add an exclusive right turn lane on westbound OR 99W,
- Restripe eastbound OR 99W to include an exclusive left turn lane, and,
- Restripe the northbound Providence Drive approach to include an exclusive left turn lane and an exclusive right turn lane.

With these improvements, the weekday AM and PM peak hour v/c ratios at the intersection are forecast to be 0.88 and 0.89 , respectively. These exceed the ODOT mobility standard of 0.80 but do not exceed the respective v / c ratios under background conditions with reassigned traffic. As such, the impact of the development has been mitigated.

95 ${ }^{\text {th }}$-percentile Queuing Analysis

- All $95^{\text {th }}$-percentile queues are projected to be accommodated by the provided storage lengths under 2020 total traffic conditions, with the following exceptions:
- The southbound right turn at Springbrook Road/OR 99W during the weekday PM peak hour.
- The northbound left turn at Brutscher Street/OR 99W during the weekday PM peak hour.

Each of the queues noted above is expected to decrease under total traffic conditions compared with existing conditions due to reassigned traffic from Springbrook Road and OR 99W to the Crestview Drive extension.

Commercial Property Sensitivity Analysis

A planning-level analysis was prepared to account for the future development potential of the 4.43-acre commercial property adjacent to the development site. While this is NOT part of this development application, the analysis was conducted to evaluate the future effectiveness of the recommended mitigations.

- A planning-level estimate for developable commercial area was used to estimate the number of potential commercial-related site trips. The gross leasable area-to-acreage ratio was assumed at 25 percent, and the entire commercial property was assumed as shopping center land use.
- The commercial development trips were added to the residential trips of this application to arrive at a total development estimate of 6,220 weekday daily trips, of which 370 (155 in , 215 out) will occur during the AM peak hour and 440 ($247 \mathrm{in}, 193$ out) will occur during the PM peak hour. The development is also expected to generate approximately 96 pass-by trips during the weekday PM peak hour-these were treated as diverted trips from OR 99W.
- The Crestview Drive/Providence Drive/OR 99W intersection and Crestview Drive/East-West Connector roundabout were analyzed assuming development of the 4.43-acre commercial property.
- The Crestview Drive/East-West Connector intersection is expected to continue operating acceptably as a single-lane roundabout.
- With the mitigation improvements associated with the residential development in place, the weekday AM and PM peak hour v/c ratios at the Crestview Drive/Providence Drive/OR 99W intersection are forecast to be 0.90 and 0.94 , respectively.

Per ODOT policy guidance, when an intersection exceeds mobility targets but the v/c ratio increases by less than 0.03 as a result of development, the impacts are not considered significant. For this reason, no additional mitigation measures would be warranted as a result of additional commercial development.

RECOMMENDATIONS

Providence Drive/Crestview Drive/OR 99W Intersection

- The new north leg of the intersection, which will be an extension of Crestview Drive, should be configured as a four-lane section with one northbound lane and three southbound lanes (exclusive lanes for left-turn, through, and right-turn movements). At least 250 feet of southbound left turn storage and at least 150 feet of southbound right turn storage should be provided to accommodate the forecast $95^{\text {th }}$ percentile queue lengths.
- The south leg of the intersection should be restriped to a four-lane section with one southbound lane and three northbound lanes (exclusive lanes for left-turn, through, and right-turn movements).
- Based on the forecast $95^{\text {th }}$ percentile queuing analysis:
- A westbound right turn lane should be constructed with at least 300 feet of storage.
- An eastbound left turn lane should be striped to provide at least 150 feet of storage.
- Recommended signal phasing: the intersection should be operated with permissive left turn movements on the northbound and southbound approaches and fully protected left turn movements on the eastbound and westbound approaches.

On-Site Circulation/Site Access Operations

- Driveways, landscaping, utilities, and signage within the site should be located and maintained to provide sufficient sight distance at all new internal intersections and accesses.
- Other than at the Providence Drive/Crestview Drive/OR 99W intersection, a two-lane section of Crestview Drive should be adequate to accommodate turning movements and queuing within the proposed development.

Additional details of the study methodology, findings, and recommendations are provided within this report.

Section 2

Introduction

INTRODUCTION

PROJECT DESCRIPTION

JT Smith Companies proposes to develop a 33.13-acre property in Newberg, Oregon consisting of up to 260 single-family homes and 48 apartment units. The ultimate number of residential units may vary but is not anticipated to exceed the number of units analyzed in this report. The development is located adjacent to 4.43 acres of commercial property that are not included in this application but may be developed as part of a future phase.

Figure 1 displays the site vicinity, and Figure 2 illustrates the proposed site plan. The site is located on the north side of OR 99W (Portland Road) near the intersection with Providence Drive and will include an extension of Crestview Drive to the south through the property and connecting to OR 99W to form the north leg of the OR 99W/Providence Drive intersection. No direct accesses to the residential units or adjacent commercial property are proposed on OR 99W or the Crestview Drive extension-these will instead be accessed via new internal local roadways and one new east-west connector that will connect to Crestview Drive north of OR 99W. Completion and occupancy of the development as described in this report is expected to occur by 2020.

SCOPE AND ANALYSIS METHODOLOGY

This analysis determines the transportation-related impacts associated with the proposed Crestview Crossing development and was prepared in accordance with City of Newberg and Oregon Department of Transportation (ODOT) requirements for traffic impact analyses. The study intersections and scope of this project were selected based on conversations with City and ODOT staff and are documented in a scoping memorandum (dated October 19, 2017) and subsequent City and ODOT comments (Appendix " A ").

Study Intersections

This report includes an analysis of operations and safety at the following study intersections:

1. Springbrook Road/Crestview Drive,
2. Libra Street/Crestview Drive,
3. Springbrook Road/Haworth Avenue,
4. Springbrook Road/OR 99W,
5. Brutscher Street/OR 99W,
6. Vittoria Way/OR 99W,
7. Providence Drive/Future Crestview Drive extension/OR 99W,
8. Benjamin Road/OR 99W, and
9. Future Crestview Drive extension/Future east-west connector.

KITTELSON
\& ASSOCIATES

Study Scope

This report documents evaluation of the following transportation items:

- Year 2017 existing conditions analysis, including Highway Capacity Manual 2000 (HCM 2000, Reference 1) volume-to-capacity (v/c) ratio, control delay, and $95^{\text {th }}$-percentile queuing analysis at the study intersections during the weekday AM and PM peak hours;
- A review of reported crash data from ODOT at the study intersections for the most recent five-year period available;
- Build-out Year 2020 background conditions (includes in-process traffic and regional growth but not traffic from the development), including HCM $2000 \mathrm{v} / \mathrm{c}$ ratio, control delay, and $95^{\text {th }}$ percentile queuing analysis at the study intersections during the weekday AM and PM peak hours;
- Build-out Year 2020 total conditions analysis, including HCM $2000 \mathrm{v} / \mathrm{c}$ ratio, control delay, and $95^{\text {th }}$-percentile queuing analysis at the study intersections during the weekday AM and PM peak hours; and,
- On-site traffic operations and circulation.

Analysis Methodology and Applicable Standards

All Level of Service analyses described in this report were performed in accordance with the procedures stated in the HCM 2000. The operations and queuing analyses presented in this report were completed using Synchro 9 and SimTraffic 9 software, with the exception of the roundabout analyses, which were completed using Highway Capacity Software (HCS) 7. Per HCM 2000 methodology, the reported traffic operations are based upon the worst 15 minutes of each peak hour-consequently, the study intersections are expected to perform better during the rest of the day, in general.

The study intersections along OR 99W are all subject to ODOT v/c ratio mobility targets, defined by the 1999 Oregon Highway Plan, Policy 1F. The study intersections along OR 99W are within the Newberg urban growth boundary, on a Statewide Highway, on a freight route, outside a Metropolitan Planning Organization, outside a Special Transportation Area, and not on a freeway. Thus, the mobility target for each study intersection along OR 99W is a function of the posted speed limit, as shown in Table 1.

Table 1: OR 99W Mobility Targets

Intersection	Posted Speed (mph)	Mobility Target (v/c)
OR 99W/Springbrook Road	35	0.85
OR 99W/Brutcher Street	35	0.85
OR 99W/Vittoria Way	45	0.80
OR 99W/Providence Drive	45	0.80
OR 99W/Benjamin Road	55	0.75

With the exception of OR 99W/Benjamin Road, which is outside the City limits, all study intersections are additionally subject to City of Newberg mobility standards, which require LOS D or better.

Section 3

Existing Conditions

EXISTING CONDITIONS

The existing conditions analysis identifies the site conditions and current operational and geometric characteristics of the roadways within the study area. These conditions will be compared with future conditions later in this report.

Kittelson \& Associates, Inc. (KAI) staff visited and inventoried the proposed Crestview Crossing site in November 2017. At that time, KAI collected information regarding site conditions, adjacent land uses, existing traffic operations, and transportation facilities in the study area.

SITE CONDITIONS AND ADJACENT LAND USES

The subject property is located on the north side of OR 99W (Portland Road) near the intersection with Providence Drive. The site is currently occupied by farm land and one single-family home, and it is bordered by residential uses to the west, north, and east and by OR 99W to the south.

Transportation Facilities

Existing lane configurations and traffic control devices at the study intersections are displayed in Figure 3. Table 2 summarizes the existing transportation facilities and roadways in the study area.

Table 2: Existing transportation facilities and roadways in the study area

Roadway	Functional Classification ${ }^{1}$	Number of Lanes	Posted Speed	Sidewalks	Bicycle Lanes	On-Street Parking
OR 99W	Major Arterial	4-5	$35 \mathrm{mph}-55 \mathrm{mph}^{2}$	Partial ${ }^{3}$	Yes	No
Springbrook Road	Minor Arterial	2-3	35 mph	Both Sides	South of Haworth Avenue	No
Crestview Drive	Major Collector	2	25 mph	Both sides east of Birdhaven Loop	East of Birdhaven Loop	No
Providence Drive	Major Collector	2	25 mph	Partial ${ }^{4}$	Yes	No
Brutscher Street	Major Collector	2-3	25 mph	Both Sides south of OR 99W	South of Fred Meyer entrance	No
Haworth Avenue	Major Collector	2	25 mph	Both Sides	No	Yes
Vittoria Way	Minor Collector	2	25 mph	Partial ${ }^{5}$	No	Yes
Libra Street	Local Street	2	25 mph	Both Sides	No	Yes
Benjamin Road	Local Street	2	45 mph	No	No	No

[^5]

Roadway Facilities

The proposed Crestview Crossing development site is bordered to the south by OR 99W, which is maintained by ODOT and is classified a Major Arterial in the Newberg TSP. Crestview Drive, which is classified a Major Collector, will be extended south through the proposed development site and will connect to OR 99W to form the fourth leg of the existing OR 99W/Providence Drive intersection. The Crestview Drive extension will consist of one travel lane in either direction, except where turn lanes are needed. As shown in Figure 2, several new local streets will be constructed to serve the development, and one east-west connector roadway will intersect the Crestview Drive at a roundabout approximately 500 feet north of OR 99W.

Pedestrian and Bicycle Facilities

There are currently no sidewalks provided within the proposed site frontage along OR 99W, but sidewalks and bicycle lanes are provided on both sides of Crestview Drive and Providence Drive north and south of the proposed site. While paved shoulders are provided along both sides of OR 99W within the site vicinity, OR 99W is a high-speed roadway with no separated bicycle facilities.

TRANSIT FACILITIES

Transit service in the site vicinity is provided by Yamhill County Transit Area (YCTA, Reference 3). Route 7: Newberg Providence connects Providence Newberg Medical Center, which is approximately 0.15 mile south of the proposed development, to the Newberg Central Business District. Service is provided on weekdays at approximately one-hour intervals from approximately 7:15 AM to 6:15 PM.

TRAFFIC VOLUMES AND PEAK HOUR OPERATIONS

Turning movement counts were conducted at the Libra Street/Crestview Drive and Springbrook Road/Haworth Avenue intersections in November 2017 when school was in session. Counts were conducted at all other existing study intersections in September 2017 when school was in session-per scoping discussions with ODOT staff, the study intersections along OR 99W are heavily influenced by both seasonal traffic and school traffic, with the peak travel period occurring in September. Therefore, no seasonal count adjustment along OR 99W is required.

All counts used in this analysis were conducted on a typical midweek day during the morning (6:00 to 9:00 AM) and afternoon (3:00 to 6:00 PM) peak periods. The analysis time periods are based on a corridor-wide peak hour along OR 99W and individual intersection peak hours at the remaining study intersections. Figure 4 provides a summary of the year 2017 turning-movement counts.

Appendix " B " contains the traffic count worksheets used in this study.

Saturation Flow Rate Calibration

ODOT requires a base saturation flow rate of 1,750 vehicles per hour per lane outside the Portland metro area. Based on field observation and video data, vehicles exhibited driving behavior typical of urban areas. Thus, a saturation flow-rate study was prepared to calibrate the analysis to real-world observations. Using video data, the base saturation flow rate was calibrated to 1,800 vehicles per hour for the following two movements:

- Westbound OR 99W at Springbrook Road, and
- Westbound OR 99W at Providence Drive.

All analysis for these movements assumes the calibrated base saturation flow rates. Appendix " C " contains the saturation flow study worksheets for these movements.

Level of Service Analysis

Figure 4 also displays the existing levels of service at each of the study intersections during the weekday AM and PM peak hours. As shown in the figure, each of the study intersections currently meets ODOT and City mobility standards, with the following exceptions:

- The volume-to-capacity ratio of the Springbrook Road/OR 99W intersection is 0.86 during the weekday AM peak hour, which exceeds the ODOT mobility standard of 0.85 . The weekday PM peak hour level of service of this intersection (LOS E) does not meet the City standard of LOS D.
- The weekday PM peak hour level of service of the Vittoria Way approach to the intersection with OR 99W (LOS E) does not meet the City standard of LOS D.

Appendix " C " contains the existing conditions Level of Service worksheets.

Traffic Safety

ODOT-reported crash data was reviewed for the most recent five-year period, from January 1, 2011 to December 31, 2015. Table 3 summarizes the reported crash data at the study intersections.

Table 3: ODOT-Reported Crash Data (January 1, 2011 to December 31, 2015)

Intersection	Crash Severity			Crash Type						Crash Rate ${ }^{2}$
	Fatal	Injury	PDO ${ }^{1}$	Rear End	Turning	Sideswipe	Angle	Other	Total	
Springbrook Rd / Crestview Dr	1	0	1	1	0	0	0	1	2	0.10
Libra St / Crestview Dr	0	0	0	0	0	0	0	0	0	0.00
Springbrook Rd / Haworth Ave	0	2	5	1	2	0	3	1	7	0.24
Springbrook Rd / OR 99W	0	27	41	53	9	2	2	2	68	0.84
$\begin{aligned} & \text { Brutscher St / } \\ & \text { OR 99W } \end{aligned}$	0	13	7	15	4	0	0	1	20	0.31
Vittoria Way / OR 99W	0	2	2	2	2	0	0	0	4	0.07
Providence Dr / OR 99W	0	2	9	11	0	0	0	0	11	0.18
Benjamin Rd/ OR 99W	0	3	1	0	4	0	0	0	4	0.06

${ }^{1}$ Property Damage Only
${ }^{2}$ Per million entering vehicles

As shown in the table, one fatal crash was reported at the Springbrook Road/Crestview Drive roundabout-this crash occurred in 2013 when a southbound motorcyclist struck a curb and was thrown from the vehicle. The crash report lists the cause as driver error-driving too fast for conditions.

ODOT maintains a ranking of intersections with potential safety problems known as the Safety Priority Index System (SPIS). Based upon a 2016 analysis, the Springbrook Road/OR 99W intersection is currently within the top 5 percent of the highest-scoring intersections in Region 2. Pavement marking improvements and an additional westbound left turn lane on OR 99W have been added to this intersection since 2016.

Additionally, ODOT has identified basic signing and marking improvements for the Springbrook Road/Haworth Avenue intersection to improve stop sign visibility.

No other crash trends or safety deficiencies were identified at the study intersections.
Appendix " D " contains the reported crash data from ODOT.

Section 4 Transportation Impact Analysis

TRANSPORTATION IMPACT ANALYSIS

The transportation impact analysis identifies how the study area's transportation system will operate in the year the proposed Crestview Crossing development is expected to be fully built and occupied, year 2020. The impact of traffic generated by the proposed Crestview Crossing development during the weekday AM and PM peak hours was examined as follows:

- The Oregon Clinic was identified as an in-process development by City of Newberg and included in the background traffic volumes;
- Year 2020 background traffic volumes at the study intersections were developed by applying a two-percent annual growth rate to the existing mainline volumes along OR 99W and then adding the in-process trips;
- Some traffic was reassigned based upon the new network link created by the Crestview Drive extension;
- Site trip distribution patterns were identified based upon a select zone analysis of the Newberg Model;
- Site-generated trips were estimated for build-out of the site and assigned to the study intersections based upon the assumed trip distribution pattern;
- Year 2020 total traffic volumes at the study intersections were developed by adding the sitegenerated trips to the 2020 background traffic volumes, accounting for reassigned traffic due to the Crestview Drive extension; and
- On-site circulation issues and site-access operations were evaluated.

YEAR 2020 BACKGROUND TRAFFIC CONDITIONS

The year 2020 background traffic analysis identifies how the study area's transportation system will operate without the proposed Crestview Crossing development. This analysis includes traffic attributed to planned developments within the study area and to general growth in the region but does not include traffic from the proposed development.

Planned Developments and Transportation Improvements

The City of Newberg identified one in-process development within the site vicinity: the Oregon Clinic, to be located on the west side of Providence Drive south of Providence Newberg Medical Center.

In-process trips are summarized in a graphic in Appendix " E ".
The following two planned transportation improvements were identified, neither of which will be completed prior to development of the proposed Crestview Crossing:

- The aforementioned Crestview Drive extension, which will be incorporated into site development and is described later in this report under Proposed Development Plan; and
- The Newberg-Dundee Bypass, which will intersect OR 99W approximately 0.5 miles east of the proposed development site and is not expected to be completed until after the proposed Crestview Crossing development is fully built and occupied (2020).

Background Growth

To account for general area growth, a two-percent annual growth rate was applied to the existing mainline volumes along OR 99W at the study intersections.

Figure 5 displays the 2020 background traffic volumes at the study intersections during the weekday AM and PM peak hours, which include general area growth and in-process trips identified previously.

Crestview Drive Extension

The Crestview Drive extension is contained within the City's Transportation System Plan and can be considered a regional system improvement independent of the land uses contained within the Crestview Crossing development. The construction of the Crestview Drive extension is expected to cause some traffic to shift from Springbrook Road and OR 99W. For this analysis, ttraffic volumes were reassigned to the new street system based on existing turning movement demand at the intersections of Springbrook Road/Crestview Drive, Springbrook Road/Haworth Avenue, and Springbrook Road/OR 99W.The City's Transportation System Plan was also consulted for consistency in assumptions. Figure 6 displays the estimated reassigned traffic volumes.

The reassigned traffic volumes shown in Figure 6 were added to the background traffic volumes in Figure 5 to arrive at the 2020 background traffic conditions, shown in Figure 7. Based on concurrence from ODOT transportation planning staff, this scenario serves as the base case against which future traffic conditions are prepared. The background condition for the Crestview Drive extension assumes a two-lane cross section, including the new north leg of the Providence Drive/OR 99W intersection. Any potential turn lane additions at the Crestview Drive/Providence Drive/OR 99W intersection will be considered mitigation measures associated with the Crestview Crossing development and are described under 2020 total traffic conditions. The assumed lane configurations for this scenario are displayed in Figure 8.

	- STOP SIGN	∇	- YIELD
jo\%	- TRAFFIC SIGNAL		- EXISTING
	ROUNDABOUT		- PROPOSED

Level of Service Analysis

Figure 7 also shows the corresponding level of service analysis-each of the study intersections is expected to continue meeting ODOT and City mobility standards, with the following exceptions:

- The Springbrook Rd/OR 99W intersection is forecast to operate with a v/c ratio of 0.88 during the weekday PM peak hour, which exceeds the ODOT mobility standard of 0.85 .
- The weekday AM and PM peak hour v/c ratios at the Providence Drive/OR 99W intersection are forecast to be 0.89 and 0.92 , respectively, which both exceed the ODOT mobility standard of 0.80 .

Appendix "F" contains the year 2020 background with reassigned traffic Level of Service worksheets.

PROPOSED DEVELOPMENT PLAN

Per the site plan displayed in Figure 2, the Crestview Crossing development includes 248 single-family homes and 48 apartment units. However, given the potential for fluctuation in the final number of units, up to 260 single-family homes were analyzed in this report to provide a conservative analysis of the impacts. The site development will also include an extension of Crestview Drive to the south through the development and connecting to OR 99W to form the north leg of the OR 99W/Providence Drive intersection. Full-build out and occupancy of the phase of the development included in this report is expected to occur in 2020. A future development phase may include an additional 4.43 acres of commercial space adjacent to the development site but is not included in this application.

Trip Generation

The projected weekday daily, AM, and PM peak-hour vehicle trip ends for the proposed development were based on the Trip Generation Manual, 10th Edition (Reference 4). Table 4 summarizes the anticipated number of trips that will be generated by the proposed Crestview Crossing development.

Table 4: Proposed Trip Generation

Land Use	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size		Weekday Trips	Weekday AM Peak Hour			Weekday PM Peak Hour			
				Total	In	Out	Total	In	Out		
Single-Family Detached Housing	210	260	units		2,504	189	47	142	254	160	94
Apartment	220	48	units	1,622	24	6	18	31	20	11	
Total				4,126	213	53	160	285	180	105	

As shown in Table 4, the proposed development is expected to generate approximately 4,126 weekday daily trips, of which 213 ($53 \mathrm{in}, 160$ out) will occur during the AM peak hour and 285 ($180 \mathrm{in}, 105$ out) will occur during the PM peak hour.

Site Trip Distribution/Trip Assignment

The site-generated trips were distributed onto the study area roadway system according to a select zone analysis of TAZ 117, which includes the proposed development site, from the Newberg Transportation Planning Model, provided by ODOT. This model was reviewed and adjusted based on field-observed turning movement patterns. The traffic generated by the proposed Crestview Crossing development is expected to follow the following trip distribution pattern:

- 15 percent to the east along OR 99W;
- 10 percent to the south along Providence Drive;
- 10 percent to the south along Brutscher Street;
- 35 percent to the west along OR 99W to Springbrook Road; and
- 30 percent to the north along the Crestview Drive extension to Springbrook Road.

Trips were then distributed at the Springbrook Road/Crestview Drive and Springbrook Road/OR 99W intersections based upon existing turning movement counts. Figure 9 illustrates the estimated trip distribution pattern for the proposed development.

The estimated site-generated trips were assigned to the network by distributing the trips shown in Table 5 according to the trip distribution pattern shown in Figure 9. Figure 9 illustrates the site-generated trips that are expected to use the roadway system during the weekday AM and PM peak hours.

Appendix " G " contains the select zone analysis results received from ODOT.

YEAR 2020 TOTAL TRAFFIC CONDITIONS

The total traffic conditions analysis forecasts how the study area's transportation system will operate with the traffic generated by the proposed Crestview Crossing development. The weekday AM and PM peak hour site-generated traffic volumes (shown in Figure 9) were added to the year 2020 background traffic volumes with reassigned traffic (shown in Figure 7) to arrive at the total traffic volumes shown in Figure 10.

Level of Service Analysis

The weekday AM and PM peak hour turning-movement volumes shown in Figure 10 were used to conduct an operational analysis at each study intersection to determine the year 2020 total traffic levels of service. The assumed lane configurations at the Crestview Drive/Providence Drive/OR 99W and Crestview Drive/East-West Connector intersections are displayed in Figure 8. The results of the total traffic analysis shown in Figure 10 indicate that all of the study intersections and site access points are forecast to meet ODOT and City mobility standards under 2020 total traffic conditions during the weekday AM and PM peak hours, with the following exceptions:

- The Springbrook Rd/OR 99W intersection is forecast to operate with a v/c ratio of 0.86 during the weekday PM peak hour, which exceeds the ODOT mobility standard of 0.85 but does not exceed the v / c ratio under background conditions with reassigned traffic.
- The weekday AM and PM peak hour v/c ratios at the Crestview Drive/Providence Drive/OR 99W intersection are forecast to be 0.98 and 1.08, respectively. These both exceed the ODOT mobility standard of 0.80 .

Appendix "H" contains the year 2020 total traffic Level of Service worksheets.

Mitigation at Crestview Drive/Providence Drive/OR 99W

In conjunction with site development, JT Smith Companies proposes to add lanes to the Crestview Drive/Providence Drive/OR 99W intersection, shown in Figure 11 and described below:

- Add an exclusive left turn lane on southbound Crestview Drive,
- Add an exclusive right turn lane on southbound Crestview Drive,
- Add an exclusive right turn lane on westbound OR 99W, and,
- Restripe the northbound Providence Drive approach to include an exclusive left turn lane and an exclusive right turn lane.

These improvements are considered to be above and beyond the geometry needed to construct the Crestview Drive extension.

As shown in Figure 11, with these mitigation measures in place, the weekday AM and PM peak hour v/c ratios at the intersection are forecast to be 0.88 and 0.89 , respectively. These both exceed the ODOT mobility standard of 0.80 but do not exceed the respective v / c ratios for background conditions with reassigned traffic.

Appendix "I" contains the year 2020 total traffic with mitigation Level of Service worksheets.

95 ${ }^{\text {th }}$-percentile Queuing Analysis

$95^{\text {th }}$-percentile queues at the study intersections were reviewed to assess whether adequate storage would be provided at turn lanes and between intersections. SimTraffic was used to estimate the $95^{\text {th }}$ percentile queues at the signalized intersections along OR 99W (reflecting an average of five simulation runs), HCS was used to estimate the $95^{\text {th }}$-percentile queues at the roundabouts, and Synchro was used to estimate $95^{\text {th }}$-percentile queues elsewhere. Table 5 lists the estimated $95^{\text {th }}$-percentile queue for each movement at the study intersections. Reported queues are rounded to the nearest vehicle length (approximately 25 feet).

Table 5: Summary of 95th-percentile Queues

Intersection	Movement	Storage (ft)	95th-percentile Queue (ft)						Adequate Storage Provided?
			Existing		2020 Background with Reassigned Traffic		2020 Total Mitigated		
			AM	PM	AM	PM	AM	PM	
1: Springbrook Rd/ Crestview Dr	EB	N/A	25	<25	25	<25	25	<25	Yes
	WB	N/A	<25	<25	25	25	25	25	Yes
	NB	N/A	100	100	100	50	100	50	Yes
	SB	N/A	200	75	150	50	175	50	Yes
2: Libra St/ Crestview Dr	EB	N/A	<25	<25	<25	<25	<25	<25	Yes
	WB	N/A	<25	<25	<25	<25	<25	<25	Yes
	NB	N/A	<25	<25	<25	<25	<25	<25	Yes
3: Springbrook Rd/ Haworth Ave	EB L/T	N/A	25	50	25	25	25	25	Yes
	EB R	100	50	75	25	50	25	50	Yes
	WB	N/A	25	125	25	75	25	75	Yes
	NB L	90	25	50	25	25	25	25	Yes
	NB T/R	N/A	75	225	25	25	25	25	Yes
	SB L	90	<25	25	<25	25	<25	25	Yes
	SB T/R	N/A	250	300	50	50	50	50	Yes
$\begin{aligned} & \text { 4: Springbrook Rd/ } \\ & \text { OR 99W } \end{aligned}$	EB L	350	150	375	125	275	150	250	Yes
	EB T	N/A	450	475	225	400	450	425	Yes
	EB R	350	150	75	75	125	125	150	Yes
	WB L	450	75	250	75	375	100	450	Yes
	WB T	N/A	225	550	150	850	150	650	Yes
	WB R	450	<25	350	<25	525	<25	425	Yes
	NB L	320	125	400	175	300	175	225	Yes
	NB T	N/A	175	1900	175	225	175	275	Yes
	NB R	320	100	250	100	100	100	125	Yes
	SB L	170	225	250	175	225	175	225	Yes
	SB T	N/A	350	475	250	375	175	375	Yes
	SB R	130	100	175	125	175	100	175	No

Table 5: Summary of 95th-percentile Queues (continued)

Intersection	Movement	Storage (ft)	95th-percentile Queue (ft)						Adequate Storage Provided?
			Existing		2020 Background with Reassigned Traffic		2020 Total Mitigated		
			AM	PM	AM	PM	AM	PM	
$\begin{aligned} & \text { 5: Brutscher St/ } \\ & \text { OR 99W } \end{aligned}$	EB L	260	50	100	25	50	25	100	Yes
	EB T	N/A	125	375	150	325	175	350	Yes
	EB R	200	25	225	25	200	50	175	Yes
	WB L	350	100	450	100	450	150	375	Yes
	WB T	N/A	125	1375	75	1300	50	525	Yes
	WB R	80	25	50	25	75	25	75	Yes
	NB L	220	125	300	100	300	125	275	No
	NB T/R	N/A	100	475	100	450	100	275	Yes
	SB L	50	25	50	25	50	25	25	Yes
	SB T/R	N/A	50	75	50	100	75	50	Yes
6: Vittoria Way/ OR 99W	EB L	100	<25	<25	<25	<25	<25	<25	Yes
	EB T	N/A	Yes						
	WB T/R	N/A	Yes						
	SB	N/A	25	25	25	25	25	25	Yes
7: Crestview Dr/ Providence Dr/ OR 99W	EB L	150	N/A	N/A	<25	200	75	125	Yes
	EB T	N/A	225	225	400	200	450	150	Yes
	EB R	100	75	50	125	25	100	50	Yes
	WB L	230	125	200	100	175	125	200	Yes
	WB T	N/A	75	1175	150	775	225	550	Yes
	WB R	300	N/A	N/A	N/A	NA	50	275	Yes
	NB L	160	75	175	75	175	75	175	Yes
	NB T	N/A	N/A	N/A	N/A	N/A	25	100	Yes
	NB R	160	75	100	75	125	75	100	Yes
	SB L	250	N/A	N/A	N/A	N/A	225	250	Yes
	SB T	N/A	N/A	N/A	275	250	225	225	Yes
	SB R	150	N/A	N/A	N/A	N/A	75	75	Yes
8: Benjamin Rd/ OR 99W	EB L	250	N/A	N/A	N/A	N/A	N/A	N/A	Yes
	EB T	N/A	Yes						
	WB T/R	N/A	Yes						
	SB	N/A	50	125	75	150	50	150	Yes
9: Crestview Dr/ East-West Connector	EB	N/A	N/A	N/A	N/A	N/A	<25	<25	Yes
	WB	N/A	N/A	N/A	N/A	N/A	<25	<25	Yes
	NB	N/A	N/A	N/A	N/A	N/A	<25	25	Yes
	SB	N/A	N/A	N/A	N/A	N/A	25	25	Yes

The table indicates the following $95^{\text {th }}$-percentile queues are projected to exceed the provided storage lengths under 2020 total traffic conditions with the proposed mitigation measures:

- The southbound right turn at Springbrook Road/OR 99W during the weekday PM peak hour.
- The northbound left turn at Brutscher Street/OR 99W during the weekday PM peak hour.

Each of the queues noted above is expected to decrease compared with existing conditions due to reassigned traffic from Springbrook Road and OR 99W to the Crestview Drive extension. Consequently, no additional mitigation measures are recommended to accommodate the $95^{\text {th }}$-percentile queues at the study intersections the proposed development thus adds no further degradation to the system.

Appendix " J " contains the SimTraffic queuing worksheets.

On-Site Circulation/Site-Access Operations

Internal circulation was evaluated to ensure that the site provides sufficient on-site circulation for pedestrian movements and internal traffic. Figure 2 illustrates the proposed development plan. The following activities are recommended to ensure adequate safety and operation at the internal intersections and roadways:

- All local streets within the development should have two travel lanes.
- Other than at the Providence Drive/Crestview Drive/OR 99W intersection, a two-lane section of Crestview Drive should be adequate to accommodate turning movements and queuing within the proposed development.
- Shrubbery and landscaping near the internal intersections and site access points should be maintained to ensure adequate sight distance.

COMMERCIAL DEVELOPMENT SENSITIVITY ANALYSIS

As noted previously, approximately 4.43 acres adjacent to the proposed site could be developed in the future as commercial property. This commercial property is not included in this land use application but could be constructed at an undetermined time as part of a separate land use application. We investigated the potential impacts of developing the 4.43 acres of commercial property for the following reasons:

- To estimate the additional mitigations, if any, needed to meet ODOT policy, and
- To consider compatibility between these additional mitigations and the proposed lane geometry and mitigations on roadways and at intersections within and around the site, including the Crestview Drive/Providence Drive/OR 99W intersection and proposed Crestview Drive/East-West Connector roundabout.

A build-out year of 2020 was assumed for this analysis for simplicity. Assuming a later background year would result in marginally different background traffic volumes because traffic on OR 99W could either increase (if more in process developments are approved) or decrease (as a result of completion of the Newberg-Dundee Bypass).

Table 6 displays the trip generation for the commercial traffic (in addition to the residential), assuming 25 percent of the 4.43 acres becomes leasable floor space and that all of the property is developed as shopping center.

Table 6: Trip Generation Including Phase II

Land Use	ITE Code	Size		Daily Trips	Weekday AM Peak Hour			Weekday PM Peak Hour			
				Total	In	Out	Total	In	Out		
Single-Family Detached Housing	210	260	Units		2,504	189	47	142	254	160	94
Less Internal Trips				226	9	2	7	28	18	10	
Apartment	220	48	Units	1,622	24	6	18	31	20	11	
Less Internal Trips				146	1	0	1	3	2	1	
Shopping Center	820	48,243*	ft^{2}	3,662	176	109	67	317	152	165	
Less Internal Trips				330	9	5	4	35	17	18	
Less Pass-by Trips				866	0	0	0	96	48	48	
Total Gross Trips				7,788	389	162	227	602	332	270	
Less Internal Trips				702	19	7	12	66	37	29	
Less Pass-by Trips				866	0	0	0	96	48	48	
Total Net New Trips				6,220	370	155	215	440	247	193	

*Assumes a gross leasable area to acreage ratio of 0.25 .
As shown, if the commercial property is developed, then the total development is estimated to generate 6,220 weekday daily trips, of which 370 ($155 \mathrm{in}, 215$ out) will occur during the AM peak hour and 440 (247 in, 193 out) will occur during the PM peak hour. The development is also expected to generate approximately 96 pass-by trips during the weekday PM peak hour-to conservatively estimate the impacts to the Crestview Drive/Providence Drive/OR 99W intersection, all of the pass-by trips were treated as diverted from OR 99W.

Figure 12 shows the trip generation and total traffic conditions at the Crestview Drive/Providence Drive/OR 99W intersection and Crestview Drive/East-West Connector Roundabout. As shown, the Crestview Drive/East-West Connector Roundabout is expected to continue operating acceptably as a single-lane roundabout. With the mitigation improvements associated with the residential development in place, the weekday AM and PM peak hour v/c ratios at the Crestview Drive/Providence Drive/OR 99W intersection are forecast to be 0.90 and 0.94 , respectively. ODOT defines no significant impact as a v / c ratio of 0.03 above the background condition-therefore, assuming the same background conditions, no additional mitigations would be required.

Table 7 displays the estimated resulting $95^{\text {th }}$-percentile queues at the Crestview Drive/Providence Drive/OR 99W intersection from SimTraffic.

Table 7: Summary of $95^{\text {th }}$-percentile Queues Including Phase II

Intersection	Movement	Storage (ft)	95th-percentile Queue (ft)	
			2020 Phase II	
			AM	PM
7: Crestview Dr/ Providence Dr/ OR 99W	EB L	150	125	150
	EB T	N/A	475	250
	EB R	100	125	25
	WB L	230	125	250
	WB T	N/A	250	975
	WB R	300	100	300
	NB L	160	75	150
	NB T	N/A	50	75
	NB R	160	75	100
	SB L	250	250	250
	SB T	N/A	300	350
	SB R	150	100	125

Appendix "K" contains the Phase II Sensitivity Analysis Level of Service worksheets.

Estimated retail-residential internal trips
Negative values indicate retail pass-by trips.
CM = CRITICAL MOVEMENT (UNSIGNALZED)
OS = INTERSECTION LEVEL OF SERVICE (SIGNALIZED)/
CRITICAL MOVEMENT LEVEL OF SERVICE (UNSIGNALIZED)
Del = INTERSECTION AVERAGE CONTROL CELAY (SIGNALIZED)
CRITICAL MOVEMENT CONTROL DELAY (UNSIGNALIZED)

Section 5

Conclusions and Recommendations

CONCLUSIONS AND RECOMMENDATIONS

The results of the traffic impact analysis indicate that the proposed Crestview Crossing development can be constructed while maintaining acceptable levels of service and safety on the surrounding transportation system, provided the appropriate mitigations are in place. The findings of this analysis and our recommendations are discussed below.

Year 2017 Existing Conditions

- All of the study intersections currently meet City of Newberg (and Oregon Department of Transportation, where applicable) mobility targets during the weekday AM and PM peak hours, with the following exceptions:
- The Springbrook Road/OR 99W intersection currently experiences a volume-to-capacity ratio (v / c) of 0.86 during the weekday AM peak hour, which exceeds the ODOT mobility standard of 0.85 . The intersection also operates at level of service (LOS) E during the weekday PM peak hour, which exceeds the City standard of LOS D under current conditions.
- The southbound stop-controlled approach to the Vittoria Way/OR 99W intersection currently operates at LOS E during the weekday PM peak hour, which exceeds the City standard of LOS D.
- A review of historical crash data did not reveal any patterns or trends in the site vicinity that require mitigation associated with this project.
- One fatal crash was reported at the Springbrook Road/Crestview Drive roundabout-this crash occurred when a southbound motorcyclist struck a curb and was thrown from the vehicle. The crash report lists the cause as driver error-driving too fast for conditions.
- Based upon a 2016 analysis, the Springbrook Road/OR 99W intersection is currently within the top five percent of the highest-scoring intersections in Region 2.

Since 2016, pavement marking improvements and an additional westbound left turn lane on OR 99W were added to this intersection, and the proposed Crestview Crossing development is expected to result in a net decrease in traffic at this intersection due to the reassignment of traffic to the Crestview Drive extension.

Year 2020 Background Conditions

- A two-percent annual growth rate was applied to the existing mainline traffic volumes on OR 99 W to reflect general background growth in the area before any in-process traffic was considered.
- Traffic generated by the Oregon Clinic, to be located on the west side of Providence Drive south of Providence Newberg Medical Center, was included in the background traffic volumes as in-process traffic.

Background traffic conditions with the assumed build-out of the north leg of the Providence Drive/OR 99W intersection (and no site-added traffic) were assumed as the base case against which future traffic conditions are compared.

- The proposed development will extend Crestview Drive south through the property and to the existing Providence Drive/OR 99W intersection, where it will form the north leg.
- Traffic volumes were assigned to the Crestview Drive extension based upon existing turning movement volumes at the study intersections and the Newberg Transportation System Plan.
- The background traffic condition includes rerouted traffic from the proposed Crestview Drive extension but does not include trips associated with new land uses within the proposed development.
- All of the study intersections are expected to continue operating acceptably during the weekday AM and PM peak hours under 2020 background traffic conditions with reassigned traffic, with the following exceptions:
- The Springbrook Rd/OR 99W intersection is forecast to operate with a v/c ratio of 0.88 during the weekday PM peak hour, which exceeds the ODOT mobility standard of 0.85 .
- The weekday AM and PM peak hour v/c ratios at the Providence Dr/OR 99W intersection are forecast to be 0.89 and 0.92 , respectively, which both exceed the ODOT mobility standard of 0.80 .

Proposed Development Plan

- The proposed development is expected to generate approximately 4,126 weekday daily trips, of which approximately 213 ($53 \mathrm{in}, 160$ out) are forecast to occur during the AM peak hour and approximately 285 ($180 \mathrm{in}, 105$ out) are forecast to occur during the PM peak hour.
- A select-zone analysis of the Newberg Transportation Planning Model was used to develop a trip distribution pattern for the proposed development.

Year 2020 Total Conditions

- All of the study intersections are expected to continue operating acceptably during the weekday AM and PM peak hours under 2020 total traffic volumes, with the following exceptions:
- The Springbrook Rd/OR 99W intersection is forecast to operate with a v/c ratio of 0.86 during the weekday PM peak hour, which exceeds the ODOT mobility standard of 0.85 but does not exceed the v / c ratio under background conditions with reassigned traffic.
- The weekday AM and PM peak hour v/c ratios at the Providence Drive/OR 99W intersection are forecast to be 0.98 and 1.08, respectively, which both exceed the ODOT mobility standard of 0.80 .
- The new proposed Crestview Diver/East-West Connector intersection within the Crestview Crossing development is expected to operate acceptably as a single-lane roundabout.

Year 2020 Total Mitigated Conditions

- The Crestview Drive/Providence Drive/OR 99W intersection was analyzed under total traffic conditions with the following additional lane improvements:
- Add an exclusive left turn lane on southbound Crestview Drive,
- Add an exclusive right turn lane on southbound Crestview Drive,
- Add an exclusive right turn lane on westbound OR 99W,
- Restripe eastbound OR 99W to include an exclusive left turn lane, and,
- Restripe the northbound Providence Drive approach to include an exclusive left turn lane and an exclusive right turn lane.

With these improvements, the weekday AM and PM peak hour v/c ratios at the intersection are forecast to be 0.88 and 0.89 , respectively. These exceed the ODOT mobility standard of 0.80 but do not exceed the respective v / c ratios under background conditions with reassigned traffic. As such, the impact of the development has been mitigated.

95 ${ }^{\text {th }}$-percentile Queuing Analysis

- All $95^{\text {th }}$-percentile queues are projected to be accommodated by the provided storage lengths under 2020 total traffic conditions, with the following exceptions:
- The southbound right turn at Springbrook Road/OR 99W during the weekday PM peak hour.
- The northbound left turn at Brutscher Street/OR 99W during the weekday PM peak hour. Each of the queues noted above is expected to decrease under total traffic conditions compared with existing conditions due to reassigned traffic from Springbrook Road and OR 99W to the Crestview Drive extension.

Commercial Property Sensitivity Analysis

A planning-level analysis was prepared to account for the future development potential of the 4.43-acre commercial property adjacent to the development site. While this is NOT part of this development application, the analysis was conducted to evaluate the future effectiveness of the recommended mitigations.

- The gross leasable area-to-acreage ratio was assumed at 25 percent, and the entire commercial property was assumed as shopping center land use.
- The total development (including residential and commercial) is estimated to generate 6,220 weekday daily trips, of which 370 ($155 \mathrm{in}, 215$ out) will occur during the AM peak hour and 440 (247 in, 193 out) will occur during the PM peak hour. The development is also expected to generate approximately 96 pass-by trips during the weekday PM peak hour-these were treated as diverted trips from OR 99W.
- The Crestview Drive/Providence Drive/OR 99W intersection and Crestview Drive/East-West Connector roundabout were analyzed assuming development of the 4.43-acre commercial property.
- The Crestview Drive/East-West Connector intersection is expected to continue operating acceptably as a single-lane roundabout.
- With the mitigation improvements associated with the residential development in place, the weekday AM and PM peak hour v/c ratios at the Crestview Drive/Providence Drive/OR 99 W intersection are forecast to be 0.90 and 0.94 , respectively. ODOT defines no significant impact as a v/c ratio of 0.03 above the background condition-therefore, assuming the same background conditions, no additional mitigations would be required.

RECOMMENDATIONS

Providence Drive/Crestview Drive/OR 99W Intersection

- The new north leg of the intersection, which will be an extension of Crestview Drive, should be configured as a four-lane section with one northbound lane and three southbound lanes (exclusive lanes for left-turn, through, and right-turn movements). At least 250 feet of southbound left turn storage and at least 150 feet of southbound right turn storage should be provided to accommodate the forecast $95^{\text {th }}$ percentile queue lengths.
- The south leg of the intersection should be restriped to a four-lane section with one southbound lane and three northbound lanes (exclusive lanes for left-turn, through, and right-turn movements).
- Based on the forecast $95^{\text {th }}$ percentile queuing analysis:
- A westbound right turn lane should be constructed with at least 300 feet of storage.
- An eastbound left turn lane should be striped to provide at least 150 feet of storage.
- Recommended signal phasing: the intersection should be operated with permissive left turn movements on the northbound and southbound approaches and fully protected left turn movements on the eastbound and westbound approaches.

On-Site Circulation/Site Access Operations

- Driveways, landscaping, utilities, and signage within the site should be located and maintained to provide sufficient sight distance at all new internal intersections and accesses.
- Other than at the Providence Drive/Crestview Drive/OR 99W intersection, a two-lane section of Crestview Drive should be adequate to accommodate turning movements and queuing within the proposed development.

Section 6 References

REFERENCES

1. Transportation Research Board of the National Academies. Highway Capacity Manual 2000. 2000.
2. City of Newberg, Oregon. Transportation System Plan. 2016.
3. Yamhill County Transit Area. "Routes and Schedules." 2017. <http://www.yctransitarea.org/ index.php/routes-and-schedules/>. Accessed 12-21-2017.
4. Institute of Transportation Engineers. Trip Generation: 10 ${ }^{\text {th }}$ Edition. 2017.

Appendix A
 Scoping Memorandum

SCOPING MEMORANDUM

Date:
October 19, 2017
Project \#: 21709
To: \quad Steve Olson, City of Newberg
Gerry Juster and Keith Blair, ODOT
From: Zachary Bugg, PhD; Diego Arguea, PE; and Matt Hughart, AICP
Project: Crestview Crossing
Subject: Traffic Impact Analysis Scoping Memorandum

This memorandum represents a scoping needs assessment for preparing the Traffic Impact Analysis (TIA) associated with the proposed development located at the northeast corner of the OR 99W/ Providence Drive intersection in Newberg, Oregon. The assumptions for scoping the TIA are based on a review of a conceptual site plan, a preapplication meeting and discussions between City of Newberg staff and the Applicant, and our working knowledge of the transportation policies of City of Newberg and the Oregon Department of Transportation (ODOT).

Proposed Development

The Applicant, JT Smith Companies, is in the process of preparing an application to develop a 33.13acre mixed-use development on the subject property. The site is currently occupied by farm land and one single family home. The site is bordered by OR 99W to the south and by residential uses to the west, north, and east.

Figure 1 displays a site vicinity map, and Figure 2 displays the proposed site plan. Per the current site plan, the development will include 249 single-family homes, 48 apartment units, 4.43 acres of commercial property, and 1.17 acres of civic space. As shown, the site development includes an extension of Crestview Drive to the south through the proposed development, connecting to OR 99W to form the north leg of the OR 99W/Providence Drive intersection.

Per ODOT and City of Newberg criteria, a TIA is needed as part of the design review application for the development. This memorandum presents the proposed methodology to prepare the TIA and reflects the outcome of conversations with City and ODOT staff.

KITTELSON
\& ASSOCIATES

Site Plan Provided by 3J Consulting 8/14/2017
Figure
2

Trip Generation

Preliminary trip generation estimates for the proposed development were prepared based on the Institute of Transportation Engineers' (ITE) Trip Generation Manual, $9^{\text {th }}$ Edition (Reference 1) for weekday daily, AM peak hour, and PM peak hour time periods. The trip generation is based on the residential and commercial mix, with an assumed use of the civic space for a community center. Internal and pass-by trips were estimated based on rates identified in the Trip Generation Handbook, $2^{\text {nd }}$ Edition (Institute of Transportation Engineers, 2004) ${ }^{1}$. The trip generation is summarized below in Table 1.

Table 1. Preliminary Trip Generation Estimate

Land Use	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Daily Trips	Weekday AM Peak Hour			Weekday PM Peak Hour		
				Total	In	Out	Total	In	Out
Single-Family Detached Housing	210	249 units	2,370	187	47	140	249	157	92
Less Internal Trips (13\% Daily, 8\% AM, 12\% PM)			308	15	4	11	30	19	11
Apartment	220	48 units	320	24	5	19	30	20	10
Less Internal Trips (13\% Daily, 8\% AM, 12\% PM)			42	2	0	2	4	2	2
Shopping Center	820	$48,243 \mathrm{ft}^{2}$ *	2,060	46	29	17	179	86	93
Less Internal Trips (13\% Daily, 8\% AM, 12\% PM)			268	4	2	2	21	10	11
Less Pass-by Trips (34\% Daily, AM, PM)			610	14	7	7	54	27	27
Recreational Community Center	495	$12,741 \mathrm{ft}^{2} *$	292	26	17	9	35	17	18
Less Internal Trips (13\% Daily, 8\% AM, 12\% PM)			38	2	1	1	4	2	2
	Total Gross Trips		5,042	283	98	185	493	280	213
	Less Internal Trips		656	23	7	16	59	33	26
	Less Pass-by Trips		610	14	7	7	54	27	27
	Total Net New Trips		3,776	246	84	162	380	220	160

*Assumes gross floor area/acreage $=0.25$
As shown in Table 1, the proposed development is estimated to generate a potential of up to 246 weekday AM peak hour trips and 380 weekday PM peak hour trips.

To provide a high estimate that would result in a more conservative analysis, the trip generation in Table 1 reflects the commercial property as a general Shopping Center-no further details about the development of this property are known at this time. Also, the trip generation assumes that the civic space will function as a community area, and thus has been estimated to operate as a Recreational Community Center for trip generation estimate purposes. Should the civic space only be available as a private amenity to the residential community (such as a community pool/fitness center), then all trips associated with this land use will be internal to the development, and thus the total net new trips will

[^6]be lower than what is shown in Table 1. The final TIA will document all assumptions and reflect the revised trip generation accordingly.

The internalization calculations and assumptions are included in Attachment " A " to this memorandum.

Trip Distribution and Assignment

The study area is contained within the Newberg Transportation Planning Model. A select-zone analysis will be used to develop a trip distribution pattern for the proposed site (TAZ 117). Please provide two select zone analyses, one with the Crestview Road connection and one without the Crestview Road connection through the proposed site.

Study Area and Intersections

Based on the estimated trip generation and assignment patterns, the following intersections and accesses are proposed for analysis:

- OR 99W/Springbrook Road
- OR 99W/Brutscher Street
- OR 99W/Vittoria Way
- OR 99W/Providence Drive/Crestview Drive
- OR 99W/Benjamin Road
- Crestview Drive/Site Access
- Springbrook Road/Crestview Drive

Additionally, all accesses to the commercial property and civic property will be analyzed.

Time Periods for Analysis

Existing and estimated build-out year 2020 conditions at the identified study intersections will be analyzed using Synchro/SimTraffic Version 9 software. Turning movement counts at the study intersections will be collected during the morning ($6-9$ AM) and afternoon ($3-6$ PM) periods on a typical mid-week day when school is in session. Additionally, a 16-hour count (6 AM - 10 PM) will be performed at the OR 99W/Providence Drive intersection in support of a potential modified signal design and complete safety analysis.

Based on conversations with ODOT staff, the site is located in an area influenced by both seasonal traffic and school traffic, with the peak travel period occurring in September. Therefore, the counts will be performed between September 12, 2017 and September 21, 2017 per ODOT direction, and no seasonal volume adjustment will be required.

In-process Developments

A two percent annual growth rate will be applied to the existing mainline traffic volumes on OR 99W to generate future background traffic volumes before any trips associated with approved in-process developments are added to the background traffic volumes. We request that City of Newberg and/or ODOT confirm the two percent annual growth rate and provide any other developments to be included as in-process.

Network Traffic Reassignment

The proposed development will result in a major network connection via the southward extension of Crestview Drive to OR 99W. The methodology for reassigning existing traffic to this new connection will be based upon a combination of the Transportation System Plan and the results of the select-zone analysis applying the Newberg Transportation Planning Model.

Queuing Analysis

An analysis of average and $95^{\text {th }}$-percentile queues will be prepared based on SimTraffic microsimulation. The analysis will be based on five simulation runs per intersection and analysis scenario.

Crash Analysis

The most recent five years of reported crash data at the study intersections will be requested from ODOT and reviewed in detail. The ODOT Statewide Priority Index System (SPIS) will also be reviewed to identify any sites where safety issues may encourage further investigation.

Signal Timing

We will obtain the latest signal timing and phasing information for the three signalized study intersections from ODOT:

- OR 99W/Springbrook Road
- OR 99W/Brutscher Street
- OR 99W/Providence Drive

Next Steps

We trust this memorandum provides adequate documentation of the proposed land use action, methodology, and specific study intersections and analysis periods to address in the TIA. We formally request that City of Newberg and ODOT Region 2 provide written confirmation and/or questions
regarding the proposed methodology and project TIA assumptions as soon as possible so that we may proceed with our analysis. If you have any questions, please give us a call at (503) 228-5230.

REFERENCES

1. Institute of Transportation Engineers. Trip Generation Manual, $9^{\text {th }}$ Edition. 2012.
2. Institute of Transportation Engineers. Trip Generation Handbook, 2 ${ }^{\text {nd }}$ Edition. 2004.

ATTACHMENT A

Trip Generation Internalization Calculations

Appendix B
 Turning Movement Counts

Appendix C Year 2017 Existing Conditions Level of Service Worksheets

HCM Unsignalized Intersection Capacity Analysis
3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$	7	\%	$\uparrow \uparrow$	7	\% ${ }^{1 / 4}$	\uparrow	7	\% ${ }^{1}$	\uparrow	「
Traffic Volume (vph)	43	1242	75	81	754	150	179	140	99	425	120	70
Future Volume (vph)	43	1242	75	81	754	150	179	140	99	425	120	70
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		0\%			0\%			3\%			0\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1583	3197	1430	2906	3138	1403	2997	1642	1423	3101	1577	1408
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1583	3197	1430	2906	3138	1403	2997	1642	1423	3101	1577	1408
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	48	1396	84	91	847	169	201	157	111	478	135	79
RTOR Reduction (vph)	0	0	45	0	0	88	0	0	96	0	0	69
Lane Group Flow (vph)	48	1396	39	91	847	81	201	157	15	478	135	10
Confl. Peds. (\#/hr)							3					3
Heavy Vehicles (\%)	5\%	4\%	4\%	11\%	9\%	6\%	6\%	5\%	3\%	4\%	11\%	4\%
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	7.2	55.2	55.2	9.3	57.3	57.3	24.1	16.0	16.0	23.0	14.9	14.9
Effective Green, g (s)	7.2	55.2	55.2	9.3	57.3	57.3	24.1	16.0	16.0	23.0	14.9	14.9
Actuated g/C Ratio	0.06	0.46	0.46	0.08	0.48	0.48	0.20	0.13	0.13	0.19	0.12	0.12
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	2.3	4.2	4.2	2.3	4.0	4.0	2.3	2.3	2.3	2.3	2.3	2.3
Lane Grp Cap (vph)	94	1470	657	225	1498	669	601	218	189	594	195	174
v/s Ratio Prot	0.03	c0.44		0.03	c0. 27		0.07	c0.10		c0.15	0.09	
v/s Ratio Perm			0.03			0.06			0.01			0.01
v/c Ratio	0.51	0.95	0.06	0.40	0.57	0.12	0.33	0.72	0.08	0.80	0.69	0.06
Uniform Delay, d1	54.7	31.1	18.0	52.7	22.4	17.4	41.1	49.9	45.5	46.4	50.4	46.3
Progression Factor	1.00	1.00	1.00	0.95	0.87	1.38	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.9	14.2	0.2	0.6	1.5	0.3	0.2	10.1	0.1	7.5	8.9	0.1
Delay (s)	57.5	45.3	18.2	50.8	21.0	24.3	41.3	59.9	45.6	53.9	59.3	46.4
Level of Service	E	D	B	D	C	C	D	E	D	D	E	D
Approach Delay (s)		44.2			23.9			48.5			54.1	
Approach LOS		D			C			D			D	

Intersection Summary			
HCM 2000 Control Delay	40.6	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.86	Sum of lost time (s)	16.5
Actuated Cycle Length (s)	120.0	C	
Intersection Capacity Utilization	70.4%	ICU Level of Service	C

Analysis Period (min)
c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	$\uparrow \uparrow$	「	\%	$\uparrow \uparrow$	7	${ }^{7}$	F		\%	F	
Traffic Volume (vph)	19	1601	43	70	922	28	58	3	87	11	5	27
Future Volume (vph)	19	1601	43	70	922	28	58	3	87	11	5	27
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		2\%			0\%			0\%			-2\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1567	3165	1265	1568	3079	1273	1433	1408		1678	1361	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.73	1.00		0.56	1.00	
Satd. Flow (perm)	1567	3165	1265	1568	3079	1273	1109	1408		991	1361	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	1740	47	76	1002	30	63	3	95	12	5	29
RTOR Reduction (vph)	0	0	13	0	0	7	0	86	0	0	26	0
Lane Group Flow (vph)	21	1740	34	76	1002	23	63	12	0	12	8	0
Confl. Peds. (\#/hr)	2					2			1	1		
Confl. Bikes (\#hr)			1									1
Heavy Vehicles (\%)	5\%	4\%	14\%	6\%	8\%	14\%	16\%	0\%	5\%	0\%	40\%	7\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases			2			6	4			8		
Actuated Green, G (s)	3.2	86.6	86.6	9.2	92.6	92.6	11.7	11.7		11.7	11.7	
Effective Green, g (s)	3.2	86.6	86.6	9.2	92.6	92.6	11.7	11.7		11.7	11.7	
Actuated g/C Ratio	0.03	0.72	0.72	0.08	0.77	0.77	0.10	0.10		0.10	0.10	
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	2.3	4.8	4.8	2.3	4.8	4.8	2.5	2.5		2.5	2.5	
Lane Grp Cap (vph)	41	2284	912	120	2375	982	108	137		96	132	
v/s Ratio Prot	0.01	c0.55		c0.05	0.33			0.01			0.01	
v/s Ratio Perm			0.03			0.02	c0.06			0.01		
v/c Ratio	0.51	0.76	0.04	0.63	0.42	0.02	0.58	0.09		0.12	0.06	
Uniform Delay, d1	57.6	10.3	4.8	53.8	4.6	3.2	51.8	49.3		49.5	49.2	
Progression Factor	1.29	0.22	0.06	0.96	0.95	0.89	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.1	1.2	0.0	8.1	0.5	0.0	6.5	0.2		0.4	0.1	
Delay (s)	77.7	3.5	0.3	59.9	4.9	2.9	58.3	49.5		49.9	49.3	
Level of Service	E	A	A	E	A	A	E	D		D	D	
Approach Delay (s)		4.3			8.6			53.0			49.5	
Approach LOS		A			A			D			D	
Intersection Summary												
HCM 2000 Control Delay			9.0		CM 2000	evel of	Service		A			
HCM 2000 Volume to Capacity ratio			0.73									
Actuated Cycle Length (s)			120.0		um of los	time (s)			12.5			
Intersection Capacity Utilization			73.4\%		CU Level	Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh 0.8						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	$\uparrow \uparrow$	个t		M	
Trafic Vol, veh/h	3	1702	1077	29	62	6
Future Vol, veh/h	3	1702	1077	29	62	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	250	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	1	-
Grade, \%	-	0	0	-	-2	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	33	4	7	7	3	0
Mumt Flow	3	1792	1134	31	65	6

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{\text {f }}$	7		${ }_{4}$		\%	F		7	F	
Sign Control		Stop			Stop			Stop			Stop	
Trafic Volume (vph)	83	63	219	91	68	86	136	358	5	67	357	40
Future Volume (vph)	83	63	219	91	68	86	136	358	5	67	357	40
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	86	66	228	95	71	90	142	373	5	70	372	42
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1	NB 2	SB 1	SB 2					
Volume Total (vph)	152	228	256	142	378	70	414					
Volume Left (vph)	86	0	95	142	0	70	0					
Volume Right (vph)	0	228	90	0	5	0	42					
Hadj (s)	0.30	-0.68	-0.12	0.53	0.04	0.53	0.00					
Departure Headway (s)	9.0	8.0	8.6	8.8	8.3	8.8	8.2					
Degree Utilization, x	0.38	0.51	0.61	0.35	0.87	0.17	0.95					
Capacity (veh/h)	379	428	395	398	426	399	426					
Control Delay (s)	16.3	17.9	24.4	15.2	44.9	12.4	58.4					
Approach Delay (s)	17.3		24.4	36.8		51.8						
Approach LOS	C		C	E		F						

Intersection Summary

Delay	34.8		
Level of Service	D		ICU Level of Service
Intersection Capacity Utilization	59.5%	B	
Analysis Period (min)	15		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$	7	\% ${ }^{1}$	$\uparrow \uparrow$	7	7\%	\uparrow	7	\%	\uparrow	F
Traffic Volume (vph)	104	1070	124	141	1350	300	374	179	124	391	212	86
Future Volume (vph)	104	1070	124	141	1350	300	374	179	124	391	212	86
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		0\%			0\%			3\%			0\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1583	3137	1440	2854	3288	1423	3177	1674	1361	3193	1699	1438
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1583	3137	1440	2854	3288	1423	3177	1674	1361	3193	1699	1438
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	106	1092	127	144	1378	306	382	183	127	399	216	88
RTOR Reduction (vph)	0	0	56	0	0	138	0	0	111	0	0	76
Lane Group Flow (vph)	106	1092	71	144	1378	168	382	183	16	399	216	12
Confl. Peds. (\#/hr)	2		9	9		2	14					14
Confl. Bikes (\#/hr)									2			1
Heavy Vehicles (\%)	5\%	6\%	1\%	13\%	4\%	2\%	0\%	3\%	6\%	1\%	3\%	0\%
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	12.5	77.8	77.8	11.7	77.0	77.0	15.1	17.7	17.7	16.3	18.9	18.9
Effective Green, $\mathrm{g}(\mathrm{s})$	12.5	77.8	77.8	11.7	77.0	77.0	15.1	17.7	17.7	16.3	18.9	18.9
Actuated g/C Ratio	0.09	0.56	0.56	0.08	0.55	0.55	0.11	0.13	0.13	0.12	0.13	0.13
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	2.3	4.2	4.2	2.3	4.0	4.0	2.3	2.3	2.3	2.3	2.3	2.3
Lane Grp Cap (vph)	141	1743	800	238	1808	782	342	211	172	371	229	194
v/s Ratio Prot	c0.07	0.35		0.05	c0.42		0.12	0.11		c0.12	c0.13	
v/s Ratio Perm			0.05			0.12			0.01			0.01
v / c Ratio	0.75	0.63	0.09	0.61	0.76	0.22	1.12	0.87	0.09	1.08	0.94	0.06
Uniform Delay, d1	62.2	21.2	14.5	61.9	24.4	16.1	62.5	60.0	54.1	61.9	60.0	52.8
Progression Factor	1.00	1.00	1.00	0.96	1.16	3.14	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	18.7	1.7	0.2	2.2	2.0	0.4	84.1	28.6	0.1	68.3	43.5	0.1
Delay (s)	80.9	22.9	14.7	61.6	30.2	50.9	146.5	88.6	54.2	130.2	103.5	52.9
Level of Service	F	C	B	E	C	D	F	F	D	F	F	D
Approach Delay (s)		26.8			36.2			114.3			112.3	
Approach LOS		C			D			F			F	

Intersection Summary			
HCM 2000 Control Delay	57.1	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	0.84		16.5
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	E
Intersection Capacity Utilization	87.6%	ICU Level of Service	
Analysis Period (min)	15		

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	$\uparrow \uparrow$	个 \uparrow		Y	
Traffic Vol, veh/h	31	1320	1873	75	61	17
Future Vol, veh/h	31	1320	1873	75	61	17
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	1	-
Grade, \%	-	0	0	-	-2	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	5	4	0	2	0
Mvmt Flow	33	1419	2014	81	66	18

Appendix D ODOT Crash Data

CITY OF NEWBERG, YAMHILL COUNTY

$\begin{array}{lllrl}00109 & \text { N N N } & \text { 02/12/2013 } & 17 & \text { CRESTVIEW DR } \\ \text { NONE } & & \text { Tue } & \text { 9P } & 0\end{array} \quad$ SPRINGBROOK RD

DATA SECTION - CRASH ANALYSIS
URBAN NON-SYSTEM CRASH LISTING
Springbrook Rd \& Crestview Dr
January 1, 2011 through December 31, 2015

NTER CROSS
INTER CROS
S $\begin{array}{lll}\mathrm{N} & \text { DRY } & \text { FIX } \\ \mathrm{N} & \text { DAY } & \text { FAT }\end{array}$ PRVTE
MTRCYCLE mTRCYCLE

N CLR S-1STOP
$\begin{array}{lll}\text { Y } & \text { DRY REAR } \\ \text { R }\end{array}$

SPCL US
TRLR QTY MOVE
OWNER \quad FROM

PRTC INJ | A |
| :--- |
| G |
| G | S CNS PED $01 \begin{array}{lll}\text { NONE } \\ \text { PRVTE }\end{array} 0 \quad \begin{aligned} & \text { STRGHT }\end{aligned}$

01

01	NoNe
PRVTE	StRGH
PSNGR CAR	

01 DRvR Nons

$$
5
$$

7
047,081

01 DRVR NONE 46 M OR-Y
OR-Y
OR<25
OR<25

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CITY of newberg, yamhill county
 No RPT Mon $2 \mathrm{P} \quad 0$
No 1

$$
\text { No } \begin{array}{lllllll}
& 45 & 18 & 28.71 & -122 & 56 & 48.98
\end{array}
$$

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION transportation data section - CRASH analysis and reporting unit

RBAN NON-SISTEM CRASH LISTING
January 1, 2011 through December 31, 2015

0038	N N N	01/11/2014	17	HAWORTH AVE
0	RPT		Sat	0

00685	N N N N N	$06 / 24 / 2014$	16	HAWORTH AVE		
CITY			Tue	9A	0	SPRINGBROOK RD

091 PACIFIC HIGHWAY WEST
CONTINUOUS SYSTEM CRASH LISTING
January 1, 2011 through December 31, 2015

$$
\begin{aligned}
& \text { ATA SECTION - CRASH ANAISISIS AA } \\
& \text { ONTINUOUS SYSTEM CRASH LISTING }
\end{aligned}
$$

January 1, 2011 through December 31, 2015

01087	N N N	12/23/2011		YAMHILL
		Fri	5P	
				NEWBERG
No	4518	23.12	-122	5648.94

| 00690 N N N | $08 / 11 / 2012$ | | | YAMHILL |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NO RPT | | | | |

00851	N N N	09/	/2012	Yamhill
NO RPT		Fri	2 P	NEWBERG
				NEWBERG
No	4518	12	-122	5648.94

02	NONE PRVTE PSNGR CAR	0
STRGHT		
SWE		

1	14		INTER	cross	N	N	Unk	S-1STOP
MN	0	PACIFIC HY 99w	NE		tre SIGNAL	N	UNK	REAR
		SPRINGBROOK RD	06	0		N	DAY	PDO
009100100S00			1					

01 DRVR NONE 31 \begin{tabular}{lll}

F \& | OR-Y |
| :--- |
| OR<25 | \& 000

\end{tabular}

000

PSNGR CAR
01 DRVR NONE 00 M OR-Y
026
000
009100100 S00 1
$\begin{array}{lll}02 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STOP } \\ \text { PSNGR } & \text { NEAR } & \end{array}$

01 NONE 0 STRGHT
PRVTE NE SW
PSNGR CAR 01 DRVR NONE 39 M OR-Y 026
000

02 none 0 Stop
NENGR SW

01	DRVR NONE	25	F	OR-Y
			OR<25	
02	PSNG NO<5	02	F	
03	PSNG NO			
03	01	M		

000
PSNGR CAR
000
000
000
000

1	14		Inter	Cross	N	CLR	S-1Stop
MN	0	PACIFIC HY 99w	NE		TRF SIGNAL	DRY	REAR
		SPRINGBROOK RD	06	0		DLIT	PDO
009100100500			1				

$\begin{array}{lll}01 \text { NONE } & \text { BACK } \\ \text { UNKN } & \text { SW } \\ \text { PSNGR CAR } & \end{array}$
01 DRVR NONE 00 F OR-Y
000 \qquad
02 None 0 STOP
PRVTE
PSNGR
01 DRVR NONE 25 F OR-Y
$01 \begin{array}{ccc}\text { NONE } \\ \text { PRVTE }\end{array} 0 \begin{gathered}\text { STRGHT } \\ \text { NE SW }\end{gathered}$

| PSNGR CAR | 01 | | | 000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$02 \begin{aligned} & \text { NONE } \\ & \text { PRVTE }\end{aligned} \quad \begin{aligned} & \text { TURN-L } \\ & \text { NE S }\end{aligned}$
01 DRVR NONE 74 M OR-Y $000 \quad 000$

| PRNGR CAR | 01 DRVR NONE | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 74 M OR-Y | 000 | 000 | 000 |
| PSNGR CAR | | | |

009100100 S 00
1 .
$01 \begin{array}{ll}\text { NONE } \\ \text { PRVTE } & 0 \\ \text { PRTRGHT } \\ \text { NE } & \text { SW }\end{array}$ OR>25

PSNGR CAR SW
01 DRVR NONE 19 M OR-Y
000
000

$$
\begin{aligned}
& \text { ONTINUOUS SYSTEM CRASH LISTING } \\
& \text { OR } 99 \mathrm{~W} \text { \& Springbrook Rd }
\end{aligned}
$$

January 1, 2011 through December 31, 2015

1	14			INTER	CROSS	N	N CLR	S-1STOP
MN	0	PACIFIC HY 99 W		NE		TRF SIGNAL	N	DRY
REAR								

66	N N N	09/02/	/2013	YAMHILL
No RPT		Mon	5 P	G
				NEWBERG
No	4518	. 12	-122	5648.94

No $\quad \begin{array}{llllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

00947	N N N	$10 / 26 / 2013$		YAMHILL	
NONE			Sat	10A	NEWBERG NEWBERG UA
No	45	18	23.12	-122	56

00630	NNN	$06 / 12 / 2014$		YAMHILL	
NONE			Thu	12P	NWWBERG
No	45	18	23.12	-122	56
NEWBERG	48.94				

02	NONE	0	STOP
PRVTE	NE	NW	
PSNGR CAR			

01 DRVR NONE	86 M OR-Y	000	00	
		$0 R<25$		

				000
01 DRVR NONE	30	F OR-Y	016,026	038
02	PSNG NO<5	$04 \mathrm{M}<25$	000	000

$01 \begin{array}{lll}01 & \text { NONE } \\ \text { PRVTE } & 0 & \begin{array}{l}\text { STRGHT } \\ \text { NE SW }\end{array}\end{array}$ \qquad

1	14		INTER	CRoss	N		N	CLR	S-1STOP
MN	0	PACIFIC HY 99w	NE		TRF	SIGNAL	N	DRY	REAR
		SPRINGBROok RD	06	0			N	DAY	PDo

01 none 0 strght
01 DRVR INJC 24 M OR-Y 000
02 PSNG INJC 23 F 000

$\begin{array}{lll}02 \begin{array}{l}\text { NONE } \\ \text { PRVTE }\end{array} & 0 & \text { STOP } \\ \text { NE SW }\end{array}$
psngr car ne sw
$\begin{array}{lll}01 & \text { none } \\ \text { PRVTE } & 0 & \begin{array}{l}\text { STRGHT } \\ \text { NE } \\ \text { NE }\end{array} \\ \text { PSW }\end{array}$
01 DRVR NONE 47 M OR-Y

000

011

01 DRVR NONE 22 F OR
026
000

01 DRVR INJC 52 F OR-Y
000
PSNGR CAR
02 PSNG INJC $17 \mathrm{~F}^{\text {OR<2 }}$
000
000
$01 \begin{gathered}\text { NONE } \\ \text { PRVTE }\end{gathered} 0$ TURN-L PRVTE NE S

01 DRVR NONE 48 M OR-Y
026
000
$02 \begin{array}{lll}\text { PONE } & 0 & \text { STOP } \\ \text { PRVTE } \\ \text { NE } \\ \text { NE }\end{array}$
PRVTE
PSNGR CAR
pRVTE NE SW
01 DRVR NONE 30 M OR-Y
026
000
07
00
07

02 none 0 stop
PRVTE NE SW
PSNGR CAR
01 DRVR NONE 65 M OR-Y
011004

091 PACIFIC HIGHWAY WEST

 TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNITJanuary 1, 2011 through December 31, 2015

1	14		INTER	Cross	N	N	RAIN	S-1STOP
MN	0	PACIFIC HY 99W	s		TRF SIGNAL	N	WET	Rear
22.05		SPRINGBROOK RD	06	2		N	DAY	INJ
009100100500			1					

No $\quad \begin{array}{llllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

SPCL USE		
	TRLR QTY	move
	OWNER	FRO
v\#	VEH TYPE	TO
01	NoNE	STRG
	PRVTE	
	PSNGR CAR	
	NONE 0	Stop
	PRVTE	E
	mTRCYCLE	

$\begin{array}{llll}\text { PRTC INJ } & \text { A } & \text { S } \\ \text { P\# TYPE SVRTY } & \text { G } & \text { E LICNS PED }\end{array}$
-TYP SPCL

1	14		INTER	CROSS	N	N	RAIN	s-1s
MN	0	PACIFIC HY 99w	e		TRF SIGNAL	N	WET	REAR
		SPRINGBROOK RD	06	0		N	DAY	In

01 DRVR NONE 23 F OR-Y 026

01	POLCE	PUBLC
PUBLC	STR	N
PSNGR CAR		

PSNGR CAR

01 DRVR NONE 28 M | OR-Y |
| :--- |
| $\mathrm{OR}<25$ |

00987NO RPT	N N N	11/01/2012		Yamhill
		Thu	7A	newberg
				newberg
No	4518	. 12	22	5648.94

00507	N N N	06/20/2011		YAMHILL
NO RPT		Mon	3P	NEWBERG
				NEWBERG
No	4518	. 12	-122	5648.94

1	14		INTER	Cross	N	N CLR	S-Strght
MN	0	PACIFIC HY 99W	SW		TRF SIGNAL	N DRY	SS-O
		SPRINGBROOK RD	05	0		N DAY	InJ
009100100 S00			1 边				

$\begin{array}{lll}02 & \text { NONE } \\ \text { PRVTE } & 0 & \text { STOP } \\ \text { S }\end{array}$
PSNGR CAR

$$
01 \text { DRVR INJC } 35 \text { F } \begin{gathered}
\text { OR-Y } \\
\mathrm{OR}<25
\end{gathered}
$$PSNGR CARoR<25

1	14			INTER	CROSS	N	N RAIN	ANGL-OTH
MN	0	PACIFIC HY 99W	SW		L-GRN-SIG	N	WET	TURN
22.05	SPRINGBROOK RD	05	0		N DAWN	PDO		

$$
\begin{aligned}
& 22.05 \quad \text { SPRI } \\
& 009100100 \text { S00 }
\end{aligned}
$$$\begin{array}{lll}01 \begin{array}{l}\text { NONE } \\ \text { PRVTE } \\ \text { SCHL } \\ \\ \text { SUS }\end{array} & & \text { TURN-L } \\ & & \end{array}$

SChl bus

02 NONE 0 TURN-L
PRVTE S SW
01 DRVR NONE 48 M OR-Y
000
000 - 000
$\begin{array}{ll} \\ 062,121 \\ 000 & 062,121\end{array}$
$\begin{array}{lll}01 & \text { NONE } & 0 \\ \text { PRVTEGHT } \\ \text { PSNG } & \text { SW } & \text { SE } \\ \text { PSNGR CAR } & \end{array}$
01 DRVR NONE $30 \underset{\substack{\text { F } \\ \text { OR-Y } \\ \text { OR }<25}}{\substack{0}}$

080
PSNGR CAR
$\begin{array}{lll}02 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STRGHT } \\ \text { PSNGR } & \text { SW } & \\ \text { PSE }\end{array}$
01 DRVR INJC 37 M OR-Y
000
000
PSNGR CAR
01 DRVR INJC $37 \mathrm{M} \begin{array}{r}\text { OR-Y } \\ \text { OR }<25\end{array}$
$03 \begin{array}{lll}03 & \text { NONE } \\ \text { PRVTE } & 0 & \begin{array}{l}\text { STRGHT } \\ \text { PRVGR }\end{array} \\ \text { SW }\end{array}$

1	14		Inter	cross	${ }^{\text {N }}$	N	CLR	S-1stop
MN	0	PACIFIC HY 99w	SW		unknown	N	DRY	REAR
		SPRINGBROOK RD	06	0		N	DAY	PDo

$01 \begin{array}{lll}\text { NONE } \\ \text { PRVTE }\end{array} 0 \begin{aligned} & \text { STRGHT } \\ & \text { SW NE }\end{aligned}$ 01 DRVR NONE 51 M OR-Y $000 \quad 000$

01 DRVR NONE 59 F OR-Y
026
013
02000

$$
101
$$

January 1, 2011 through December 31, 2015

01058	N N N	12/15/2011	Yamhill
NONE		Thu 8A	NEWBERG
			NEWBERG
No	4518	. 12 -122	5648.94

1	14		INTER	Cross	N	N	CLD	S-1Stop
MN	0	PACIFIC HY 99W	SW		TRF SIGNAL	N	WET	ReAR
		SPRINGBROOK RD	06	0		N	DAY	PDO

01	NONE	0
PRVTE	$\begin{array}{l}\text { STRGHT } \\ \text { PW } \\ \text { PSNGR CAR }\end{array}$	

OR<25
$\begin{array}{ccl}02 & \text { NONE } & \text { STOP } \\ \text { PRVTE } & \text { SW } \\ \text { PSNGR CAR } & & \end{array}$
01 DRVR NONE 25 M OR-Y 0
000

1	14		TNTER	CROSS	N	N	CLR	S-1STOP
MN	0	PACIFIC HY 99 W	SW		TRF SIGNAL	N	DRY	REAR
22.05	SPRINGBROOK RD		06	0		N	DAY	PDO

$\begin{array}{lll}01 & \text { NONE } & 0 \\ \text { PRVTEGHT } \\ \text { PSNGR CAR } & & \text { SW NE }\end{array}$

01 DRVR NONE 00 | M UNK |
| :--- | :--- | :--- |
| OR<25 |
| OR |

02 NONE 0 STOP PRVTE SW NE

000
01 DRVR NONE 51 M отн-Y 000
011013

03 NONE 0 STOP PRVTE SW NE

01 DRVR NONE 31 F OR-Y
000
011
00

No $\quad \begin{array}{llllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

00066	N N N	01/21/2012		YAMHILL NEWBERG	
NO RPT		Sat	9 P		
					WBERG
No	45	3.12	122		48.94

1	14		INTER	CROSS	N	N CLR	ANGL-STP	
MN	0	PACIFIC HY 99W	SW		UNKNOWN	N	DRY	TURN
22.05	SPRINGBROOK RD	06	0		N DARK	PDO		

01	NONE	0
PRVTE	TURN-L	
PW N		
PSNGR CAR		

011
PSNGR CAR

$$
01 \text { DRVR NONE } 40 \mathrm{M} \text { OR-Y }
$$

PSNGR CAR
01 DRVR NONE 17 F OR-Y

000
13
00
13
$\begin{array}{lll}02 & \text { NONE } & \text { STOP } \\ \text { PRVTE } & \text { STM } \\ \text { PSNGR } & \text { SAR } & \end{array}$

01 DRVR NONE 57 M OR-Y
000
00

| 1 | 14 | | INTER | CROSS | N | N CLR | S-1STOP |
| :--- | :---: | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| MN | 0 | PACIFIC HY 99 W | SW | | TRF SIGNAL | N WET | REAR |
| 22.05 | SPRINGBROOK RD | 06 | 2 | | N DAY | PDO | |
| 009100100 SOO | | | | | | | |

$\begin{array}{lll}01 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STRGT } \\ \text { PSNGR } & \text { SW } & \text { NE }\end{array}$
01 DRVR NONE 19 M OR-Y
124
$000 \quad 124$

02 NONE 0 STOP
PRVTE SW NE
PSNGR CAR
01 DRVR NONE 26 F OR-Y
000
011
00
00
01 DRVR NONE $26 \mathrm{~F} \quad \mathrm{OR}-\mathrm{Y}$

091 PACIFIC HIGHWAY WEST

 transportation data section - crash analysis and reporting unitL LIST

January 1, 2011 through December 31, 2015

1	14		Inter	cross	N	N	CLR	S-1STOP
MN	0	PACIFIC HY 99w	SW		TRF SIGNAL	N	DRY	Rear
		SPRINGBROOK RD	06	2		N	DA	INJ

No	45	18	23.12	-122	56

1	14			INTER	CROSS	N	N CLR	S-1STOP
MN	0	PACIFIC HY 99W	SW		L-GRN-SIG	N	DRY	REAR
22.05	SPRINGBROOK RD		06	2		N DAY	INJ	
009100100 S00	1							
0								

$\begin{array}{ccc}01 & \\ \text { NONE } & 0 & \text { STRGHT } \\ \text { PRVTE } & \text { SW } \\ \text { PSNGR CAR }\end{array}$
01 DRVR INJC 41 M OR-Y 000
$\begin{array}{cc}\text { PRVTE } & \begin{array}{c}\text { STRGHT } \\ \text { SW NE }\end{array} \\ \text { PSNGR CAR }\end{array}$

$\begin{array}{llllllll}\text { TRLR QTY } & \text { MOVE } \\ \text { OWNER } & \text { FROM } \\ \text { VEH TYPE } & \text { TO }\end{array} \quad$ PRTC INJ \quad A
CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP

009100100 S00
-
$01 \begin{array}{lll}\text { NONE } \\ \text { PRVTE }\end{array} \quad \begin{aligned} & 0 \\ & \text { STRGHT } \\ & \text { SW NE }\end{aligned}$
PSNGR CAR
01 DRVR NONE 44 M OR-Y 043

| 2 NONE | 0 | STOP |
| :--- | :--- | :--- | :--- |
| PRVTE | | |

PSNGR CAR
0
$\begin{array}{cc}0 \quad \text { PACIFIC HY 99W } \\ 22.05 & \text { SPRINGBROOK RD }\end{array}$
22.05 SB
$\begin{array}{ccc}02 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STOP } \\ \text { PSNGR CAR } & & \end{array}$
01 DRVR NONE 20 F OTH-Y 026

009100100 S00
01 DRVR NONE 24 M OR-Y
093
SNGGR Car
$\begin{array}{ccl}02 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STOP } \\ \text { PSNGR CAR } & & \end{array}$
01 DRVR INJC 69 M OTH-Y 0
012
00

00278 NNNNN 04/04/2013 YAMHILL

CITY Thu	7A	NEWBERG NEWBERG UA	

1	14		Inter	CROSS	N		N	CLD	S-1stop
MN	0	PACIFIC HY 99w	SW		TRF	SIGNAL	N	DRY	REAR
		SPRINGBROOK RD	06	0			N	DAY	InJ

$\begin{array}{lll}01 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STRGHT } \\ \text { SWW } \\ \text { PSNGR CAR } & & \end{array}$ 02 PSNG INJC 65 F N-RES 000

000

01 DRVR NONE 47 M OR-Y
000
No $\quad \begin{array}{llllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$
009100100 S00

00294	NN N	04/09/2013	YAMHILL
NO RPT	Tue	1 P	NEWBERG

No $\quad \begin{array}{llllr}45 & 18 & 23.12 & -122 & 56\end{array} \quad 48.94$

1	14			INTER	CROSS	N	N CLR	S-1STOP
MN	0	PACIFIC HY 99 W	SW		TRF SIGNAL	N	DRY	REAR
22.05	SPRINGBROOK RD	06	0		N	DAY	PDO	

02	NONE	0
PRVTE	STOP	
PSNG		
PSNGR CAR		

$01 \begin{gathered}\text { NONE } \\ \text { PRVTE }\end{gathered} \quad \begin{gathered}\text { STRGHT } \\ \text { SW NE }\end{gathered}$
01 DRVR INJC 39 M OR-Y $000 \quad 011$

PSNGR CAR NE 01 DRVR NONE 25 F OR-Y 026
22.05 SPRINGBROOK RD 06 N DAY PDO
$\begin{array}{llll}02 & \text { NONE } & 0 & \text { Stop } \\ \text { PRVTE } & \text { SW } \\ \text { PSNGR CAR } & & \end{array}$
01 DRVR NONE 55 M OR-Y

091 PACIFIC HIGHWAY WEST

 transportation data section - crash analysis and reporting unitJanuary 1, 2011 through December 31, 2015

$\begin{array}{llll} \text { S } & \text { D } & \\ \text { P } & \text { R } & \text { S } \end{array}$										
SER\#		A U	C	- DAte			COUNTY			
Invest	EL G H			R DAY/TIME			CITY			
UNLOC?		C S	L K	K LA	LAT/L	LONG	URBAN AREA			
00460	N N N		06/04/2013				YAMHILL NEWBERG			
CITY					fe	7 A				
	45		23.12				NEWBERG UA			
No			-122	5648.94						
00545	N N N					06/26/2013				Yamhill
NONE			Wed			9A	NEWBERG			
						NEWBERG UA				
No				23.12	12		-122	5648.94		

00688	N N N	08/06/2013		YAMHILL NEWBERG
NONE		Tue	3 P	
				NEWBERG
No	4518		-122	5648.

01203 N N NNo RPT		12/31/2013		YAMHILL NEWBERG
		Tue	5 P	
				NEWBERG
No	4518	. 12	122	5648.9

00391 NN N 04/12/2014 YAMHILL
$\begin{array}{llll}\text { NONE } & \text { Sat } & \text { 10A } & \begin{array}{l}\text { Newberg } \\ \\ \\ \end{array} \quad \\ & \text { Newberg UA }\end{array}$
No $\quad \begin{array}{lllllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

| 1 | 14 | | INTER | CROSS | N | N CLR | S-1STOP |
| :--- | :---: | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| MN | 0 | PACIFIC HY 99W | SW | | TRF SIGNAL | N DRY | REAR |
| 22.05 | SPRINGBROOK RD | 06 | 2 | | N | DUSK | INJ |
| 009100100 SOO | 1 | | | | | | |

$\begin{array}{lll}01 & \\ \text { NONE } & 0 & \begin{array}{l}\text { STRGHT } \\ \text { PRVTE } \\ \text { PSNGR CAR }\end{array} \\ & & \\ \text { SW NE NE }\end{array}$

$02 \begin{array}{lll}\text { NONE } \\ \text { PRVTE } & 0 & \text { STOP } \\ \text { SW NE }\end{array}$
PSNGR CAR
01 DRVR INJC 61 F OR-Y
000
-
$\begin{array}{cc}01 & \text { NONE } \\ \text { PRVTE } & \text { STRGHT } \\ \text { SWN } & \text { SE } \\ \text { PSNGR CAR } & \end{array}$
02 PSNG INJC $59 \mathrm{M}^{\text {OR<2 }}$
000
000

01 DRVR INJC $26 \mathrm{~F} \begin{aligned} & \mathrm{OR}-\mathrm{Y} \\ & \mathrm{OR}<25\end{aligned}$
000
000

02	PSNG NO<5	04	F	OR<25	000
03	PSNG NO 55	01	M	000	000
03		000			

$\begin{array}{lll}02 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STOP } \\ \text { PW NE }\end{array}$

1	14			INTER	CROSS	N	N CLR	S-1STOP
MN	0	PACIFIC HY 99W	SW		TRF SIGNAL	N DRY	REAR	
22.05	SPRINGBROOK RD		06	0		N DAY	INJ	
009100100 S00	1							

PRTC INJ G E LICNS PED
P\# TYPE SVRTY
ED
01 DRVR NONE 62 M OR-Y 026

1	14		INTER	cross	N	CLR	S-1stop
MN	0	PACIFIC HY 99w	SW		trf SIGNAL	DRY	Rear
		SPRINGBROOK RD	06	0		DAY	PDO

01	NONE	0
PRVTEGHT		
PSNGR CAR		SW NE

000
011

PSMR CAR

01 DRVR NONE 00		F UNK	000

02 NONE 0 STOP PSNGR CAR SW NE

01 DRVR NONE 46 F OR-Y
000
011
nome oR25

000

000
PRVTE SW NE
01 DRVR NONE $18 \begin{array}{lll}\mathrm{M} \\ \substack{\text { OR-Y } \\ \text { OR }<25} & 026 & 000\end{array}$

011
02 NONE 0 STOP PRVTE SW NE

000
000
$\begin{array}{lcllcllll}1 & 14 & & & \text { INTER } & \text { CROSS } & \text { N } & \text { N } & \text { UNK } \\ \text { MN } & 0 & \text { PACIFIC HY 99W } & & \text { SW } & & \text { TRF } & \text { SIGNAL } & \text { N UNK } \\ \text { REAR } \\ 22.05 & \text { SPRINGBROOK RD } & & 06 & 0 & & \text { N DAY } & \text { PDO } \\ 009100100 \text { S00 } & 1 & & & & & \end{array}$
$\begin{array}{ll}22.05 & \text { SPR } \\ 009100100 \text { S00 }\end{array}$

091 PACIFIC HIGHWAY WEST

 TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNITOR , OO

January 1, 2011 through December 31, 2015

No $\quad 4 \begin{array}{llllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

0379 NnNnN 04/23/2015 YAMHILI

CITY Thu	11A	NEWBERG NEWBERG UA	

No $\quad \begin{array}{lllllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

00296	N N N	03/23/2014		YAMHILL
NONE		Sun	6 P	NEWBERG
				NEWBERG
No		12	22	5648.94

00038	Y N N	01/1	/2011	YAMHILL		1	14		Inter	CROSS	N		N	RAIN	S-Strght
NONE		Wed	5 P	newberg		MN	0	PACIFIC HY 99w	W		TRF	SIGNAL	N	WEt	ReAR
				newberg	UA			SPRINGBROOK RD	06	0			N	DARK	INJ
No	4518	. 12	-122	5648.94			01	soo							

1	14		Inter	cross	N		N	CLR	S-Strght
MN	0	PACIFIC HY 99W	SW		TRF	SIGNAL	N	DRY	ReAR
		SPRINGBROOK RD	06	2			N	DAY	INJ

1	14		INTER	CRoss	N		N	CLD	S-1Stop
MN	0	PACIFIC HY 99w	SW		TRF	SIGNAL	N	DRY	Rear
		SPRINGBROOK RD	06	2			N	DAY	PDO

1	1	14		INTER	Cross	N	N	CLR	S-1Stor
	MN	0	PACIFIC HY 99W	SW		Yield	N	DRY	Rear
22.05 SPRINGBROOK RD009100100 S00				09	2		N	DARK	DO
				1 (

$\begin{array}{llll}\text { PRTC INJ } & \text { A } & \text { S } \\ \text { P } & \text { LICNS } \\ \text { PED }\end{array}$
T $\begin{array}{lll}\text { N DRY } & \text { REAR } \\ \mathrm{N} & \text { DAY } & \text { PDO }\end{array}$ 22.05 SPR
009100100 S00
$02 \underset{\substack{\text { NONE } \\ \text { PRVTE }}}{ } \begin{aligned} & 0 \\ & \text { SW }\end{aligned}$ 01 DRVR NONE 51 M ОTH-Y

01	NONE	0
PRVTE	STRGHT PSNG PSNGR CAR	

01 DRVR NONE 64 F OR-Y
000
011 OR<25

PRVTE
pSNGR CAR
01 DRVR NONE $52 \mathrm{M} \underset{\substack{\text { OR-Y } \\ \text { OR }<25}}{\substack{2}}$
$02 \begin{array}{ll}\text { NONE } \\ \text { PRVTE }\end{array} 0 \begin{gathered}\text { STRGHT } \\ \text { SW NE }\end{gathered}$
NE
01 DRVR INJC 32 M OR-Y
000
006

01	NONE	0
PRVTE	$\begin{array}{l}\text { STRGHT } \\ \text { PW } \\ \text { PSNGR CAR }\end{array}$	

PSNGR CAR
$02 \begin{array}{lll}\text { NONE } \\ \text { PRVTE }\end{array} 0 \begin{aligned} & \text { STOP } \\ & \text { SW NE }\end{aligned}$
PSNGR CAR
01 DRVR NONE 66 M OR-Y 000 000
$01 \begin{array}{lll}\text { NONE } & 0 & \begin{array}{l}\text { TURN-R } \\ \text { PRVTE }\end{array} \\ \text { SW }\end{array}$
PRVTE
PSNGR CAR
01 DRVR NONE 39 M OR-Y $026 \quad 000$
02 none 0 stop PRVTE SW S

01 DRVR NONE 00 F UNK $000 \quad 000$
$\begin{array}{lll}01 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STRGHT } \\ \text { PSNGR } & \text { WAR } & \\ \text { PSN } & & \end{array}$
01 DRVR NONE 58 F OR-Y OR-Y

02 NONE 0 STRGHT
PRVTE W E
$\begin{array}{llllll}\text { PSNGR CAR } & 01 \text { DRVR INJC } & 47 \text { F OR-Y } & 000 & 000 \\ & 000\end{array}$

091 PACIFIC HIGHWAY WEST

 transportation data section - crash analysis and reporting unitJanuary 1, 2011 through December 31, 2015

1	14		INTER	CROSS	N	N	CLR	S-1STOP
MN	0	PACIFIC HY 99 W	W		TRF SIGNAL	N	DRY	REAR
22.05	SPRINGBROOK RD	06	0		N	DAY	PDO	

No $\quad \begin{array}{lllllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$
22.05 SPRINGBROOK RD


```
D
```

NONE 0 STRGHT

PRVTE E W
PSNGR CAR

| | 01 DRVR NONE | 00 | 000 |
| :--- | :--- | :--- | :--- | :--- |
| | 006 | 000 | |

PSNGR CAR

01 DRVR NONE 37 F OR-Y $000 \quad 000$

PSNGR CAR
01 DRVR NONE 37 F OR-Y
0
oo

00686	N N N	08/24/2011		Yamhill
NONE		Wed	4	NEWBERG
				NEWBERG
No	45	. 12		5648.94

1	14		INTER	CROSS	N	N	CLR	S-1STOP
MN	0	PACIFIC HY 99W	W		UNKNOWN	N	DRY	REAR
22.05	SPRINGBROOK RD	06	0		N	DAY	PDO	

01	NONE
PRVTE	STRGHT
PSNGR CAR	

02 PSNG NO<5 01 M
000
000

01 DRVR NONE 52 F $\begin{gathered}\text { OR-Y } \\ \text { OR<2 }\end{gathered}$
Comothor
$\begin{array}{ccc}02 & \text { NONE } & \text { STOP } \\ \text { PRVTE } & \text { W } & \text { E } \\ \text { PSNGR CAR } & & \end{array}$
01 DRVR NONE 34 F OR-Y
011
PSNGR CAR
$1 . \operatorname{DRVR}$ NONE 34 F OR-Y 000
000

| 00138 | N N N | $02 / 21 / 2013$ | | YAMHILL |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Thu | 3P | NEWBERG | | |
| NONE | | | NEWBERG UA | |

1	14		Inter	Cross	N	N	CLR	S-1stop
MN	0	PACIFIC HY 99w	w		Yield	N	DRY	REAR
		SPRINGBROOK RD	06	2		N	DAY	inJ
009100100500			1					

01	none	0
PRVTE	STRGHT	
PSNGR CAR		

01 DRVR NONE 00 | M UNK | 026 | 000 |
| :--- | :--- | :--- |

PSNGR Car
$\begin{array}{ccr}02 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STOP } \\ \text { PRNGR CAR } & & \\ & & \end{array}$
01 DRVR INJC 32 M OR-Y 000
011
00
PSNGR CAR OR >25
01 None 0 strght
PRVTE W E
01 DRVR NONE 51 M OR-Y $026 \quad 000$
00468 NNN 05/01/2014 YAMHILL

NONE Thu 7A | NEWBERG |
| :--- |
| |
| |
| |
| NEWBERG UA |

1	14			INTER	CROSS	N	N CLR	S-1STOP
MN	0	PACIFIC HY 99W	W		TRF SIGNAL	N	DRY	REAR
22.05	SPRINGBROOK RD		06	0		N DAY	INJ	
009100100 S00	1							

$$
\begin{aligned}
& 02 \begin{array}{ccc}
\text { none } & 0 & \text { Stop } \\
\text { PRVTE } & \text { W } & \text { E }
\end{array} \\
& \text { PSNGR CAR }
\end{aligned}
$$

LIST

January 1, 2011 through December 31, 2015

No $\quad \begin{array}{lllllll}45 & 18 & 23.12 & -122 & 56 & 48.94\end{array}$

00400	N N N	05/28/2011		Yamhill
No RPT		Sat	4 P	
				NEWBERG
No	4518	. 12	22	5648.94

00272	N N N N N	03/	2012		AMmill
CITY		Tue	9P		EEWBERG
					UEWBERG

$\left.\begin{array}{lcllclll}1 & 14 & & \text { INTER } & \text { CROSS } & \text { N } & \text { N RAIN ANGL-OTH } \\ \text { MN } & 0 & \text { PACIFIC HY 99W } & \text { CN } & & \text { TRF SIGNAL } & \text { N } & \text { WET } \\ \text { ANGL }\end{array}\right)$

1	14			INTER	CROSS	N	N CLR	S-1STOP	
MN	0	PACIFIC HY	99W		CN		TRF SIGNAL	N	DRY
REAR									
22.05	SPRINGBROOK RD		03	2		N	DAY	PDO	

01	NONE	0	STRGHT
PRVTE	W	E	
PSNGR CAR			

OR<25

00
$\begin{array}{lll}02 & \text { NONE } \\ \text { PRVTE } & 0 & \begin{array}{l}\text { STOP } \\ \text { NE }\end{array} \\ \text { NW }\end{array}$
01 DRVR INJC 30 M OR-Y
000
000
$\begin{array}{llllll}22.05 & \text { SPRINGBROOK RD } & & 03 & 2 & \text { N DAY } \\ 009100100 \text { SOO }\end{array}$
01 DRVR NONE $68 \mathrm{M} \begin{aligned} & \text { OR-Y } \\ & \text { OR>25 }\end{aligned}$
02 NONE $0 \begin{gathered}0 \\ \text { PRVTE } \\ \text { STOP } \\ \text { W }\end{gathered}$
PSNGR CAR
01 DRVR NONE 33 F OR-Y 000
011
Mor

01		
NONE	0	STRGHT
PRVTE	W	E
PSNGR CAR		

PSNGR CAR
 PRVTE N S s

01 DRVR INJC 63 M OR-Y
000

| PSNGR CAR | 01 DRVR INJC | 63 M |
| :--- | :--- | :--- | :--- |
| OR-Y
 OR<25 | 000 | |

01	NONE	0	StRGht
PRVTE	W	E	
PSNGR CAR			

01 DRVR NONE \begin{tabular}{llll}

\& 65 M | OR-Y |
| :--- |
| OR<25 | \& 028 \& 000

\hline
\end{tabular}

00922 NNNNN $10 / 15 / 2012$ YAMHILL
CITY Mon $7 P$ NEWBERG
No $\left.\quad \begin{array}{lllllll} & 45 & 18 & 23.12 & -122 & 56 & 48\end{array}\right)$
$\begin{array}{lcllcllll}1 & 14 & & \text { INTER } & \text { CROSS } & \text { N } & \text { N RAIN } & \text { ANGL-OTH } \\ \text { MN } & 0 & \text { PACIFIC HY 99W } & \text { CN } & & \text { TRF SIGNAL } & \text { N } & \text { WET } & \text { ANGL } \\ 22.05 & \text { SPRINGBROOK RD } & 03 & 2 & & \text { N DARK } & \text { PDO }\end{array}$
01 DRVR NONE 65 M OR-Y
000

-RBAN NON-SYSTEM CRASH LISTING

$$
\text { OR } 99 \mathrm{~W} \text { \& Springbrook Rd }
$$

January 1, 2011 through December 31, 2015

OR 99W \& Springbrook Rd
January 1, 2011 through December 31, 2015

	S	D										
	P	R	S W			CIty street		INT-TYP				
SER\#	E	A U	C 0	date		FIRST STREET	RD CHAR	(MEDIAN)	INT-REL	OfF-RD	WTHR	CRASH TYP
invest	E	L G	H R	DAY/TIME	FC	SECOND STREET	DIRECT	Legs	TRAF-	RNDBT	SURF	COLL TYP
UNLOC?	D	C S		LAT/LONG	DISTNC	INTERSECTION SEQ \#	LOCTN	(\#LANES)	CONTL	DRVWY	LIGHT	SVRTY

02 NoNe $0 \quad$ Stop PSNGR CAR

01 DRVR NONE 48 F OR-Y OR<25

011
00
00

091 PACIFIC HIGHWAY WEST
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

January 1, 2011 through December 31, 2015

OR 99W \& Brutscher St

January 1, 2011 through December 31, 2015

00806	N N N	08/13/2015		YAMHILL
NONE		Thu	5 P	Newberg
				Newberg
No		. 53	22	5631.38

| 00875 NNN $09 / 01 / 2015$ YAMHILL
 NONE | | Tue | 6P | NEWBERG |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NOWBERG UA | | | | |

14			INTER	cross	N		N	CLR	S-1STOP
Mn	0	BRUTSCHER ST	SW		TRF	SIGNAL	N	DRY	REAR
		PACIFIC HY 99W	06	0			N	DAY	inj
009100100500			1 -						

$\begin{array}{lll}01 & \begin{array}{ll}\text { none } \\ \text { PRVTE }\end{array} & 0 \\ \text { STRGHT } \\ \text { SW NE }\end{array}$ 01 DRVR INJC 19 F OR-Y
$007 \quad 092 \quad 00$

013
PSNGR CAR 01 DRVR NONE 26 M OR-Y
000
29
00
009100100s00 1
01 DRVR NONE 26 M $\begin{aligned} \text { OR-Y } \\ \text { OR<25 }\end{aligned}$

- LISTING
OR 99W \& Brutscher St

January 1, 2011 through December 31, 2015

1	14		INTER	3-LEG	N	N	CLR	S-1Stop
MN	0	BRUTSCHER ST	w		TRF SIGNAL	N	DRY	Rear
		PACIFIC HY 99w	06	0		N	DLIT	INJ

— 22 F | OR-Y |
| :---: |
| OR<25 |

000

1	14		INTER	3-LEG	N	N RAIN	S-1STOP	
MN	0	BRUTSCHER ST	W			TRF	SIGNAL	N

01			
NONE			
PRVTE	0	STRGHT	
W	W	E	

OR<25

01005	N N N	11/07/2011	Yamhill
none		Mon 5P	NEWBERG
			NEWBE
No	4518	. $53-122$	5631.38

№ $\quad \begin{array}{llllll}45 & 18 & 28.53 & -122 & 56 & 31.38\end{array}$

00115 NNNNN 02/04/2014 YAMHILL

CITY Tue \quad	$3 P$	NEWBERG
	NEWBERG UA	

No $\quad \begin{array}{lllllll}45 & 18 & 28.53 & -122 & 56 & 31.38\end{array}$

00375	N N N	05/05	/2013	Yamhill
NO RPT		Sun	12P	NEWBERG
				NEWBERG
	4518		-122	5631.38

091 PACIFIC HIGHWAY WEST

 tRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNITOR 99W \& Brutscher St
January 1, 2011 through December 31, 2015

091 PACIFIC highway west
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
continuous system crash listing
January 1, 2011 through December 31, 2015

091 PACIFIC highway west
continuous system crash listing
January 1, 2011 through December 31, 2015

091 PACIFIC HIGHWAY WEST

 TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNITz 99w \& Proyion
OR 99W \& Providence D

January 1, 2011 through December 31, 2015

v\#	SPCL USE TRLR QTY OWNER VEH TYPE	MOVE FROM TO	P\#	PRTC TYPE	$\begin{aligned} & \text { INJ } \\ & \text { SVRTY } \end{aligned}$	A E E	X	$\begin{aligned} & \text { LICNS } \\ & \text { REFS } \end{aligned}$	$\begin{aligned} & \text { PED } \\ & \text { LOC } \end{aligned}$	ERROR	ACtN EVENT	CAU
02	NONE	Stop										
	PRVTE	SW NE									011	00
	PSNGR CAR		01	DRVR	NONE	32	F	$\begin{aligned} & \text { OR-Y } \\ & \text { OR }<25 \end{aligned}$		000	000	00
01	NONE	StRght										07
	PRVTE	W E									000	00
	PSNGR CAR		01	DRVR	NONE	52	M	OR-Y		026	000	07

02 NONE 0 STOP
PRVTE W E
PSNGR CAR
01 DRVR NONE $41 \mathrm{~F} \underset{\mathrm{OR}-\mathrm{Y}}{\mathrm{OR}-\mathrm{y}} 0000000$

ACTION CODE TRANSLATION LIST

$\begin{gathered} \text { ACTION } \\ \text { CODE } \\ \hline \end{gathered}$	SHORT DESCRIPTION	LONG DESCRIPTION
000	NONE	NO ACTION OR NON-WARRANTED
001	SKIDDED	SkIdDED
002	on/off V	GEtting on or off Stopped or parked vehicle
003	LOAD OVR	OVERHANGING LOAD STRUCK ANOTHER VEHICLE, EtC.
006	SLOW DN	SLOWED DOWN
007	AVoiding	AVOIDING MANEUVER
008	PAR PARK	PARALLEL PARKING
009	ANG PARK	Angle Parking
010	INTERFERE	PASSENGER INTERFERING WITH DRIVER
011	STOPPED	Stopped in traffic not waiting to make a left turn
012	STP/L TRN	Stopped because of left turn Signal or waiting, etc.
013	STP TURN	Stopped while executing a turn
014	EMR V PKD	Emergency vehicle legally parked in the roadway
015	GO A/Stop	PROCEED AFTER StOpping for a stop Sign/flashing red.
016	trn A/RED	turned on red after stopping
017	LOSTCTRL	LOST CONTROL OF Vehicle
018	EXIT DWY	ENTERING STREET OR HIGHWAY FROM ALLEY OR DRIVEWAY
019	ENTR DWY	Entering Alley or driveway from street or highway
020	STR Entr	Before entering roadway, Struck pedestrian, etc. on sidewalk or shoulder
021	NO DRVR	CAR RAN AWAY - NO DRIVER
022	PREV COL	Struck, OR WAS Struck by, vehicle or pedestrian in prior collision before acc. Stabilized
023	STALLED	VEHICLE STALLED OR DISABLED
024	DRVR DEAD	DEAD BY UNASSOCIATED CAUSE
025	FATIGUE	FAtIGUED, Sleepy, ASLeep
026	SUN	DRIVER BLINDED BY SUN
027	HDLGHTS	DRIVER BLINDED BY HeAdLIGHtS
028	ILLNESS	PHYSICALLY ILL
029	THRU MED	VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER
030	PURSUIT	PURSUING OR ATTEMPTING TO STOP A VEHICLE
031	PASSING	PASSING SITUATION
032	PRKOFFRD	Vehicle parked beyond curb or shoulder
033	CROS MED	VEHICLE CROSSED EARTH OR GRASS MEDIAN
034	X N/SGNL	Crossing at intersection - no traffic signal present
035	X W/ SGNL	Crossing at intersection - traffic signal present
036	DIAGONAL	Crossing at intersection - diagonally
037	BTWN INT	CROSSING BETWEEN INTERSECTIONS
038	DISTRACT	DRIVER'S ATtention distracted
039	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
040	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON Shoulder facing traffic
041	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
042	A/traf-p	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING trAffic
043	PLAYINRD	Playing in Street or road
044	puSh mv	PuShing or working on vehicle in road or on shoulder
045	WORK ON	WORKING IN ROADWAY OR ALONG SHOULDER
046	W/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WITH TRAFFIC
047	A/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, EtC. FACING TRAFFIC
050	LAY ON RD	Standing or lying in roadway
051	ENT Offrd	Entering / Starting in traffic lane from off road
052	MERGING	MERGING
055	SPRAY	BLINDED BY WAter spray

ACTION CODE TRANSLATION LIST

CODE DESCRIPTION LONG DESCRIPTION
 088 OTHER OTHER ACTION

CAUSE CODE TRANSLATION LIST

CAUSE SHORT
CODE DESCRIPTION LONG DESCRIPTION

00	NO CODE	NO CAUSE ASSOCIATED AT THIS LEVEL
01	TOO-FAST	TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED
02	NO-YIELD	DID NOT YIELD RIGHT-OF-WAY
03	PAS-STOP	PASSED STOP SIGN OR RED FLASHER
04	DIS SIG	DISREGARDED TRAFFIC SIGNAL
05	LEFT-CTR	DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING
06	IMP-OVER	IMPROPER OVERTAKING
07	TOO-CLOS	FOLLOWED TOO CLOSELY
08	IMP-TURN	MADE IMPROPER TURN
09	DRINKING	ALCOHOL OR DRUG INVOLVED
10	OTHR-IMP	OTHER IMPROPER DRIVING
11	MECH-DEF	MECHANICAL DEFECT
12	OTHER	OTHER (NOT IMPROPER DRIVING)
13	IMP LN C	IMPROPER CHANGE OF TRAFFIC LANES
14	DIS TCD	DISREGARDED OTHER TRAFFIC CONTROL DEVICE
15	WRNG WAY	WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED RO:
16	FALIGUE	DRIVER DROWSY/FATIGUED/SLEEPY
17	ILLNESS	PHYSICAL ILLNESS
18	INRDWY	NON-MOTORIST ILLEGALLY IN ROADWAY
19	NT VISBL	NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHIN
20	IMP PKNG	VEHICLE IMPROPERLY PARKED
21	DEF STER	DEFECTIVE STEERING MECHANISM
22	DEF BRKE	INADEQUATE OR NO BRAKES
24	LOADSHFT	VEHICLE LOST LOAD OR LOAD SHIFTED
25	TIREFAIL	TIRE FAILURE
26	PHANTOM	PHANTOM / NON-CONTACT VEHICLE
27	INATTENT	INATTENTION
28	NM INATT	NON-MOTORIST INATTENTION
29	FAVOID	FAILED TO AVOID VEHICLE AHEAD
30	SPEED	DRIVING IN EXCESS OF POSTED SPEED
31	RACING	SPEED RACING (PER PAR)
32	CARELESS	CARELESS DRIVING (PER PAR)
33	RECKLESS	RECKLESS DRIVING (PER PAR)
34	AGGRESV	AGGRESSIVE DRIVING (PER PAR)
35	RDRAGE	ROAD RAGE (PER PAR)
40	VIEW OBS	VIEW OBSCURED
50	USED MDN	IMPROPER USE OF MEDIAN OR SHOULDER
51	FAIL LN	FAILED TO MAINTAIN LANE
52	OFF RD	RAN OFF ROAD

COLLISION TYPE CODE TRANSLATION LIST
CODE DESCRIPTION LONG DESCRIPTION

COLL	DESCRIPTION	LONG DESCRIPTION
κ	OTH	MISCELLANEOUS
-	BACK	BACKING
0	PED	PEDESTRIAN
1	ANGL	ANGLE
2	HEAD	HEAD-ON
3	REAR	REAR-END
4	SS-M	SIDESWIPE - MEETING
5	SS-O	SIDESWIPE - OVERTAKING
6	TURN	TURNING MOVEMENT
7	PARK	PARKING MANEUVER
8	NCOL	NON-COLLISION
9	FIX	FIXED OBJECT OR OTHER OBJECT

CRASH TYPE CODE TRANSLATION LIST

CRASH SHORT
TYPE DESCRIPTION LONG DESCRIPTION

$\&$	OVERTURN	OVERTURNED
0	NON-COLL	OTHER NON-COLLISION
1	OTH RDWY	MOTOR VEHICLE ON OTHER ROADWAY
2	PRKD MV	PARKED MOTOR VEHICLE
3	PED	PEDESTRIAN
4	TRAIN	RAILWAY TRAIN
6	BIKE	PEDALCYCLIST
7	ANIMAL	ANIMAL
8	FIX OBJ	FIXED OBJECT
9	OTH OBJ	OTHER OBJECT
A	ANGL-STP	ENTERING AT ANGLE - ONE VEHICLE STOPPED
B	ANGL-OTH	ENTERING AT ANGLE - ALL OTHERS
C	S-STRGHT	FROM SAME DIRECTION - BOTH GOING STRAIGHT
D	S-1TURN	FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT
E	S-1STOP	FROM SAME DIRECTION - ONE STOPPED
F	S-OTHER	FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARKING
G	O-STRGHT	FROM OPPOSITE DIRECTION - BOTH GOING STRAIGHT
H	O-1 L-TURN	FROM OPPOSITE DIRECTION-ONE LEFT TURN, ONE STRAIGHT
I	O-1STOP	FROM OPPOSITE DIRECTION - ONE STOPPED
J	O-OTHER	FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING

DRIVER LICENSE CODE TRANSLATION LIST

DRIVER RESIDENCE CODE TRANSLATION LIST

LIC CODE	SHORT DESC	LONG DESCRIPTION
0	NONE	NOT LICENSED (HAD NEVER BEEN LICENSED)
1	OR-Y	VALID OREGON LICENSE
2	OTH-Y	VALID LICENSE, OTHER STATE OR COUNTRY
3	SUSP	SUSPENDED/REVOKED

ERROR CODE TRANSLATION LIS

ERROR CODE	SHORT DESCRIPTION	FULL DESCRIPTION
000	NONE	NO ERROR
001	WIDE TRN	WIDE TURN
002	CUT CORN	CUT CORNER ON TURN
003	FAIL TRN	FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS
004	L IN TRF	LEFT TURN IN FRONT OF ONCOMING TRAFFIC
005	L PROHIB	LEFT TURN WHERE PROHIBITED
006	FRM WRNG	TURNED FROM WRONG LANE
007	TO WRONG	turned into wrong lane
008	Illeg U	U-TURNED ILLEGALLY
009	IMP STOP	IMPROPERLY STOPPED IN TRAFFIC LANE
010	IMP SIG	IMPROPER SIGNAL OR FAILURE TO SIGNAL
011	IMP BACK	BACKING IMPROPERLY (NOT PARKING)
012	IMP PARK	IMPROPERLY PARKED
013	UNPARK	Improper Start leaving Parked position
014	IMP STRT	IMPROPER START FROM STOPPED POSITION
015	IMP LGHT	IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)
016	INATTENT	INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)
017	UNSF VEH	DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)
018	Oth PARK	ENTERING/EXITING PARKED POSITION w/ InSufficient Clearance; other improper parking maneuver
019	DIS DRIV	DISREGARDED OTHER DRIVER'S SIGNAL
020	DIS SGNL	disRegarded traffic Signal
021	RAN STOP	DISREGARDED STOP SIGN OR FLASHING RED
022	DIS SIGN	DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER
023	DIS OFCR	DISREGARDED POLICE OFFICER OR FLAGMAN
024	DIS EMER	DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE
025	DIS RR	DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN
026	REAR-END	FAILED TO AVOID Stopped or parked vehicle ahead other than school bus
027	BIKE ROW	DId Not have RIGht-OF-WAY OVER PEDALCYCLIST
028	No Row	DID NOT HAVE RIGHT-OF-WAY
029	PED ROW	FAILED TO Yield Right-of-wAy to pedestrian
030	PAS CURV	PASSING ON A CURVE
031	PAS WRNG	PASSING ON THE WRONG SIDE
032	PAS TANG	PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS
033	PAS X -WK	PASSED VEHICLE StOpped at crosswalk for pedestrian
034	PAS INTR	PASSING AT INTERSECTION
035	PAS HILL	PASSING ON CREST OF HILL
036	N/PAS ZN	PASSING IN "NO PASSING" ZONE
037	PAS TRAF	PASSING IN FRONT OF ONCOMING TRAFFIC
038	CUT-IN	CUtting in (two lanes - two way only)
039	WRNGSIDE	DRIVING ON WRONG SIDE OF THE ROAD (2-WAY Undivided roadways)
040	THRU MED	DRIVING THROUGH SAFETY ZONE OR OVER ISLAND
041	F/ST BUS	FAILED TO STOP FOR SCHOOL BUS

ERROR CODE TRANSLATION LIST

ERROR SHORT

CODE	DESCRIPTION	FULL DESCRIPTION
042	F/SLO MV	FAILED TO DECREASE SPEed FOR SLOWER MOVIng Vehicle
043	TOO CLOSE	FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)
044	STRDL LN	Straddilvg OR DRIVING ON WRONG LANES
045	IMP CHg	Improper change of traffic lanes
046	WRNG WAY	WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD
047	BASCRULE	DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)
048	OPN DOOR	OPENED DOOR INTO ADJACENT TRAFFIC LANE
049	Impeding	IMPEDING TRAFFIC
050	SPEED	DRIVING In EXCESS Of POSTED SPEED
051	RECKLESS	RECKLESS DRIVING (PER PAR)
052	CARELESS	CARELESS DRIVING (PER PAR)
053	RACING	SPEED RACING (PER PAR)
054	$\mathrm{X} \mathrm{N} / \mathrm{SGNL}$	CROSSING AT INTERSECTION, NO TRAFFIC SIGNAL PRESENT
055	X W/SGNL	CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT
056	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
057	BTWN INT	CROSSING BETWEEN INTERSECTIONS
059	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
060	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON ShOULDER FACING TRAFFIC
061	W/TRAF-P	WALKIng, Running, Riding, etc., on Pavement with traffic
062	A/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
063	PLAYINRD	PLAYING IN STREET OR ROAD
064	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
065	WORK IN RD	WORKING IN ROADWAY OR ALONG SHOULDER
070	LAY ON RD	StANDING OR LYING IN ROADWAY
071	NM IMP USE	IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST
073	ELUDING	ELUDING / Attempt to elude
079	F NEG CURV	FAILED TO NEGOTIATE A CURVE
080	FAIL LN	FAiled to maintain lane
081	OFF RD	RAN OfF Road
082	No CLEAR	DRIVER MISJUDGED CLEARANCE
083	OVRSTEER	OVER-CORRECTING
084	NOT USED	CODE NOT IN USE
085	OVRLOAD	OVERLOADING OR IMPROPER LOADING OF VEHICLE WIth CARGO OR PASSENGERS
097	UNA DIS TC	UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE

EVENT CODE TRANSLATION LIST

EVENT	SHORT	
CODE	DESCRIPTION	LONG DESCRIPTION
001	FEL/JUMP	OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE
002	INTERER	PASSENGER INTERFERED WITH DRIVER
003	BUG INTF	ANIMAL OR INSECT IN VEHICL INTERFERED WITH DRIVER
004	INDRCT PED	PEDESTRIAN INDIRECTLY INOLVED (NOT STRUCK)
005	SUB-PED	"SUB-PED" PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.
006	INDRCT BIK	PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)
007	HITCHKR	HITCHHIKER (SOLICITING A RIDE)
008	PSNGR TOW	PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE
009	ON/OFF V	GETTING ON/OFF STOPPED/PARKED VEHICLE (OCCUPANTS ONLY; MUST HAVE PHYSICAL CONTACT
010	SUB OTRN	OVERTURNED AFTER FIRST HARMFUL EVENT

EVENT CODE TRANSLATION LIST

EVENT SHORT

EVENT CODE	SHORT DESCRIPTION	LONG DESCRIPTION
060	MARKER	DELINEATOR OR MARKER (REFLECTOR POSTS)
061	MAILBOX	MAILBOX
062	TREE	TREE, STUMP OR SHRUBS
063	VEG OHED	tree branch or other vegetation overhead, etc.
064	WIRE/CBL	WIRE OR CABLE ACROSS OR OVER THE ROAD
065	TEMP SGN	TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.
066	PERM SGN	PERMANENT SIGN OR BARRICADE IN/OFF ROAD
067	SLIDE	SLIDES, FALLEN OR FALLING ROCKS
068	FRGN OBJ	FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)
069	EQP WORK	EQUIPMENT WORKING IN/OFF ROAD
070	OTH EQP	OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)
071	MAIN EQP	WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT
072	OTHER WALL	ROCK, BRICK OR OTHER SOLID WALL
073	IRRGL PVMT	OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR)
074	OVERHD OBJ	OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE
075	CAVE In	BRIDGE OR ROAD CAVE IN
076	HI WATER	HIGH WATER
077	SNO BANK	SNOW BANK
078	LO-HI EDGE	Low OR HIGH Shoulder at pavement edge
079	DITCH	CUT SLOPE OR DITCH EMBANKMENT
080	OBJ FRM MV	STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)
081	FLY-OBJ	STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)
082	VEH HID	VEHICLE OBSCURED VIEW
083	VEG HID	VEGEtATION OBSCURED VIEW
084	BLDG HID	VIEW OBSCURED BY Fence, SIGN, Phone booth, etc.
085	WIND GUST	WIND GUST
086	IMMERSED	VEHICLE IMMERSED In Body of water
087	FIRE/EXP	FIRE OR EXPLOSION
088	FENC/BLD	FENCE OR BUILDING, ETC.
089	OTHR CRASH	CRASH RELATED TO ANOTHER SEPARATE CRASH
090	TO 1 SIDE	TWO-WAY traffic on divided roadway all routed to one side
091	BUILDING	BUILDING OR OTHER STRUCTURE
092	PHANTOM	OTHER (PHANTOM) NON-CONTACT VEHICLE
093	CELL PHONE	CELL PHONE (ON PAR OR DRIVER IN USE)
094	VIOL GDL	teenage driver in violation of graduated license pgm
095	GUY WIRE	GUY WIRE
096	BERM	BERM (EARTHEN OR GRAVEL MOUND)
097	GRAVEL	GRAVEL IN ROADWA
098	ABR EDGE	ABRUPT EDGE
099	CELL WTNSD	CELL PHONE USE WItNESSED BY OTHER PARTICIPANT
100	UNK FIXD	FIXED OBJECT, UNKNOWN TYPE.
101	OTHER OBJ	NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE
102	TEXTING	TEXTING
103	WZ WORKER	WORK ZONE WORKER
104	ON VEHICLE	PASSENGER RIDING ON VEHICLE EXTERIOR
105	PEDAL PSGR	PASSENGER RIDING ON PEDALCYCLE
106	MAN WHLCHR	PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR
107	MTR WHLCHR	PEDESTRIAN IN MOTORIZED Wheelchair
108	OFFICER	LAW ENFORCEMENT / POLICE OFFICER
109	SUB-BIKE	"SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.
110	N-MTR	NON-MOTORIST STRUCK VEHICLE
111	S CAR VS V	Street Car/trolley (on RAILS OR OVERheAd wire system) Struck vehicle
112	v VS S CAR	VEhICLE STRUCK STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM)
113	S CAR ROW	At OR ON Street car or trolley Right-of-way
114	RR EQUIP	VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS
115	DSTRCT GPS	DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE
116	DSTRCT OTH	DISTRACTED BY Other electronic device
117	RR GATE	RAIL CROSSING DROP-ARM GATE

EVENT SHORT

| EVENT
 CODE | SHORT
 DESCRIPTION | LONG DESCRIPTION |
| :---: | :--- | :--- | :--- |
| 118 | EXPNSN JNT | EXPANSION JOINT |
| 119 | JERSEY BAR | JERSEY BARRIER |
| 120 | WIRE BAR | WIRE OR CABLE MEDIAN BARRIER |
| 121 | FENCE | FENCE |
| 123 | OBJ IN VEH | LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT |
| 124 | SLIPPERY | SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL) |
| 125 | SHLDR | SHOULDER GAVE WAY |
| 126 | BOULDER | ROCK (S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE) |
| 127 | LAND SLIDE | ROCK SLIDE OR LAND SLIDE |
| 128 | CURVE INV | CURVE PRESENT AT CRASH LOCATION |
| 129 | HILL INV | VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION |
| 130 | CURVE HID | VIEW OBSCURED BY CURVE |
| 131 | HILL HID | VIEW OBSCURED BY VERTICAL GRADE / HILL |
| 132 | WINDOW HID | VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS |
| 133 | SPRAY HID | VIEW OBSCURED BY WATER SPRAY |

FUNCTIONAL CLASSIFICATION TRANSLATION LIST

FUNC
 CLASS DESCRIPTION

01 RURAL PRINCIPAL ARTERIAL - INTERSTATE
02 RURAL PRINCIPAL ARTERIAL - OTHER
06 RURAL MINOR ARTERIAL
07 RURAL MAJOR COLLECTOR
08 RURAL MINOR COLLECTOR
09 RURAL LOCAL
12 URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP
14 URBAN PRINCIPAL ARTERIAL - OTHER
16 URBAN MINOR ARTERIAL
17 URBAN MAJOR COLLECTOR
18 URBAN MINOR COLLECTOR
19 URBAN LOCAL
78 UNKNOWN RURAL SYSTEM
79 UNKNOWN RURAL NON-SYSTEM
98 UNKNOWN URBAN SYSTEM
99 UNKNOWN URBAN NON-SYSTEM

INJURY SEVERITY CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
1	KILL	FATAL INJURY
2	INJA	INCAPACITATING INJURY - BLEEDING, BROKEN BONES
3	INJB	NON-INCAPACITATING INJURY
4	INJC	POSSIBLE INJURY - COMPLAINT OF PAIN
5	PRI	DIED PRIOR TO CRASH
7	NO<5	NO INJURY - 0 TO 4 YEARS OF AGE

MEDIAN TYPE CODE TRANSLATION LIST

SHORT

CODE	DESC	LONG DESCRIPTION
0	NONE	NO MEDIAN
1	RSDMD	SOLID MEDIAN BARRIER
2	DIVMD	EARTH, GRASS OR PAVED MEDIAN

MILEAGE TYPE CODE TRANSLATION LTS

CODE	LONG DESCRIPTION
0	REGULAR MILEAGE
T	TEMPORARY
Y	SPUR
Z	OVERLAPPING

MOVEMENT TYPE CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	STRGHT	STRAIGHT AHEAD
2	TURN-R	TURNING RIGHT
3	TURN-L	TURNING LEFT
4	U-TURN	MAKING A U-TURN
5	BACK	BACKING
6	STOP	STOPPED IN TRAFFIC
7	PRKD-P	PARKED - PROPERLY
8	PRKD-I	PARKED - IMPROPERLY

pedestrian location code tranclation list

CODE	LONG DESCRIPTION
00	AT INTERSECTION - NOT IN ROADWAY
01	AT INTERSECTION - INSIDE CROSSWALK
02	AT INTERSECTION - IN ROADWAY, OUTSIDE CROSSWALK
03	AT INTERSECTION - IN ROADWAY, XWALK AVAIL UNKNWN
04	NOT AT INTERSECTION - IN ROADWAY
05	NOT AT INTERSECTION - ON SHOULDER
06	NOT AT INTERSECTION - ON MEDIAN
07	NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY
08	NOT AT
09	INTERSECTINN - IN BIKE PAAH OR PARKING LANE
10	NOT-AT INTERSECTION - ON SIDEWALK
13	OUTSIDE TRAFFICWAY BOUNDARIES
13	AT INTERSECTION - IN BIKE LANE
14	NOT AT INTERSECTINN - IN BIKE LANE
15	NOT AT INTERSECTION - INSIDE MAD-BLOCK CROSSWALK
16	NOT AT INTERSECTION - IN PARKING LANE

ROAD CHARACTER CODE TRANSLATION LIST
SHORT

| CODE | SHORT | DESC |
| :---: | :--- | :--- | LONG DESCRIPTION

PARTICIPANT TYPE CODE TRANSLATION LIS

CODE	SHORT DESC	LONG DESCRIPTION
0	OCC	UNKNOWN OCCUPANT TYPE
1	DRVR	DRIVER
2	PSNG	PASSENGER
3	PED	PEDESTRIAN
4	CONV	PEDESTRIAN USING A PEDESTRIAN CONVEYA.
5	PTOW	PEDESTRAN TOWING OR TRAILERING AN OB.
6	BIKE	PEDALCYCLIST
7	BTOW	PEDALCYCLIST TOWING OR TRAILERING AN
8	PRKD	OCCUPANT OF A PARKED MOTOR VEHICLE
9	UNK	UNKNOWN TYPE OF NON-MOTORIST

traffic Control device code translation list

CODE	SHORT DESC	LONG DESCRIPTION
000	NONE	NO CONTROL
001	TRE SIGNAL	TRAFFIC SIGNALS
002	FLASHBCN-R	FLASHING BEACON - RED (STOP)
003	FLASHBCN-A	FLASHING BEACON - AMBER (SLOW)
004	STOP SIGN	STOP SIGN
005	SLOW SIGN	SLOW SIGN
006	REG-SIGN	REGULATORY SIGN
007	YIELD	YIELD SIGN
008	WARNING	WARNING SIGN
009	CURVE	CURVE SIGN
010	SCHL X-ING	SCHOOL CROSSING SIGN OR SPECIAL SIGNAL
011	OFCR/FLAG	POLICE OFFICER, FLAGMAN - SCHOOL PATROL
012	BRDG-GATE	BRIDGE GATE - BARRIER
013	TEMP-BARR	TEMPORARY BARRIER
014	NO-PASS-ZN	NO PASSING ZONE
015	ONE-WAY	ONE-WAY STREET
016	CHANNEL	CHANNELIZATION
017	MEDIAN BAR	MEDIAN BARRIER
018	PILOT CAR	PILOT CAR
019	SP PED SIG	SPECIAL PEDESTRIAN SIGNAL
020	X-BUCK	CROSSBUCK
021	THR-GN-SIG	THROUGH GREEN ARROW OR SIGNAL
022	L-GRN-SIG	LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
023	R-GRN-SIG	RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
024	WIGWAG	WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE
025	X-BUCK WRN	CROSSBUCK AND ADVANCE WARNING
026	WW W/ GATE	FLASHING LIGHTS WITH DROP-ARM GATES
027	OVRHD SGNL	SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)
028	SP RR STOP	SPECIAL RR STOP SIGN
029	ILUM GRD X	ILLUMINATED GRADE CROSSING
037	RAMP METER	METERED RAMPS
038	RUMBLE STR	RUMBLE STRIP
090	L-TURN REF	LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)
091	R-TURN ALL	RIGHT TURN AT ALL TIMES SIGN, ETC.
092	EMR SGN/FL	EMERGENCY SIGNS OR FLARES
093	ACCEL LANE	ACCELERATION OR DECELERATION LANES
094	R-TURN PRO	RIGHT TURN PROHIBITED ON RED AFTER STOPPING

vEHICLE TYPE CODE TRANSLATION LIS

CODE	SHORT DESC	LONG DESCRIPTION
00	PDO	NOT COLLECTED FOR PDO CRASHES
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)
03	FARM TRCTR	FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.
06	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)
08	OTH BUS	OTHER BUS
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.
11	MOTRHOME	MOTORHOME
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)
13	ATV	ATV
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)
15	SNOWMOBILE	SNOWMOBILE
99	UNKNOWN	UNKNOWN VEHICLE TYPE

WEATHER CONDITION CODE TRANSLATION LIST

CODE	SHORT	DESC
0	LONG DESCRIPTION	
1	CLR	UNKNOWN
2	CLD	CLEAR
3	RAIN	CLOUDY
4	RLT	RAIN
5	FOG	FOG
6	SNOW	SNOW
7	DUST	DUST
8	SMOK	SMOKE
9	ASH	ASH

Appendix E In-Process Developments

Traffic Impact Analysis Newberg Ambulatory Surgical Center

Newberg, Oregon

March 9, 2017

completed with
Anderson Dabrowski Architects, LLC
Portland, Oregon

Prepared by:
Associated Transportation Engineering \& Planning, Inc.
Salem, Oregon
March 6, 2017
ATEP 17-346

Traffic Impact Analysis Newberg Ambulatory Surgical Center

Newberg, Oregon

Prepared by:
Associated Transportation Engineering \& Planning, Inc.
Salem, Oregon
March 6, 2017
ATEP 17-346

Table of Contents

Introduction: 2
Summary of Findings: 2
History and Existing Conditions: 2
Traffic Conditions when Newberg Surgical Center is Complete: 3
Crash Data: 5
Summary: 5
Figures
Figure 1 - Vicinity Map 2
Figure 2 - Existing Traffic Conditions 3
Figure 3 - 2017 Traffic Conditions with Newberg Surgical Center 4
Figure 4 - 2032 Traffic Conditions with Newberg Surgical Center 4
Figure 5 - Reported Crashes at Studied Intersections in 2010-2014 5
Figure 6 - Existing AM Peak hour Counts and Performance Metrics 5
Figure 7 - Existing PM Peak hour Counts and Performance Metrics 6
Figure 8-2017 AM Counts and Performance Metrics with Newberg Surgical Center 6
Figure 9-2017 PM Counts and Performance Metrics with Newberg Surgical Center 7
Figure 10-2032 AM Counts and Performance Metrics with Newberg Surgical Center 7
Figure 11-2032 PM Counts and Performance Metrics with Newberg Surgical Center 8

Appendices

Turning Movement Counts

ODOT Crash Data
Computer Modeling Printouts

Traffic Impact Analysis Newberg Ambulatory Surgical Center Newberg, Oregon

Introduction:

The Oregon Clinic intends to develop a 17,510 sq. ft. Ambulatory Surgery Center on 3 acres of tax lot 2001 of tax map 3S2W16 in Newberg, Oregon. The site is west of Providence Drive and south of the Providence Hospital in Newberg. The facility will be developed with access to Providence Dr.

The Newberg Ambulatory Surgical Center will use the Newberg transportation system and add traffic to the roadways. This analysis will consider the traffic impacts at the intersection of 1) Providence Dr at Hwy 99W, 2) Hayes St at Werth Blvd. 3) Hayes St at Brutscher St and 4) Site Access at Providence Dr. Brutscher St at Fernwood Rd was closed while this study was conducted, diverting traffic to other intersections. Crash data was provided by the ODOT Crash Data Unit for the most recent 5 years.

Summary of Findings:

Figure 1 - Vicinity Map

The Newberg Ambulatory Surgical Center will generate an estimated 633 trips each day. 42 of those trips will be in the AM Peak hour and 62 trips will be in the PM Peak hour. The performance metrics at the studied intersections are shown in the following table upon opening in 2017.

	AM Peak hour		PM Peak hour	
	LOS	v/c	LOS	v/c
Hwy 99W at Providence Dr	A	0.661	B	0.721
Hayes at Werth	A		A	
Hayes at Brutscher	A		A	
Site Access at Providence Dr	A	0.012	B	0.067

Crash data from ODOT Crash Data Unit identifies 9 crashes at the studied intersections in the last 5 years. None were fatal crashes, 4 were injury crashes and 5 were property damage only crashes.

History and Existing Conditions:

The site has been vacant in the recent past and was is adjacent to the Providence Medical Center. The site is zoned Residential/Specific Plan (R R/SP). Traffic from the planned ambulatory surgery center will travel north or south on Providence Dr to access the transportation system. The intersection of Providence

Dr at Hwy 99 W is signal controlled, the intersections of Hayes at Brutscher are roundabouts, and the site access is two way stop controlled.

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	NWB Right	0.652	5.0	A
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	NB Thru		3.8	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	EB Thru		3.2	A

Existing AM Peak Hour Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	SWB Left	0.714	10.7	B
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	SB Right		4.6	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	WB Thru		3.5	A

Existing PM Peak Hour Summary

Figure 2 - Existing Traffic Conditions

Traffic Conditions when Newberg Surgical Center is Complete:

Newberg Ambulatory Surgical Center will add 42 trips to the AM Peak hour traffic and 62 trips to the PM Peak hour traffic. This study will assume that 60% of the traffic will travel north of the site then toward Newberg, 30% north on Providence Dr then toward Sherwood and 10% to the south of the site. The study assumed that traffic volumes will increase linearly 1% per year to estimate the 2017 and 2032 performance metrics.

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	NWB Right	0.661	5.4	A
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	NB Thru		3.8	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	EB Thru		3.2	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.012	9.3	A

2017 AM Peak Hour Summary with Newberg Surgical Center

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	SWB Left	0.731	12.0	B
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	SB Right		4.6	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	WB Thru		3.5	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.067	10.1	B

2017 PM Peak Hour Summary with Newberg Surgical Center

Figure 3-2017 Traffic Conditions with Newberg Surgical Center

It is anticipated traffic will continue to increase at a rate of 1% / year. The following tables estimate the performance metrics and traffic volumes in the intersections in 15 years (2032) for planning purposes.

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	NWB Right	0.758	7.7	A
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	NB Thru		4.0	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	EB Thru		3.3	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.012	9.4	A

2032 AM Peak Hour Summary with Newberg Surgical Center

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	SWB Left	0.839	17.6	B
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	SB Right		5.0	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	WB Thru		3.6	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.069	10.3	B

2032 PM Peak Hour Summary with Newberg Surgical Center
Figure 4-2032 Traffic Conditions with Newberg Surgical Center

Crash Data:

The ODOT Crash Data Unit provided information about reported crashes at the shown intersections for the past 5 years.

Intersection	Fatal	Injury	Property Damage	Total Crashes
Hwy 99W at Providence Dr	0	3	5	8
Hayes at Werth	0	0	0	0
Hayes at Brutscher	0	1	0	1

Figure 5 - Reported Crashes at Studied Intersections in 2010-2014

Summary:

The development of the planned Newberg Ambulatory Surgical Center in Newberg will add traffic to the transportation system. This study finds there is and will continue to be adequate capacity at the studied intersections when it is completed. Crash data does not indicate significant safety problems at the intersections.

Figure 6 - Existing AM Peak hour Counts and Performance Metrics

Figure 7 - Existing PM Peak hour Counts and Performance Metrics

Figure 8-2017 AM Counts and Performance Metrics with Newberg Surgical Center

Figure 9-2017 PM Counts and Performance Metrics with Newberg Surgical Center

Figure 10-2032 AM Counts and Performance Metrics with Newberg Surgical Center

Figure 11-2032 PM Counts and Performance Metrics with Newberg Surgical Center

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Providence Dr \& 99W Pacifice Highway (091)
January 1, 2010 through December 31, 2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2014														
REAR-END	0	0	2	2	0	0	0	2	0	2	0	2	0	0
2014 TOTAL	0	0	2	2	0	0	0	2	0	2	0	2	0	0
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2012														
REAR-END	0	2	1	3	0	3	0	2	1	3	0	3	0	0
2012 TOTAL	0	2	1	3	0	3	0	2	1	3	0	3	0	0
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	0	1	1	0	1	0	0
2011 TOTAL	0	0	1	1	0	0	0	0	1	1	0	1	0	0
YEAR: 2010														
REAR-END	0	1	0	1	0	2	0	1	0	1	0	1	0	0
2010 TOTAL	0	1	0	1	0	2	0	1	0	1	0	1	0	0
FINAL TOTAL	0	3	5	8	0	5	0	6	2	8	0	8	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

Hayes St \& Brutscher St

January 1, 2010 through December 31, 2014

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	NONFATAL CRASHES	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2013														
NON-COLLISION	0	1	0	1	0	1	0	1	0	0	1	1	0	0
2013 TOTAL	0	1	0	1	0	1	0	1	0	0	1	1	0	0
FINAL TOTAL	0	1	0	1	0	1	0	1	0	0	1	1	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	NWB Right	0.652	5.0	A
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	NB Thru		3.8	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	EB Thru		3.2	A

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. for all other control types, they are taken for the whole intersection.

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 1: 1 AM Existing 17-346
Intersection Level Of Service Report Intersection 1: Hwy 99W at Providence Dr

Signalized
HCM 6 th Edition
15 minutes

Delay $(\mathrm{sec} / \mathrm{veh}):$	5.0
Level Of Service:	A
Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.652

0.652

Intersection Setup

Name	Hwy 99W		Hwy 99W		Providence Dr	
Approach	Northeastbound		Southwestbound		Northwestbound	
Lane Configuration						
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	1	1	0	1	0
Pocket Length [ft]	100.00	75.00	100.00	100.00	150.00	100.00
Speed [mph]	45.00		45.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Curb Present	No		No		No	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Hwy 99W		Hwy 99W		Providence Dr	
Base Volume Input [veh/h]	1725	73	64	991	38	46
Base Volume Adjustment Factor	1.0850	1.0850	1.0850	1.0850	1.0850	1.0850
Heavy Vehicles Percentage [\%]	4.50	4.50	4.50	4.50	4.50	4.50
Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Right-Turn on Red Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	1872	79	69	1075	41	50
Peak Hour Factor	0.9700	0.9700	0.9700	0.9700	0.9700	0.9700
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	482	20	18	277	11	13
Total Analysis Volume [veh/h]	1930	81	71	1108	42	52
Presence of On-Street Parking	No	No	No	No	No	No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	0		0		0	
v_di, Inbound Pedestrian Volume crossing m	0		0		0	
v_co, Outbound Pedestrian Volume crossing	0		0		0	
v_ci, Inbound Pedestrian Volume crossing rii	0		0		0	
v_ab, Corner Pedestrian Volume [ped/h]	0		0		0	
Bicycle Volume [bicycles/h]	0		0		0	

Version 5.00-00 Scenario 1: 1 AM Existing 17-346

Intersection Settings

Located in CBD	
Signal Coordination Group	
Cycle Length [s]	
Coordination Type	-
Actuation Type	Time of Day Pattern Coordinated
Offset [s]	Fully actuated
Offset Reference	0.0
Permissive Mode	LeadGreen
Lost time [s]	SingleBand

Phasing \& Timing

Control Type	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive
Signal group	8	0	0	4	5	0
Auxiliary Signal Groups						
Lead / Lag	-	-	-	-	Lead	-
Minimum Green [s]	5	0	0	5	5	0
Maximum Green [s]	30	0	0	30	30	0
Amber [s]	3.0	0.0	0.0	3.0	3.0	0.0
All red [s]	1.0	0.0	0.0	1.0	1.0	0.0
Split [s]	19	0	0	19	101	0
Vehicle Extension [s]	3.0	0.0	0.0	3.0	3.0	0.0
Walk [s]	5	0	0	5	5	0
Pedestrian Clearance [s]	10	0	0	10	10	0
Rest In Walk	No			No	No	
11, Start-Up Lost Time [s]	2.0	0.0	0.0	2.0	2.0	0.0
12, Clearance Lost Time [s]	2.0	0.0	0.0	2.0	2.0	0.0
Minimum Recall	No			No	No	
Maximum Recall	No			No	No	
Pedestrian Recall	No			No	No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	
Pedestrian Walk [s]	
Pedestrian Clearance [s]	

Version 5.00-00
Lane Group Calculations

Lane Group	C	R	L	C	L	R
C, Cycle Length [s]	120	120	120	120	120	120
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00
11_p, Permitted Start-Up Lost Time [s]	0.00	0.00	2.00	0.00	0.00	0.00
12, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	106	106	106	106	6	6
g / C, Green / Cycle	0.88	0.88	0.88	0.88	0.05	0.05
(v / s)_i Volume / Saturation Flow Rate	0.61	0.06	0.35	0.35	0.03	0.04
s , saturation flow rate [veh/h]	3140	1402	203	3140	1571	1402
c, Capacity [veh/h]	2765	1234	195	2765	83	74
d1, Uniform Delay [s]	2.22	0.91	10.29	1.32	55.27	55.86
k, delay calibration	0.50	0.50	0.50	0.50	0.11	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	1.49	0.10	5.16	0.43	4.72	11.46
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00

Lane Group Results

X, volume / capacity	0.70	0.07	0.36	0.40	0.51	0.70
d, Delay for Lane Group [s/veh]	3.71	1.01	15.45	1.76	59.99	67.32
Lane Group LOS	A	A	B	A	A	E
Critical Lane Group	Yes	No	No	No	No	Yes
50th-Percentile Queue Length [veh]	1.61	0.07	1.11	0.52	1.36	1.80
50th-Percentile Queue Length [ft]	40.21	1.77	27.64	13.03	33.90	44.91
95th-Percentile Queue Length [veh]	2.90	0.13	1.99	0.94	2.44	3.23
95th-Percentile Queue Length [ft]	72.38	3.18	49.75	23.46	61.02	80.84

Version 5.00-00
Scenario 1: 1 AM Existing 17-346
Movement, Approach, \& Intersection Results

d_M, Delay for Movement [s/veh]	3.71	1.01	15.45	1.76	59.99	67.32
Movement LOS	A	A	B	A	E	E
d_A, Approach Delay [s/veh]	3.60		2.58		64.04	
Approach LOS	A		A		E	
d_I, Intersection Delay [s/veh]	4.97					
Intersection LOS	A					
Intersection V/C	0.652					

Other Modes

g_Walk,mi, Effective Walk Time [s]	9.0	9.0	9.0
M_corner, Corner Circulation Area [ft²/ped]	0.00	0.00	0.00
M_CW, Crosswalk Circulation Area [ft²/ped	0.00	0.00	0.00
d_p, Pedestrian Delay [s]	51.34	51.34	51.34
I_p,int, Pedestrian LOS Score for Intersectiqn	3.299	3.240	2.123
Crosswalk LOS	C	C	
s_b, Saturation Flow Rate of the bicycle lan申	2000	2000	B
c_b, Capacity of the bicycle lane [bicycles/h]	0	0	2000
d_b, Bicycle Delay [s]	60.00	60.00	0
I_b,int, Bicycle LOS Score for Intersection	5.791	5.105	60.00
Bicycle LOS	F	F	

Sequence

Ring 1	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Generated with PTV VISTRO

17-346 Newberg Surg. Ctr TIA

Version 5.00-00
Scenario 1: 1 AM Existing 17-346
Intersection Level Of Service Report Intersection 3: Brutsher St at Hayes St

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
3.8

A

Intersection Setup

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	4			$\stackrel{H}{4}$			$\stackrel{4}{4}$			$\stackrel{H}{4}$		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Base Volume Input [veh/h]	38	113	16	10	44	37	27	50	31	3	14	5
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59
Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	38	113	16	10	44	37	27	50	31	3	14	5
Peak Hour Factor	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	10	30	4	3	12	10	7	13	8	1	4	1
Total Analysis Volume [veh/h]	40	120	17	11	47	39	29	53	33	3	15	5
Pedestrian Volume [ped/h]	0			0			0			0		

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	94			59			62			192		
Exiting Flow Rate [veh/h]	65			56			51			151		
Demand Flow Rate [veh/h]	38	113	16	10	44	37	27	50	31	3	14	5
Adjusted Demand Flow Rate [veh/h]	40	120	17	11	47	39	29	53	33	3	15	5

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	180	99	117	24
Capacity of Entry and Bypass Lanes [veh/h]	1254	1300	1296	1135
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1234	1280	1276	1117
X, volume / capacity	0.14	0.08	0.09	0.02

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.50	0.25	0.30	0.06
95th-Percentile Queue Length [ft]	12.52	6.14	7.42	1.58
Approach Delay [s/veh]	4.12	3.42	3.55	3.39
Approach LOS	A	A	A	A
Intersection Delay [s/veh]	3.76			
Intersection LOS	A			

Generated with PTV VISTRO
17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 1: 1 AM Existing 17-346

ntersection Level Of Service Report

 Intersection 4: Hayes at WerthControl Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
3.2

A

Intersection Setup

Name	Werth			Werth			Hayes St			Providence Dr		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	$\stackrel{t}{4}$			$\stackrel{t}{4}$			$\stackrel{H}{4}$			$\stackrel{H}{4}$		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Werth			Werth			Hayes St			Providence Dr		
Base Volume Input [veh/h]	1	0	2	0	0	7	2	45	12	19	26	1
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	5.40	5.40	5.40	5.40	5.40	5.40	5.40	5.40	5.40	5.40	5.40	5.40
Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	1	0	2	0	0	7	2	45	12	19	26	1
Peak Hour Factor	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	0	0	1	0	0	2	1	14	4	6	8	0
Total Analysis Volume [veh/h]	1	0	3	0	0	9	3	58	15	24	33	1
Pedestrian Volume [ped/h]	0			0			0			0		

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	64			61			25			4		
Exiting Flow Rate [veh/h]	61			36			25			3		
Demand Flow Rate [veh/h]	1	0	2	0	0	7	2	45	12	19	26	1
Adjusted Demand Flow Rate [veh/h]	1	0	3	0	0	9	3	58	15	24	33	1

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.95	0.95	0.95	0.95
Entry Flow Rate [veh/h]	5	10	81	62
Capacity of Entry and Bypass Lanes [veh/h]	1293	1297	1345	1375
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1227	1231	1276	1304
X, volume / capacity	0.00	0.01	0.06	0.04

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.01	0.02	0.19	4.74
95th-Percentile Queue Length [ft]	0.25	0.55	3.14	
Approach Delay [s/veh]	2.96	2.98	A	A
Approach LOS	A	A		
Intersection Delay [s/veh]		A		
Intersection LOS	A			

Turning Movement Volume: Summary

ID	Intersection Name	Northeastbound		Southwestbound		Northwestbound		Total Volume
		Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	1872	79	69	1075	41	50	3186

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
		Left	Thru	Right										
3	Brutsher St at Hayes St	38	113	16	10	44	37	27	50	31	3	14	5	388

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
		Left	Thru	Right										
4	Hayes at Werth	1	0	2	0	0	7	2	45	12	19	26	1	115

Vistro File: J:\...\17-346 Newberg Ambulatory Surgery

Turning Movement Volume: Detail

ID	Intersection Name	Volume Type	Northeastbound		Southwestbound		Northwestbound		Total Volume
			Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	Final Base	1872	79	69	1075	41	50	3186
		Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0
		Other	0	0	0	0	0	0	0
		Future Total	1872	79	69	1075	41	50	3186

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
3	Brutsher St at Hayes St	Final Base	38	113	16	10	44	37	27	50	31	3	14	5	388
		Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	0	0	0	0	0	0
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	38	113	16	10	44	37	27	50	31	3	14	5	388

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
4	Hayes at Werth	Final Base	1	0	2	0	0	7	2	45	12	19	26	1	115
		Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	0	0	0	0	0	0
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	1	0	2	0	0	7	2	45	12	19	26	1	115

Report Figure 1: Lane Configuration and Traffic Control

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 2a: Traffic Volume - Base Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 2c: Traffic Volume - Net New Site Trips

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 2e: Traffic Volume - Future Total Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 3: Traffic Conditions

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	SWB Left	0.714	10.7	B
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	SB Right		4.6	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	WB Thru		3.5	A

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. for all other control types, they are taken for the whole intersection.

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 2: 2 PM Existing 17-346
Intersection Level Of Service Report Intersection 1: Hwy 99W at Providence Dr

Control Type: Analysis Method: Analysis Period:
Signalized
HCM 6th Edition
15 minutes

Delay (sec / veh):
10.7

HCM 6th Edition 15 minutes

Level Of Service:
Volume to Capacity (v/c):
0.714

Intersection Setup

Name	Hwy 99W		Hwy 99W		Providence Dr	
Approach	Northeastbound		Southwestbound		Northwestbound	
Lane Configuration						
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	1	1	0	1	0
Pocket Length [ft]	100.00	75.00	100.00	100.00	150.00	100.00
Speed [mph]	45.00		45.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Curb Present	No		No		No	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Hwy 99W		Hwy 99W		Providence Dr	
Base Volume Input [veh/h]	1207	31	79	1789	78	96
Base Volume Adjustment Factor	1.0850	1.0850	1.0850	1.0850	1.0850	1.0850
Heavy Vehicles Percentage [\%]	3.27	3.27	3.27	3.27	3.27	3.27
Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Right-Turn on Red Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	1310	34	86	1941	85	104
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	341	9	22	505	22	27
Total Analysis Volume [veh/h]	1365	35	90	2022	89	108
Presence of On-Street Parking	No	No	No	No	No	No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	0		0		0	
v_di, Inbound Pedestrian Volume crossing m	0		0		0	
v_co, Outbound Pedestrian Volume crossing	0		0		0	
v_ci, Inbound Pedestrian Volume crossing rii	0		0		0	
v_ab, Corner Pedestrian Volume [ped/h]	0		0		0	
Bicycle Volume [bicycles/h]	0		0		0	

Version 5.00-00
Scenario 2: 2 PM Existing 17-346
Intersection Settings

Located in CBD	
Signal Coordination Group	
Cycle Length [s]	
Coordination Type	-
Actuation Type	Time of Day Pattern Coordinated
Offset [s]	Fully actuated
Offset Reference	0.0
Permissive Mode	LeadGreen
Lost time [s]	SingleBand

Phasing \& Timing

Control Type	Permissive	Permissive	Protected	Permissive	Permissive	Permissive
Signal group	8	0	7	4	5	0
Auxiliary Signal Groups						
Lead / Lag	-	-	Lead	-	Lead	-
Minimum Green [s]	5	0	5	5	5	0
Maximum Green [s]	30	0	30	30	30	0
Amber [s]	3.0	0.0	3.0	3.0	3.0	0.0
All red [s]	1.0	0.0	1.0	1.0	1.0	0.0
Split [s]	27	0	44	71	19	0
Vehicle Extension [s]	3.0	0.0	3.0	3.0	3.0	0.0
Walk [s]	5	0	0	5	5	0
Pedestrian Clearance [s]	10	0	0	10	10	0
Rest In Walk	No			No	No	
11, Start-Up Lost Time [s]	2.0	0.0	2.0	2.0	2.0	0.0
12, Clearance Lost Time [s]	2.0	0.0	2.0	2.0	2.0	0.0
Minimum Recall	No		No	No	No	
Maximum Recall	No		No	No	No	
Pedestrian Recall	No		No	No	No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	
Pedestrian Walk [s]	
Pedestrian Clearance [s]	0

Version 5.00-00
Scenario 2: 2 PM Existing 17-346
Lane Group Calculations

Lane Group	C	R	L	C	L	R
C, Cycle Length [s]	90	90	90	90	90	90
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00
11_p, Permitted Start-Up Lost Time [s]	0.00	0.00	0.00	0.00	0.00	0.00
12, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	63	63	6	73	9	9
g / C, Green / Cycle	0.70	0.70	0.07	0.81	0.10	0.10
(v / s)_i Volume / Saturation Flow Rate	0.43	0.02	0.06	0.64	0.06	0.08
s , saturation flow rate [veh/h]	3172	1416	1587	3172	1587	1416
c, Capacity [veh/h]	2204	984	115	2575	158	141
d1, Uniform Delay [s]	7.35	4.29	41.06	4.40	38.70	39.54
k, delay calibration	0.50	0.50	0.11	0.50	0.11	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	1.32	0.07	10.96	2.49	3.16	8.48
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00

Lane Group Results

X, volume / capacity	0.62	0.04	0.78	0.79	0.57	0.77
d, Delay for Lane Group [s/veh]	8.67	4.36	52.02	6.89	41.86	48.03
Lane Group LOS	A	A	D	D	A	D
Critical Lane Group	No	No	No	Yes	No	
50th-Percentile Queue Length [veh]	5.25	0.16	2.22	4.05	2.01	Yes
50th-Percentile Queue Length [ft]	131.22	4.09	55.60	101.13	50.30	6
95th-Percentile Queue Length [veh]	9.01	0.29	4.00	7.28	3.62	
95th-Percentile Queue Length [ft]	225.15	7.36	100.08	182.04	9.78	

Version 5.00-00
Scenario 2: 2 PM Existing 17-346
Movement, Approach, \& Intersection Results

d_M, Delay for Movement [s/veh]	8.67	4.36	52.02	6.89	41.86	48.03
Movement LOS	A	A	D	A	D	D
d_A, Approach Delay [s/veh]	8.56		8.81		45.24	
Approach LOS	A		A		D	
d_I, Intersection Delay [s/veh]	10.65					
Intersection LOS	B					
Intersection V/C	0.714					

Other Modes

g_Walk,mi, Effective Walk Time [s]	9.0	9.0	9.0
M_corner, Corner Circulation Area [ft²/ped]	0.00	0.00	0.00
M_CW, Crosswalk Circulation Area [ft²/ped	0.00	0.00	0.00
d_p, Pedestrian Delay [s]	36.45	36.45	36.45
I_p,int, Pedestrian LOS Score for Intersectiqn	3.455	3.350	2.029
Crosswalk LOS	C	C	
s_b, Saturation Flow Rate of the bicycle lan¢	2000	2000	B
c_b, Capacity of the bicycle lane [bicycles/h]	0	0	2000
d_b, Bicycle Delay [s]	45.00	45.00	0
I_b,int, Bicycle LOS Score for Intersection	5.287	5.875	45.00
Bicycle LOS	F	F	

Sequence

Ring 1	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	7	8	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Generated with PTV VISTRO

17-346 Newberg Surg. Ctr TIA

Version 5.00-00
Scenario 2: 2 PM Existing 17-346
Intersection Level Of Service Report Intersection 3: Brutsher St at Hayes St

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
4.6

A

Intersection Setup

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	4			$\stackrel{H}{4}$			$\stackrel{4}{4}$			$\stackrel{H}{4}$		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Base Volume Input [veh/h]	52	67	12	21	99	140	44	30	42	14	78	30
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	52	67	12	21	99	140	44	30	42	14	78	30
Peak Hour Factor	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	14	18	3	6	27	38	12	8	11	4	21	8
Total Analysis Volume [veh/h]	56	72	13	23	106	151	47	32	45	15	84	32
Pedestrian Volume [ped/h]	0			0			0			0		

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	104			158			147			178		
Exiting Flow Rate [veh/h]	56			142			123			121		
Demand Flow Rate [veh/h]	52	67	12	21	99	140	44	30	42	14	78	30
Adjusted Demand Flow Rate [veh/h]	56	72	13	23	106	151	47	32	45	15	84	32

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	144	285	127	134
Capacity of Entry and Bypass Lanes [veh/h]	1242	1175	1189	1151
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1220	1155	1168	1131
X, volume / capacity	0.12	0.24	0.11	0.12

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.39	0.95	0.36	
95th-Percentile Queue Length [ft]	9.77	23.80	8.89	
Approach Delay [s/veh]	3.91	5.33	9.98	
Approach LOS	A	A	A	A
Intersection Delay [s/veh]		4.50		
Intersection LOS	A			

Generated with PTV VISTRO
17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 2: 2 PM Existing 17-346

Intersection Level Of Service Report Intersection 4: Hayes at Werth

Delay (sec / veh):
Level Of Service:
3.5

A

Intersection Setup

Name	Werth			Werth			Hayes St			Providence Dr		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | Werth | | | Werth | | | Hayes St | | | Providence Dr | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 10 | 0 | 7 | 2 | 0 | 3 | 17 | 30 | 9 | 11 | 105 | 6 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 |
| Growth Rate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 10 | 0 | 7 | 2 | 0 | 3 | 17 | 30 | 9 | 11 | 105 | 6 |
| Peak Hour Factor | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 3 | 0 | 2 | 1 | 0 | 1 | 5 | 9 | 3 | 3 | 33 | 2 |
| Total Analysis Volume [veh/h] | 13 | 0 | 9 | 3 | 0 | 4 | 22 | 38 | 11 | 14 | 133 | 8 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	64			163			17			36		
Exiting Flow Rate [veh/h]	42			148			14			22		
Demand Flow Rate [veh/h]	10	0	7	2	0	3	17	30	9	11	105	6
Adjusted Demand Flow Rate [veh/h]	13	0	9	3	0	4	22	38	11	14	133	8

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	23	8	73	158
Capacity of Entry and Bypass Lanes [veh/h]	1293	1170	1356	1331
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1273	1151	1335	1311
X, volume / capacity	0.02	0.01	0.05	0.12

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.05	0.02	0.17	4.21
95th-Percentile Queue Length [ft]	1.32	0.46	3.11	A
Approach Delay [s/veh]	2.97	3.18	A	A
Approach LOS	A	A		
Intersection Delay [s/veh]		A		
Intersection LOS				

Turning Movement Volume: Summary

ID	Intersection Name	Northeastbound		Southwestbound		Northwestbound		Total Volume
		Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	1310	34	86	1941	85	104	3560

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
		Left	Thru	Right										
3	Brutsher St at Hayes St	52	67	12	21	99	140	44	30	42	14	78	30	629

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
		Left	Thru	Right										
4	Hayes at Werth	10	0	7	2	0	3	17	30	9	11	105	6	200

Vistro File: J:\...\17-346 Newberg Ambulatory Surgery

Turning Movement Volume: Detail

ID	Intersection Name	Volume Type	Northeastbound		Southwestbound		Northwestbound		Total Volume
			Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	Final Base	1310	34	86	1941	85	104	3560
		Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0
		Other	0	0	0	0	0	0	0
		Future Total	1310	34	86	1941	85	104	3560

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
3	Brutsher St at Hayes St	Final Base	52	67	12	21	99	140	44	30	42	14	78	30	629
		Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	0	0	0	0	0	0
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	52	67	12	21	99	140	44	30	42	14	78	30	629

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
4	Hayes at Werth	Final Base	10	0	7	2	0	3	17	30	9	11	105	6	200
		Growth Rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	0	0	0	0	0	0
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	10	0	7	2	0	3	17	30	9	11	105	6	200

Report Figure 1: Lane Configuration and Traffic Control

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 2a: Traffic Volume - Base Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 2c: Traffic Volume - Net New Site Trips

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 2e: Traffic Volume - Future Total Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Report Figure 3: Traffic Conditions

Hwy 99W at Providence Dr Brutsher St at Hayes St
Hayes at Werth

Vistro File: J:I...|17-346 Newberg Ambulatory Surgery

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	NWB Right	0.661	5.4	A
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	NB Thru		3.8	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	EB Thru		3.2	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.012	9.3	A

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. for all other control types, they are taken for the whole intersection.

Generated with PTV VISTRO
Version 5.00-00

17-346 Newberg Surg. Ctr TIA
Scenario 4: 4 AM Developed 17-346
Intersection Level Of Service Report Intersection 1: Hwy 99W at Providence Dr
Signalized
HCM 6th Edition
15 minutes

Delay $(\mathrm{sec} / \mathrm{veh}):$	5.4
Level Of Service:	A
Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.661

Intersection Setup

Name	Hwy 99w		Hwy 99W		Providence Dr	
Approach	Northeastbound		Southwestbound		Northwestbound	
Lane Configuration					\leftrightarrows	
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	1	1	0	1	0
Pocket Length [ft]	100.00	75.00	100.00	100.00	150.00	100.00
Speed [mph]	45.00		45.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Curb Present	No		No		No	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Hwy 99W		Hwy 99W		Providence Dr	
Base Volume Input [veh/h]	1725	73	64	991	38	46
Base Volume Adjustment Factor	1.0850	1.0850	1.0850	1.0850	1.0850	1.0850
Heavy Vehicles Percentage [\%]	4.50	4.50	4.50	4.50	4.50	4.50
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	20	10	0	5	3
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Right-Turn on Red Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	1891	100	80	1086	46	54
Peak Hour Factor	0.9700	0.9700	0.9700	0.9700	0.9700	0.9700
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	487	26	21	280	12	14
Total Analysis Volume [veh/h]	1949	103	82	1120	47	56
Presence of On-Street Parking	No	No	No	No	No	No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	0		0		0	
v_di, Inbound Pedestrian Volume crossing m	0		0		0	
v_co, Outbound Pedestrian Volume crossing	0		0		0	
v_ci, Inbound Pedestrian Volume crossing rii	0		0		0	
v_ab, Corner Pedestrian Volume [ped/h]	0		0		0	
Bicycle Volume [bicycles/h]	0		0		0	

17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 4: 4 AM Developed 17-346
Intersection Settings

Located in CBD	
Signal Coordination Group	
Cycle Length [s]	
Coordination Type	-
Actuation Type	Time of Day Pattern Coordinated
Offset [s]	Fully actuated
Offset Reference	0.0
Permissive Mode	LeadGreen
Lost time [s]	SingleBand

Phasing \& Timing

Control Type	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive
Signal group	8	0	0	4	5	0
Auxiliary Signal Groups						
Lead / Lag	-	-	-	-	Lead	-
Minimum Green [s]	5	0	0	5	5	0
Maximum Green [s]	30	0	0	30	30	0
Amber [s]	3.0	0.0	0.0	3.0	3.0	0.0
All red [s]	1.0	0.0	0.0	1.0	1.0	0.0
Split [s]	19	0	0	19	101	0
Vehicle Extension [s]	3.0	0.0	0.0	3.0	3.0	0.0
Walk [s]	5	0	0	5	5	0
Pedestrian Clearance [s]	10	0	0	10	10	0
Rest In Walk	No			No	No	
11, Start-Up Lost Time [s]	2.0	0.0	0.0	2.0	2.0	0.0
12, Clearance Lost Time [s]	2.0	0.0	0.0	2.0	2.0	0.0
Minimum Recall	No			No	No	
Maximum Recall	No			No	No	
Pedestrian Recall	No			No	No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	
Pedestrian Walk [s]	
Pedestrian Clearance [s]	0

Version 5.00-00
Scenario 4: 4 AM Developed 17-346
Lane Group Calculations

Lane Group	C	R	L	C	L	R
C, Cycle Length [s]	120	120	120	120	120	120
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00
11_p, Permitted Start-Up Lost Time [s]	0.00	0.00	2.00	0.00	0.00	0.00
12, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	105	105	105	105	7	7
g / C, Green / Cycle	0.88	0.88	0.88	0.88	0.06	0.06
(v / s)_i Volume / Saturation Flow Rate	0.62	0.07	0.41	0.36	0.03	0.04
s , saturation flow rate [veh/h]	3140	1402	200	3140	1571	1402
c, Capacity [veh/h]	2754	1229	190	2754	88	79
d1, Uniform Delay [s]	2.39	0.98	12.32	1.41	55.04	55.62
k, delay calibration	0.50	0.50	0.50	0.50	0.11	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	1.56	0.13	6.98	0.45	4.89	11.14
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00

Lane Group Results

X, volume / capacity	0.71	0.08	0.43	0.41	0.53	0.71
d, Delay for Lane Group [s/veh]	3.95	1.11	19.31	1.86	59.93	66.76
Lane Group LOS	A	A	B	E	A	E
Critical Lane Group	Yes	No	No	No	No	Yes
50th-Percentile Queue Length [veh]	1.96	0.10	1.49	0.63	1.51	1.92
50th-Percentile Queue Length [ft]	49.00	2.62	37.15	15.81	37.87	48.08
95th-Percentile Queue Length [veh]	3.53	0.19	2.67	1.14	2.73	3.46
95th-Percentile Queue Length [ft]	88.20	4.71	66.86	28.46	68.17	86.55

Version 5.00-00
Scenario 4: 4 AM Developed 17-346
Movement, Approach, \& Intersection Results

d_M, Delay for Movement [s/veh]	3.95	1.11	19.31	1.86	59.93	66.76
Movement LOS	A	A	B	A	E	E
d_A, Approach Delay [s/veh]	3.81		3.05		63.65	
Approach LOS	A		A		E	
d_I, Intersection Delay [s/veh]	5.37					
Intersection LOS	A					
Intersection V/C	0.661					

Other Modes

g_Walk,mi, Effective Walk Time [s]	9.0	9.0	9.0
M_corner, Corner Circulation Area [ft²/ped]	0.00	0.00	0.00
M_CW, Crosswalk Circulation Area [ft²/ped	0.00	0.00	0.00
d_p, Pedestrian Delay [s]	51.34	51.34	51.34
I_p,int, Pedestrian LOS Score for Intersectign	3.324	3.253	2.150
Crosswalk LOS	C	C	
s_b, Saturation Flow Rate of the bicycle lan¢	2000	2000	B
c_b, Capacity of the bicycle lane [bicycles/h]	0	0	2000
d_b, Bicycle Delay [s]	60.00	60.00	0
I_b,int, Bicycle LOS Score for Intersection	5.825	5.124	60.00
Bicycle LOS	F	F	

Sequence

Ring 1	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 4: 4 AM Developed 17-346
Intersection Level Of Service Report Intersection 3: Brutsher St at Hayes St

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition 15 minutes
3.8

A

Intersection Setup

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	$\stackrel{t}{4}$			$\stackrel{t}{4}$			$\stackrel{t}{4}$			$\stackrel{t}{4}$		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Base Volume Input [veh/h]	38	113	16	10	44	37	27	50	31	3	14	5
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	3	0	0	1	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	38	114	16	10	44	37	27	54	31	3	15	5
Peak Hour Factor	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	10	30	4	3	12	10	7	14	8	1	4	1
Total Analysis Volume [veh/h]	40	121	17	11	47	39	29	57	33	3	16	5
Pedestrian Volume [ped/h]	0			0			0			0		

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	99			60			62			193		
Exiting Flow Rate [veh/h]	69			57			51			152		
Demand Flow Rate [veh/h]	38	114	16	10	44	37	27	54	31	3	15	5
Adjusted Demand Flow Rate [veh/h]	40	121	17	11	47	39	29	57	33	3	16	5

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	181	99	121	25
Capacity of Entry and Bypass Lanes [veh/h]	1249	1299	1296	1134
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1229	1278	1276	1116
X, volume / capacity	0.14	0.08	0.09	0.02

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.51	0.25	0.31	7.70
95th-Percentile Queue Length [ft]	12.66	6.15	3.58	
Approach Delay [s/veh]	4.15	3.43	A	
Approach LOS	A	A	A	
Intersection Delay [s/veh]		3.65		
Intersection LOS	A			

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 4: 4 AM Developed 17-346

Intersection Level Of Service Report

 Intersection 4: Hayes at WerthControl Type:
Analysis Method:
Analysis Period:

Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
3.2

A

Intersection Setup

Name	Werth			Werth			Hayes St			Providence Dr		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | Werth | | | Werth | | | Hayes St | | | Providence Dr | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 1 | 0 | 2 | 0 | 0 | 7 | 2 | 45 | 12 | 19 | 26 | 1 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 |
| Growth Rate | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 1 | 0 | 2 | 0 | 0 | 7 | 2 | 48 | 12 | 19 | 27 | 1 |
| Peak Hour Factor | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 15 | 4 | 6 | 9 | 0 |
| Total Analysis Volume [veh/h] | 1 | 0 | 3 | 0 | 0 | 9 | 3 | 62 | 15 | 24 | 35 | 1 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	69			63			25			4		
Exiting Flow Rate [veh/h]	65			38			25			3		
Demand Flow Rate [veh/h]	1	0	2	0	0	7	2	48	12	19	27	1
Adjusted Demand Flow Rate [veh/h]	1	0	3	0	0	9	3	62	15	24	35	1

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.95	0.95	0.95	0.95
Entry Flow Rate [veh/h]	5	10	85	64
Capacity of Entry and Bypass Lanes [veh/h]	1287	1294	1345	1375
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1221	1228	1276	1304
X, volume / capacity	0.00	0.01	0.06	0.05

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.01	0.02	0.20	0.14
95th-Percentile Queue Length [ft]	0.25	0.55	3.01	
Approach Delay [s/veh]	2.97	2.99	3.32	A
Approach LOS	A	A	A	
Intersection Delay [s/veh]		A		
Intersection LOS				

Intersection Level Of Service Report Intersection 5: Site Access at Providence Dr.

Control Type:	Two-way stop	Delay (sec /veh):	9.3
Analysis Method:	HCM 6th Edition	Level Of Service:	A
Analysis Period:	15 minutes	Volume to Capacity (v/c):	0.012

Intersection Setup

Name	Providence Dr		Providence Dr		Site Access	
Approach	Northbound		Southbound		Eastbound	
Lane Configuration	$-$		$\stackrel{\rightharpoonup}{5}$		T	
Turning Movement	Left	Thru	Thru	Right	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00		25.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Crosswalk	Yes		Yes		Yes	

Volumes

Name						
Base Volume Input [veh/h]	0	47	46	0	0	0
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	0.54	0.54	0.54	0.54	0.54	0.54
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	3	0	0	30	8	1
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	3	47	46	30	8	1
Peak Hour Factor	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	1	15	15	10	3	0
Total Analysis Volume [veh/h]	4	60	59	38	10	1
Pedestrian Volume [ped/h]	0		0		0	

Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			No
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.01	0.00
d_M, Delay for Movement [s/veh]	7.40	0.00	0.00	0.00	9.30	8.70
Movement LOS	A	A	A	A	A	A
95th-Percentile Queue Length [veh]	0.13	0.13	0.00	0.00	0.04	0.04
95th-Percentile Queue Length [ft]	3.33	3.33	0.00	0.00	0.97	0.97
d_A, Approach Delay [s/veh]	0.46		0.00		9.25	
Approach LOS	A		A		A	
d_I, Intersection Delay [s/veh]	0.76					
Intersection LOS	A					

Turning Movement Volume: Summary

ID	Intersection Name	Northeastbound		Southwestbound		Northwestbound		Total Volume
		Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	1891	100	80	1086	46	54	3257

	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
		Left	Thru	Right										
3	Brutsher St at Hayes St	38	114	16	10	44	37	27	54	31	3	15	5	394

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
ID		Left	Thru	Right										
4	Hayes at Werth	1	0	2	0	0	7	2	48	12	19	27	1	119

ID	Intersection Name	Northbound		Southbound		Eastbound		Total Volume
		Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	3	47	46	30	8	1	135

Vistro File: J:\...\17-346 Newberg Ambulatory Surgery
Scenario 4 AM Developed 17-346
TIA.vistro
Report File: J:\...\17-346 Developed AM.pdf
Turning Movement Volume: Detail

ID	Intersection Name	Volume Type	Northeastbound		Southwestbound		Northwestbound		Total Volume
			Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	Final Base	1872	79	69	1075	41	50	3186
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	0	20	10	0	5	3	38
		Other	0	0	0	0	0	0	0
		Future Total	1891	100	80	1086	46	54	3257

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
3	Brutsher St at Hayes St	Final Base	38	113	16	10	44	37	27	50	31	3	14	5	388
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	3	0	0	1	0	4
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	38	114	16	10	44	37	27	54	31	3	15	5	394

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
4	Hayes at Werth	Final Base	1	0	2	0	0	7	2	45	12	19	26	1	115
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	3	0	0	1	0	4
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	1	0	2	0	0	7	2	48	12	19	27	1	119

ID	Intersection Name	Volume Type	Northbound		Southbound		Eastbound		Total Volume
			Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	Final Base	0	47	46	0	0	0	93
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	3	0	0	30	8	1	42
		Other	0	0	0	0	0	0	0
		Future Total	3	47	46	30	8	1	135

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Trip Generation summary

Added Trips

Zone ID: Name	Land Use variables	Code	Ind. Var.	Rate	Quantity	\% In	\% Out	Trips ln	Trips Out	Total Trips	$\%$ of Total Trips
7: Newberg Surgery Ctr	Med/Dental Office Bldg	$\begin{aligned} & \hline \text { ITE } \\ & 720 \end{aligned}$	ksf	2.390	17.500	79.00	21.00	33	9	42	100.00
					Added Trips Total			33	9	42	100.00

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Trip Distribution summary

Zone / Gate	Zone 7: Newberg Surgery Ctr			
	To Newberg Surgery Ctr:	From Newberg Surgery Ctr:		
	Share \%	Trips	Share \%	Trips
1: Gate	60.00	20	60.00	5
2: Gate	30.00	10	30.00	3
3: Gate	10.00	3	10.00	1
4: Gate	0.00	0	0.00	0
5: Gate	0.00	0	0.00	0
6: Gate	0.00	0	0.00	0
8: Gate	0.00	0	0.00	0
9: Gate	0.00	0	0.00	0
Total	$\mathbf{1 0 0 . 0 0}$	$\mathbf{3 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{9}$

Report Figure 1: Lane Configuration and Traffic Control

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2a: Traffic Volume - Base Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2c: Traffic Volume - Net New Site Trips

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2e: Traffic Volume - Future Total Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 3: Traffic Conditions

Hwy 99W at Providence Dr Brutsher St at Hayes St

Vistro File: J:I...|17-346 Newberg Ambulatory Surgery

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	SWB Left	0.731	12.0	B
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	SB Right		4.6	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	WB Thru		3.5	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.067	10.1	B

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. for all other control types, they are taken for the whole intersection.

Generated with PTV VISTRO
Version 5.00-00

17-346 Newberg Surg. Ctr TIA

Scenario 3: 3 PM Developed 17-346
Intersection Level Of Service Report Intersection 1: Hwy 99W at Providence Dr

Signalized
HCM 6 th Edition
15 minutes

Delay (sec / veh):	12.0
Level Of Service:	B
Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.731

0.731

Intersection Setup

Name	Hwy 99w		Hwy 99W		Providence Dr	
Approach	Northeastbound		Southwestbound		Northwestbound	
Lane Configuration					$T P$	
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	1	1	0	1	0
Pocket Length [ft]	100.00	75.00	100.00	100.00	150.00	100.00
Speed [mph]	45.00		45.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Curb Present	No		No		No	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Hwy 99W		Hwy 99W		Providence Dr	
Base Volume Input [veh/h]	1207	31	79	1789	78	96
Base Volume Adjustment Factor	1.0850	1.0850	1.0850	1.0850	1.0850	1.0850
Heavy Vehicles Percentage [\%]	3.27	3.27	3.27	3.27	3.27	3.27
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	10	5	0	26	14
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Right-Turn on Red Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	1323	44	92	1960	112	119
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	345	11	24	510	29	31
Total Analysis Volume [veh/h]	1378	46	96	2042	117	124
Presence of On-Street Parking	No	No	No	No	No	No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	0		0		0	
v_di, Inbound Pedestrian Volume crossing in	0		0		0	
v_co, Outbound Pedestrian Volume crossing	0		0		0	
v_ci, Inbound Pedestrian Volume crossing rii	0		0		0	
v_ab, Corner Pedestrian Volume [ped/h]	0		0		0	
Bicycle Volume [bicycles/h]	0		0		0	

17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 3: 3 PM Developed 17-346
Intersection Settings

Located in CBD	
Signal Coordination Group	
Cycle Length [s]	
Coordination Type	-
Actuation Type	Time of Day Pattern Coordinated
Offset [s]	Fully actuated
Offset Reference	0.0
Permissive Mode	LeadGreen
Lost time [s]	SingleBand

Phasing \& Timing

Control Type	Permissive	Permissive	Protected	Permissive	Permissive	Permissive
Signal group	8	0	7	4	5	0
Auxiliary Signal Groups						
Lead / Lag	-	-	Lead	-	Lead	-
Minimum Green [s]	5	0	5	5	5	0
Maximum Green [s]	30	0	30	30	30	0
Amber [s]	3.0	0.0	3.0	3.0	3.0	0.0
All red [s]	1.0	0.0	1.0	1.0	1.0	0.0
Split [s]	27	0	44	71	19	0
Vehicle Extension [s]	3.0	0.0	3.0	3.0	3.0	0.0
Walk [s]	5	0	0	5	5	0
Pedestrian Clearance [s]	10	0	0	10	10	0
Rest In Walk	No			No	No	
11, Start-Up Lost Time [s]	2.0	0.0	2.0	2.0	2.0	0.0
12, Clearance Lost Time [s]	2.0	0.0	2.0	2.0	2.0	0.0
Minimum Recall	No		No	No	No	
Maximum Recall	No		No	No	No	
Pedestrian Recall	No		No	No	No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	
Pedestrian Walk [s]	
Pedestrian Clearance [s]	

Version 5.00-00
Scenario 3: 3 PM Developed 17-346
Lane Group Calculations

Lane Group	C	R	L	C	L	R
C, Cycle Length [s]	90	90	90	90	90	90
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00
11_p, Permitted Start-Up Lost Time [s]	0.00	0.00	0.00	0.00	0.00	0.00
I2, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	61	61	7	72	10	10
g / C, Green / Cycle	0.68	0.68	0.08	0.80	0.11	0.11
(v / s)_i Volume / Saturation Flow Rate	0.43	0.03	0.06	0.64	0.07	0.09
s , saturation flow rate [veh/h]	3172	1416	1587	3172	1587	1416
c, Capacity [veh/h]	2152	961	122	2538	176	157
d1, Uniform Delay [s]	8.22	4.81	40.82	5.05	38.41	38.99
k, delay calibration	0.50	0.50	0.11	0.50	0.11	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	1.47	0.09	10.48	2.83	4.24	8.47
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00

Lane Group Results

X, volume / capacity	0.64	0.05	0.79	0.80	0.66	0.79
d, Delay for Lane Group [s/veh]	9.70	4.90	51.30	7.88	42.65	47.46
Lane Group LOS	A	A	D	D	A	D
Critical Lane Group	No	No	No	Yes	No	
50th-Percentile Queue Length [veh]	5.87	0.24	2.35	5.09	2.68	Yes
50th-Percentile Queue Length [ft]	146.70	5.92	58.78	127.16	67.02	75
95th-Percentile Queue Length [veh]	9.84	0.43	4.23	8.78	4.83	5.47
95th-Percentile Queue Length [ft]	246.02	10.66	105.80	219.62	120.64	136.38

Version 5.00-00
Scenario 3: 3 PM Developed 17-346
Movement, Approach, \& Intersection Results

d_M, Delay for Movement [s/veh]	9.70	4.90	51.30	7.88	42.65	47.46
Movement LOS	A	A	D	A	D	D
d_A, Approach Delay [s/veh]	9.54		9.83		45.13	
Approach LOS	A		A		D	
d_I, Intersection Delay [s/veh]	11.96					
Intersection LOS	B					
Intersection V/C	0.731					

Other Modes

g_Walk,mi, Effective Walk Time [s]	9.0	9.0	9.0
M_corner, Corner Circulation Area [ft²/ped]	0.00	0.00	0.00
M_CW, Crosswalk Circulation Area [ft²/ped	0.00	0.00	0.00
d_p, Pedestrian Delay [s]	36.45	36.45	36.45
I_p,int, Pedestrian LOS Score for Intersectiqn	3.516	3.366	2.045
Crosswalk LOS	D	C	
s_b, Saturation Flow Rate of the bicycle lan申	2000	2000	
c_b, Capacity of the bicycle lane [bicycles/h]	0	0	2000
d_b, Bicycle Delay [s]	45.00	45.00	0
I_b,int, Bicycle LOS Score for Intersection	5.307	5.896	45.00
Bicycle LOS	F	F	

Sequence

Ring 1	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	7	8	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Generated with PTV VISTRO
Version 5.00-00

17-346 Newberg Surg. Ctr TIA

Scenario 3: 3 PM Developed 17-346
Intersection Level Of Service Report Intersection 3: Brutsher St at Hayes St

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition

 15 minutesDelay (sec / veh):
Level Of Service:
4.6

A

Intersection Setup

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	$\stackrel{t}{4}$			$\stackrel{t}{4}$			$\stackrel{t}{4}$					
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Base Volume Input [veh/h]	52	67	12	21	99	140	44	30	42	14	78	30
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	2	0	0	5	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	53	68	12	21	100	141	44	32	42	14	84	30
Peak Hour Factor	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	14	18	3	6	27	38	12	9	11	4	23	8
Total Analysis Volume [veh/h]	57	73	13	23	108	152	47	34	45	15	90	32
Pedestrian Volume [ped/h]	0			0			0			0		

Generated with PTV VISTRO
17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 3: 3 PM Developed 17-346
Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	106			165			149			180		
Exiting Flow Rate [veh/h]	58			150			125			122		
Demand Flow Rate [veh/h]	53	68	12	21	100	141	44	32	42	14	84	30
Adjusted Demand Flow Rate [veh/h]	57	73	13	23	108	152	47	34	45	15	90	32

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	146	288	129	140
Capacity of Entry and Bypass Lanes [veh/h]	1239	1167	1186	1149
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1218	1147	1166	1129
X, volume / capacity	0.12	0.25	0.11	0.12

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.40	0.97	0.36	0.41
95th-Percentile Queue Length [ft]	9.95	24.37	9.07	10.33
Approach Delay [s/veh]	3.94	5.40	4.00	4.24
Approach LOS	A	A	A	A
Intersection Delay [s/veh]	4.61			
Intersection LOS	A			

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 3: 3 PM Developed 17-346

Intersection Level Of Service Report

 Intersection 4: Hayes at WerthControl Type: Analysis Method: Analysis Period:
Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
3.5

A

Intersection Setup

Name	Werth			Werth			Hayes St			Providence Dr		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	$\stackrel{H}{4}$			$\stackrel{H}{4}$			$\stackrel{t}{4}$			$\stackrel{H}{4}$		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Werth			Werth			Hayes St			Providence Dr		
Base Volume Input [veh/h]	10	0	7	2	0	3	17	30	9	11	105	6
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	2	0	0	5	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	10	0	7	2	0	3	17	32	9	11	111	6
Peak Hour Factor	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	3	0	2	1	0	1	5	10	3	3	35	2
Total Analysis Volume [veh/h]	13	0	9	3	0	4	22	41	11	14	141	8
Pedestrian Volume [ped/h]	0			0			0			0		

Generated with PTV VISTRO
Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	67			171			17			36		
Exiting Flow Rate [veh/h]	45			156			14			22		
Demand Flow Rate [veh/h]	10	0	7	2	0	3	17	32	9	11	111	6
Adjusted Demand Flow Rate [veh/h]	13	0	9	3	0	4	22	41	11	14	141	8

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	23	8	76	166
Capacity of Entry and Bypass Lanes [veh/h]	1289	1160	1356	1331
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1269	1142	1335	1311
X, volume / capacity	0.02	0.01	0.06	0.12

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.05	0.02	0.18	4.40
95th-Percentile Queue Length [ft]	1.32	0.46	10.63	
Approach Delay [s/veh]	2.97	3.20	A	A
Approach LOS	A	A		
Intersection Delay [s/veh]		A		
Intersection LOS	A			

Intersection Level Of Service Report

 Intersection 5: Site Access at Providence Dr.| Control Type: | Two-way stop | Delay $(\mathrm{sec} / \mathrm{veh}):$ | 10.1 |
| :---: | :---: | :---: | :---: |
| Analysis Method: | HCM 6 th Edition | Level Of Service: | B |
| Analysis Period: | 15 minutes | Volume to Capacity $(\mathrm{v} / \mathrm{c}):$ | 0.067 |

Intersection Setup

Name	Providence Dr		Providence Dr		Site Access	
Approach	Northbound		Southbound		Eastbound	
Lane Configuration	4		F		T	
Turning Movement	Left	Thru	Thru	Right	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00		25.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Providence Dr		Providence Dr		Site Access	
Base Volume Input [veh/h]	0	40	122	0	0	0
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.59	1.59	1.59	1.59	1.59	1.59
Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	2	0	0	15	40	5
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	2	40	123	15	40	5
Peak Hour Factor	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	1	13	39	5	13	2
Total Analysis Volume [veh/h]	3	51	156	19	51	6
Pedestrian Volume [ped/h]		0		0		

Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			No
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.07	0.01
d_M, Delay for Movement [s/veh]	7.57	0.00	0.00	0.00	10.07	9.46
Movement LOS	A	A	A	A	B	A
95th-Percentile Queue Length [veh]	0.12	0.12	0.00	0.00	0.24	0.24
95th-Percentile Queue Length [ft]	3.00	3.00	0.00	0.00	5.93	5.93
d_A, Approach Delay [s/veh]	0.42		0.00		10.01	
Approach LOS	A		A		B	
d_I, Intersection Delay [s/veh]	2.07					
Intersection LOS	B					

Vistro File: J:I...|17-346 Newberg Ambulatory Surgery

Turning Movement Volume: Summary

ID	Intersection Name	Northeastbound		Southwestbound		Northwestbound		Total Volume
		Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	1323	44	92	1960	112	119	3650

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
ID		Left	Thru	Right										
3	Brutsher St at Hayes St	53	68	12	21	100	141	44	32	42	14	84	30	641

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
ID		Left	Thru	Right										
4	Hayes at Werth	10	0	7	2	0	3	17	32	9	11	111	6	208

ID	Intersection Name	Northbound		Southbound		Eastbound		Total Volume
		Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	2	40	123	15	40	5	225

Turning Movement Volume: Detail

ID	Intersection Name	Volume Type	Northeastbound		Southwestbound		Northwestbound		Total Volume
			Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	Final Base	1310	34	86	1941	85	104	3560
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	0	10	5	0	26	14	55
		Other	0	0	0	0	0	0	0
		Future Total	1323	44	92	1960	112	119	3650

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
3	Brutsher St at Hayes St	Final Base	52	67	12	21	99	140	44	30	42	14	78	30	629
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	2	0	0	5	0	7
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	53	68	12	21	100	141	44	32	42	14	84	30	641

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
4	Hayes at Werth	Final Base	10	0	7	2	0	3	17	30	9	11	105	6	200
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	2	0	0	5	0	7
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	10	0	7	2	0	3	17	32	9	11	111	6	208

ID	Intersection Name	Volume Type	Northbound		Southbound		Eastbound		Total Volume
			Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	Final Base	0	40	122	0	0	0	162
		Growth Rate	1.01	1.01	1.01	1.01	1.01	1.01	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	2	0	0	15	40	5	62
		Other	0	0	0	0	0	0	0
		Future Total	2	40	123	15	40	5	225

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Trip Generation summary

Added Trips

Zone ID: Name	Land Use variables	Code	Ind. Var.	Rate	Quantity	\% In	\% Out	Trips ln	Trips Out	Total Trips	$\%$ of Total Trips
7: Newberg Sugery Ctr	Med/Dental Office	$\begin{aligned} & \hline \text { ITE } \\ & 720 \end{aligned}$	ksf	3.570	17.500	28.00	72.00	17	45	62	100.00
					Added Trips Total			17	45	62	100.00

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Trip Distribution summary

Zone / Gate	Zone 7: Newberg Sugery Ctr			
	To Newberg Sugery Ctr:	From Newberg Sugery Ctr:		
	Share \%	Trips	Share \%	Trips
1: Gate	60.00	10	60.00	26
2: Gate	30.00	5	30.00	14
3: Gate	10.00	2	10.00	5
4: Gate	0.00	0	0.00	0
5: Gate	0.00	0	0.00	0
6: Gate	0.00	0	0.00	0
8: Gate	0.00	0	0.00	0
9: Gate	0.00	0	0.00	0
Total	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{4 5}$

Report Figure 1: Lane Configuration and Traffic Control

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2a: Traffic Volume - Base Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2c: Traffic Volume - Net New Site Trips

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2e: Traffic Volume - Future Total Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 3: Traffic Conditions

Hwy 99W at Providence Dr Brutsher St at Hayes St

Vistro File: J:I...|17-346 Newberg Ambulatory Surgery

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	NWB Right	0.758	7.7	A
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	NB Thru		4.0	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	EB Thru		3.3	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.012	9.4	A

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. for all other control types, they are taken for the whole intersection.

Generated with PTV VISTRO
Version 5.00-00

Intersection Level Of Service Report Intersection 1: Hwy 99W at Providence Dr

Control Type: Analysis Method: Analysis Period:
Signalized HCM 6th Edition 15 minutes
Delay (sec / veh):
7.7
Level Of Service:
Volume to Capacity (v/c):
0.758

Intersection Setup

Name	Hwy 99W		Hwy 99W		Providence Dr	
Approach	Northeastbound		Southwestbound		Northwestbound	
Lane Configuration						
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	1	1	0	1	0
Pocket Length [ft]	100.00	75.00	100.00	100.00	150.00	100.00
Speed [mph]	45.00		45.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Curb Present	No		No		No	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Hwy 99W		Hwy 99W		Providence Dr	
Base Volume Input [veh/h]	1725	73	64	991	38	46
Base Volume Adjustment Factor	1.0850	1.0850	1.0850	1.0850	1.0850	1.0850
Heavy Vehicles Percentage [\%]	4.50	4.50	4.50	4.50	4.50	4.50
Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	20	10	0	5	3
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Right-Turn on Red Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	2172	112	90	1247	53	61
Peak Hour Factor	0.9700	0.9700	0.9700	0.9700	0.9700	0.9700
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	560	29	23	321	14	16
Total Analysis Volume [veh/h]	2239	115	93	1286	55	63
Presence of On-Street Parking	No	No	No	No	No	No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	0		0		0	
v_di, Inbound Pedestrian Volume crossing m	0		0		0	
v_co, Outbound Pedestrian Volume crossin $\$$	0		0		0	
v_ci, Inbound Pedestrian Volume crossing mi	0		0		0	
v_ab, Corner Pedestrian Volume [ped/h]	0		0		0	
Bicycle Volume [bicycles/h]	0		0		0	

17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 6: 6 AM Future 17-346
Intersection Settings

Located in CBD	Yes
Signal Coordination Group	-
Cycle Length [s]	120
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fully actuated
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Phasing \& Timing

Control Type	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive
Signal group	8	0	0	4	5	0
Auxiliary Signal Groups						
Lead / Lag	-	-			Lead	
Minimum Green [s]	5	0	0	5	5	0
Maximum Green [s]	30	0	0	30	30	0
Amber [s]	3.0	0.0	0.0	3.0	3.0	0.0
All red [s]	1.0	0.0	0.0	1.0	1.0	0.0
Split [s]	19	0	0	19	101	0
Vehicle Extension [s]	3.0	0.0	0.0	3.0	3.0	0.0
Walk [s]	5	0	0	5	5	0
Pedestrian Clearance [s]	10	0	0	10	10	0
Rest In Walk	No			No	No	
I1, Start-Up Lost Time [s]	2.0	0.0	0.0	2.0	2.0	0.0
12, Clearance Lost Time [s]	2.0	0.0	0.0	2.0	2.0	0.0
Minimum Recall	No			No	No	
Maximum Recall	No			No	No	
Pedestrian Recall	No			No	No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	0
Pedestrian Walk [s]	0
Pedestrian Clearance [s]	0

Lane Group Calculations

Lane Group	C	R	L	C	L	R
C, Cycle Length [s]	120	120	120	120	120	120
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00
I1_p, Permitted Start-Up Lost Time [s]	0.00	0.00	2.00	0.00	0.00	0.00
I2, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	105	105	105	105	7	7
g / C, Green / Cycle	0.87	0.87	0.87	0.87	0.06	0.06
(v / s)_i Volume / Saturation Flow Rate	0.71	0.08	0.62	0.41	0.04	0.04
s, saturation flow rate [veh/h]	3140	1402	150	3140	1571	1402
c, Capacity [veh/h]	2736	1221	139	2736	97	87
d1, Uniform Delay [s]	3.46	1.08	33.04	1.68	54.66	55.23
k, delay calibration	0.50	0.50	0.50	0.50	0.11	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	2.86	0.15	22.61	0.58	5.05	10.83
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00
Rp , platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00

Lane Group Results

X, volume / capacity	0.82	0.09	0.67	0.47	0.56	0.72
d, Delay for Lane Group [s/veh]	6.33	1.24	55.65	2.26	59.71	66.05
Lane Group LOS	A	A	E	A	E	N
Critical Lane Group	Yes	No	No	No	No	Yes
50th-Percentile Queue Length [veh]	3.91	0.14	3.64	1.01	1.77	2.15
50th-Percentile Queue Length [ft]	97.75	3.56	91.04	25.22	44.16	53.69
95th-Percentile Queue Length [veh]	7.04	0.26	6.55	1.82	3.18	3.87
95th-Percentile Queue Length [ft]	175.95	6.42	163.87	45.40	79.49	96.65

Version 5.00-00
Scenario 6: 6 AM Future 17-346
Movement, Approach, \& Intersection Results

d_M, Delay for Movement [s/veh]	6.33	1.24	55.65	2.26	59.71	66.05
Movement LOS	A	A	E	A	E	E
d_A, Approach Delay [s/veh]	6.08		5.87		63.09	
Approach LOS	A		A		E	
d_I, Intersection Delay [s/veh]	7.75					
Intersection LOS	A					
Intersection V/C	0.758					

Other Modes

g_Walk,mi, Effective Walk Time [s]	9.0	9.0	9.0
M_corner, Corner Circulation Area [ft ${ }^{2} / \mathrm{ped}$]	0.00	0.00	0.00
M_CW, Crosswalk Circulation Area [ft ${ }^{2} / \mathrm{ped}$	0.00	0.00	0.00
d_p, Pedestrian Delay [s]	51.34	51.34	51.34
I_p,int, Pedestrian LOS Score for Intersection	3.474	3.392	2.176
Crosswalk LOS	C	C	B
s_b, Saturation Flow Rate of the bicycle land	2000	2000	2000
c_b, Capacity of the bicycle lane [bicycles/h]	0	0	0
d_b, Bicycle Delay [s]	60.00	60.00	60.00
I_b,int, Bicycle LOS Score for Intersection	6.074	5.270	4.132
Bicycle LOS	F	F	D

Sequence

Ring 1	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 6: 6 AM Future 17-346
Intersection Level Of Service Report Intersection 3: Brutsher St at Hayes St

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
4.0

A

Intersection Setup

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | Brutscher St | | | Brutscher St | | | Hayes St | | | Hayes St | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 38 | 113 | 16 | 10 | 44 | 37 | 27 | 50 | 31 | 3 | 14 | 5 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 |
| Growth Rate | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 44 | 130 | 18 | 12 | 51 | 43 | 31 | 60 | 36 | 3 | 17 | 6 |
| Peak Hour Factor | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 | 0.9400 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 12 | 35 | 5 | 3 | 14 | 11 | 8 | 16 | 10 | 1 | 5 | 2 |
| Total Analysis Volume [veh/h] | 47 | 138 | 19 | 13 | 54 | 46 | 33 | 64 | 38 | 3 | 18 | 6 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	112			69			71			221		
Exiting Flow Rate [veh/h]	78			66			58			174		
Demand Flow Rate [veh/h]	44	130	18	12	51	43	31	60	36	3	17	6
Adjusted Demand Flow Rate [veh/h]	47	138	19	13	54	46	33	64	38	3	18	6

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	208	115	138	28
Capacity of Entry and Bypass Lanes [veh/h]	1232	1287	1284	1101
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1213	1266	1264	1084
X, volume / capacity	0.17	0.09	0.11	0.02

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.60	0.29	0.36	0.08
95th-Percentile Queue Length [ft]	15.11	7.34	1.92	
Approach Delay [s/veh]	4.41	3.57	3.95	
Approach LOS	A	A	A	A
Intersection Delay [s/veh]		A		
Intersection LOS				

	Intersection Level Of Service Report Intersection 4: Hayes at Werth				Delay (sec / veh):	3.3
Control Type:	Roundabout		Level Of Service:			

Intersection Setup

Name	Werth			Werth			Hayes St			Providence Dr		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | Werth | | | Werth | | | Hayes St | | | Providence Dr | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 1 | 0 | 2 | 0 | 0 | 7 | 2 | 45 | 12 | 19 | 26 | 1 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 |
| Growth Rate | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 1 | 0 | 2 | 0 | 0 | 8 | 2 | 55 | 14 | 22 | 31 | 1 |
| Peak Hour Factor | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 | 0.7800 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 0 | 1 | 0 | 0 | 3 | 1 | 18 | 4 | 7 | 10 | 0 |
| Total Analysis Volume [veh/h] | 1 | 0 | 3 | 0 | 0 | 10 | 3 | 71 | 18 | 28 | 40 | 1 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	78			73			30			4		
Exiting Flow Rate [veh/h]	75			43			30			3		
Demand Flow Rate [veh/h]	1	0	2	0	0	8	2	55	14	22	31	1
Adjusted Demand Flow Rate [veh/h]	1	0	3	0	0	10	3	71	18	28	40	1

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.95	0.95	0.95	0.95
Entry Flow Rate [veh/h]	5	11	97	73
Capacity of Entry and Bypass Lanes [veh/h]	1275	1282	1340	1375
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1210	1216	1271	1304
X, volume / capacity	0.00	0.01	0.07	0.05

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.01	0.02	0.23	0.17
95th-Percentile Queue Length [ft]	0.25	0.62	5.85	
Approach Delay [s/veh]	3.00	3.03	3.42	A
Approach LOS	A	A	A	
Intersection Delay [s/veh]		A		
Intersection LOS				

Intersection Level Of Service Report Intersection 5: Site Access at Providence Dr.

Control Type:	Two-way stop	Delay $(\mathrm{sec} / \mathrm{veh}):$	9.4
Analysis Method:	HCM 6th Edition	Level Of Service:	A
Analysis Period:	15 minutes	Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.012

Intersection Setup

Name	Providence Dr		Providence Dr		Site Access	
Approach	Northbound		Southbound		Eastbound	
Lane Configuration	\uparrow		$\stackrel{\rightharpoonup}{4}$		$\stackrel{T}{4}$	
Turning Movement	Left	Thru	Thru	Right	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00		25.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Crosswalk	Yes		Yes		Yes	

Volumes

Name						
Base Volume Input [veh/h]	0	47	46	0	0	0
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	0.54	0.54	0.54	0.54	0.54	0.54
Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	3	0	0	30	8	1
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	3	55	53	30	8	1
Peak Hour Factor	0.7800	0.7800	0.7800	0.7800	0.7800	0.7800
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	1	18	17	10	3	0
Total Analysis Volume [veh/h]	4	71	68	38	10	1
Pedestrian Volume [ped/h]	0		0		0	

Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			No
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			No
Number of Storage Spaces in Median	0	0	0

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.01	0.00
d_M, Delay for Movement [s/veh]	7.42	0.00	0.00	0.00	9.42	8.75
Movement LOS	A	A	A	A	A	A
95th-Percentile Queue Length [veh]	0.16	0.16	0.00	0.00	0.04	0.04
95th-Percentile Queue Length [ft]	3.96	3.96	0.00	0.00	1.00	1.00
d_A, Approach Delay [s/veh]	0.40		0.00		9.36	
Approach LOS	A		A		A	
d_l, Intersection Delay [s/veh]	0.69					
Intersection LOS	A					

Turning Movement Volume: Summary

ID	Intersection Name	Northeastbound		Southwestbound		Northwestbound		Total Volume
		Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	2172	112	90	1247	53	61	3735

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
		Left	Thru	Right										
3	Brutsher St at Hayes St	44	130	18	12	51	43	31	60	36	3	17	6	451

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
ID		Left	Thru	Right										
4	Hayes at Werth	1	0	2	0	0	8	2	55	14	22	31	1	136

ID	Intersection Name	Northbound		Southbound		Eastbound		Total Volume
		Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	3	55	53	30	8	1	150

Turning Movement Volume: Detail

ID	Intersection Name	Volume Type	Northeastbound		Southwestbound		Northwestbound		Total Volume
			Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	Final Base	1872	79	69	1075	41	50	3186
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	0	20	10	0	5	3	38
		Other	0	0	0	0	0	0	0
		Future Total	2172	112	90	1247	53	61	3735

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
3	Brutsher St at Hayes St	Final Base	38	113	16	10	44	37	27	50	31	3	14	5	388
		Growth Rate	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	3	0	0	1	0	4
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	44	130	18	12	51	43	31	60	36	3	17	6	451

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
4	Hayes at Werth	Final Base	1	0	2	0	0	7	2	45	12	19	26	1	115
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	3	0	0	1	0	4
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	1	0	2	0	0	8	2	55	14	22	31	1	136

ID	Intersection Name	Volume Type	Northbound		Southbound		Eastbound		Total Volume
			Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	Final Base	0	47	46	0	0	0	93
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	3	0	0	30	8	1	42
		Other	0	0	0	0	0	0	0
		Future Total	3	55	53	30	8	1	150

Vistro File: J:I...|17-346 Newberg Ambulatory Surgery

Trip Generation summary

Added Trips

Zone ID: Name	Land Use variables	Code	Ind. Var.	Rate	Quantity	\% In	\% Out	Trips ln	Trips Out	Total Trips	$\%$ of Total Trips
7: Newberg Surgery Ctr	Med/Dental Office Bldg	$\begin{aligned} & \hline \text { ITE } \\ & 720 \end{aligned}$	ksf	2.390	17.500	79.00	21.00	33	9	42	100.00
					Added Trips Total			33	9	42	100.00

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Trip Distribution summary

Zone / Gate	Zone 7: Newberg Surgery Ctr			
	To Newberg Surgery Ctr:	From Newberg Surgery Ctr:		
	Share \%	Trips	Share \%	Trips
1: Gate	60.00	20	60.00	5
2: Gate	30.00	10	30.00	3
3: Gate	10.00	3	10.00	1
4: Gate	0.00	0	0.00	0
5: Gate	0.00	0	0.00	0
6: Gate	0.00	0	0.00	0
8: Gate	0.00	0	0.00	0
9: Gate	0.00	0	0.00	0
Total	$\mathbf{1 0 0 . 0 0}$	$\mathbf{3 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{9}$

Report Figure 1: Lane Configuration and Traffic Control

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2a: Traffic Volume - Base Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2c: Traffic Volume - Net New Site Trips

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2e: Traffic Volume - Future Total Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 3: Traffic Conditions

Hwy 99W at Providence Dr Brutsher St at Hayes St

Vistro File: J:I...117-346 Newberg Ambulatory Surgery
Report File: J:I....117-346 Future 2032 PM.pdf

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	Hwy 99W at Providence Dr	Signalized	HCM 6th Edition	SWB Left	0.839	17.6	B
3	Brutsher St at Hayes St	Roundabout	HCM 6th Edition	SB Right		5.0	A
4	Hayes at Werth	Roundabout	HCM 6th Edition	WB Thru		3.6	A
5	Site Access at Providence Dr.	Two-way stop	HCM 6th Edition	EB Left	0.069	10.3	B

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. for all other control types, they are taken for the whole intersection.

Generated with PTV VISTRO
Version 5.00-00

Intersection Level Of Service Report Intersection 1: Hwy 99W at Providence Dr

Control Type: Analysis Method: Analysis Period:
Signalized HCM 6th Edition 15 minutes
Delay (sec / veh):
17.6
Level Of Service
Volume to Capacity (v/c):

Intersection Setup

Name	Hwy 99W		Hwy 99W		Providence Dr	
Approach	Northeastbound		Southwestbound		Northwestbound	
Lane Configuration						
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	1	1	0	1	0
Pocket Length [ft]	100.00	75.00	100.00	100.00	150.00	100.00
Speed [mph]	45.00		45.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Curb Present	No		No		No	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	Hwy 99W		Hwy 99W		Providence Dr	
Base Volume Input [veh/h]	1207	31	79	1789	78	96
Base Volume Adjustment Factor	1.0850	1.0850	1.0850	1.0850	1.0850	1.0850
Heavy Vehicles Percentage [\%]	3.27	3.27	3.27	3.27	3.27	3.27
Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	10	5	0	26	14
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Right-Turn on Red Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	1520	49	105	2252	125	135
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	396	13	27	586	33	35
Total Analysis Volume [veh/h]	1583	51	109	2346	130	141
Presence of On-Street Parking	No	No	No	No	No	No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	0		0		0	
v_di, Inbound Pedestrian Volume crossing m	0		0		0	
v_co, Outbound Pedestrian Volume crossin $\$$	0		0		0	
v_ci, Inbound Pedestrian Volume crossing mi	0		0		0	
v_ab, Corner Pedestrian Volume [ped/h]	0		0		0	
Bicycle Volume [bicycles/h]	0		0		0	

17-346 Newberg Surg. Ctr TIA
Version 5.00-00
Scenario 5: 5 PM Future 17-346
Intersection Settings

Located in CBD	Yes
Signal Coordination Group	-
Cycle Length [s]	90
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fully actuated
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Phasing \& Timing

Control Type	Permissive	Permissive	Protected	Permissive	Permissive	Permissive
Signal group	8	0	7	4	5	0
Auxiliary Signal Groups						
Lead / Lag	-	-	Lead		Lead	
Minimum Green [s]	5	0	5	5	5	0
Maximum Green [s]	30	0	30	30	30	0
Amber [s]	3.0	0.0	3.0	3.0	3.0	0.0
All red [s]	1.0	0.0	1.0	1.0	1.0	0.0
Split [s]	27	0	44	71	19	0
Vehicle Extension [s]	3.0	0.0	3.0	3.0	3.0	0.0
Walk [s]	5	0	0	5	5	0
Pedestrian Clearance [s]	10	0	0	10	10	0
Rest In Walk	No			No	No	
I1, Start-Up Lost Time [s]	2.0	0.0	2.0	2.0	2.0	0.0
2, Clearance Lost Time [s]	2.0	0.0	2.0	2.0	2.0	0.0
Minimum Recall	No		No	No	No	
Maximum Recall	No		No	No	No	
Pedestrian Recall	No		No	No	No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	0
Pedestrian Walk [s]	0
Pedestrian Clearance [s]	0

Version 5.00-00
Scenario 5: 5 PM Future 17-346
Lane Group Calculations

Lane Group	C	R	L	C	L	R
C, Cycle Length [s]	90	90	90	90	90	90
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00
11_p, Permitted Start-Up Lost Time [s]	0.00	0.00	0.00	0.00	0.00	0.00
I2, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	59	59	8	71	11	11
g / C, Green / Cycle	0.66	0.66	0.09	0.79	0.12	0.12
(v / s)_i Volume / Saturation Flow Rate	0.50	0.04	0.07	0.74	0.08	0.10
s , saturation flow rate [veh/h]	3172	1416	1587	3172	1587	1416
c, Capacity [veh/h]	2084	930	138	2500	195	174
d1, Uniform Delay [s]	10.57	5.49	40.31	7.75	37.73	38.47
k, delay calibration	0.50	0.50	0.11	0.50	0.11	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	2.66	0.11	9.70	8.40	3.90	8.69
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00

Lane Group Results

X, volume / capacity	0.76	0.05	0.79	0.94	0.67	0.81
d, Delay for Lane Group [s/veh]	13.23	5.60	50.01	16.15	41.63	47.16
Lane Group LOS	B	A	D	D	D	D
Critical Lane Group	No	No	No	Yes	No	
50th-Percentile Queue Length [veh]	8.66	0.29	2.63	10.67	2.94	3.44
50th-Percentile Queue Length [ft]	216.56	7.33	65.69	266.81	73.54	85.99
95th-Percentile Queue Length [veh]	13.49	0.53	4.73	16.03	5.30	6.19
95th-Percentile Queue Length [ft]	337.24	13.19	118.25	400.75	132.38	154.78

Version 5.00-00
Scenario 5: 5 PM Future 17-346
Movement, Approach, \& Intersection Results

d_M, Delay for Movement [s/veh]	13.23	5.60	50.01	16.15	41.63	47.16
Movement LOS	B	A	D	B	D	D
d_A, Approach Delay [s/veh]	13.00		17.65	44.51		
Approach LOS	B	B	D			
d_I, Intersection Delay [s/veh]	17.58					
Intersection LOS	0.839					
Intersection V/C						

Other Modes

g_Walk,mi, Effective Walk Time [s]	9.0	9.0	9.0
M_corner, Corner Circulation Area [ft²/ped]	0.00	0.00	0.00
M_CW, Crosswalk Circulation Area [ft²/ped	0.00	0.00	0.00
d_p, Pedestrian Delay [s]	36.45	36.45	36.45
I_p,int, Pedestrian LOS Score for Intersection	3.688	3.524	2.058
Crosswalk LOS	D	D	B
s_b, Saturation Flow Rate of the bicycle lan	2000	2000	2000
c_b, Capacity of the bicycle lane [bicycles/h]	0	0	0
d_b, Bicycle Delay [s]	45.00	45.00	45.00
I_b,int, Bicycle LOS Score for Intersection	5.480	6.158	4.132
Bicycle LOS	F	F	D

Sequence

Ring 1	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	7	8	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Generated with PTV VISTRO
Version 5.00-00
17-346 Newberg Surg. Ctr TIA
Scenario 5: 5 PM Future 17-346
Intersection Level Of Service Report Intersection 3: Brutsher St at Hayes St

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition 15 minutes

Delay (sec / veh):
Level Of Service:
5.0

A

Intersection Setup

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	Brutscher St			Brutscher St			Hayes St			Hayes St		
Base Volume Input [veh/h]	52	67	12	21	99	140	44	30	42	14	78	30
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	2	0	0	5	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	60	78	14	24	115	162	51	37	49	16	95	35
Peak Hour Factor	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300	0.9300
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	16	21	4	6	31	44	14	10	13	4	26	9
Total Analysis Volume [veh/h]	65	84	15	26	124	174	55	40	53	17	102	38
Pedestrian Volume [ped/h]		0			0			0			0	

Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	123			187			170			208		
Exiting Flow Rate [veh/h]	67			170			143			141		
Demand Flow Rate [veh/h]	60	78	14	24	115	162	51	37	49	16	95	35
Adjusted Demand Flow Rate [veh/h]	65	84	15	26	124	174	55	40	53	17	102	38

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	167	330	151	160
Capacity of Entry and Bypass Lanes [veh/h]	1218	1141	1161	1117
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1197	1121	1141	1098
X, volume / capacity	0.14	0.29	0.13	0.14

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.47	1.21	0.45	11.15
95th-Percentile Queue Length [ft]	11.87	30.15	4.28	
Approach Delay [s/veh]	4.17	5.96	A	A
Approach LOS	A	A		
Intersection Delay [s/veh]		A		
Intersection LOS	A			

Control Type: Analysis Method: Analysis Period:

Roundabout HCM 6th Edition

15 minutes

Intersection Level Of Service Report Intersection 4: Hayes at Werth

Delay (sec / veh):
Level Of Service:
3.6

A

Intersection Setup

Name	Werth			Werth			Hayes St			Providence Dr		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00			25.00			25.00			25.00		
Grade [\%]	0.00			0.00			0.00			0.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | Werth | | | Werth | | | Hayes St | | | Providence Dr | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 10 | 0 | 7 | 2 | 0 | 3 | 17 | 30 | 9 | 11 | 105 | 6 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 |
| Growth Rate | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 5 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 12 | 0 | 8 | 2 | 0 | 3 | 20 | 37 | 10 | 13 | 127 | 7 |
| Peak Hour Factor | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | 0.7900 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 4 | 0 | 3 | 1 | 0 | 1 | 6 | 12 | 3 | 4 | 40 | 2 |
| Total Analysis Volume [veh/h] | 15 | 0 | 10 | 3 | 0 | 4 | 25 | 47 | 13 | 16 | 161 | 9 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Version 5.00-00

Intersection Settings

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	76			195			19			41		
Exiting Flow Rate [veh/h]	51			179			16			25		
Demand Flow Rate [veh/h]	12	0	8	2	0	3	20	37	10	13	127	7
Adjusted Demand Flow Rate [veh/h]	15	0	10	3	0	4	25	47	13	16	161	9

Lanes

Overwrite Calculated Critical Headway	No	No	No	No
User-Defined Critical Headway [s]	4.00	4.00	4.00	4.00
Overwrite Calculated Follow-Up Time	No	No	No	No
User-Defined Follow-Up Time [s]	3.00	3.00	3.00	3.00
A (intercept)	1380.00	1380.00	1380.00	1380.00
B (coefficient)	0.00102	0.00102	0.00102	0.00102
HV Adjustment Factor	0.98	0.98	0.98	0.98
Entry Flow Rate [veh/h]	26	8	87	189
Capacity of Entry and Bypass Lanes [veh/h]	1277	1132	1354	1324
Pedestrian Impedance	1.00	1.00	1.00	1.00
Capacity per Entry Lane [veh/h]	1257	1114	1332	1304
X, volume / capacity	0.02	0.01	0.06	0.14

Movement, Approach, \& Intersection Results

Lane LOS	A	A	A	A
95th-Percentile Queue Length [veh]	0.06	0.02	0.20	0.50
95th-Percentile Queue Length [ft]	1.52	0.47	3.11	
Approach Delay [s/veh]	3.02	3.29	3.21	A
Approach LOS	A	A	A	
Intersection Delay [s/veh]		A		
Intersection LOS				

Intersection Level Of Service Report Intersection 5: Site Access at Providence Dr.

Control Type:	Two-way stop	Delay (sec /veh):	10.3
Analysis Method:	HCM 6th Edition	Level Of Service:	B
Analysis Period:	15 minutes	Volume to Capacity (v/c):	0.069

Intersection Setup

Name	Providence Dr		Providence Dr		Site Access	
Approach	Northbound		Southbound		Eastbound	
Lane Configuration	\uparrow		$\stackrel{\rightharpoonup}{4}$		$\stackrel{T}{4}$	
Turning Movement	Left	Thru	Thru	Right	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00
Speed [mph]	25.00		25.00		25.00	
Grade [\%]	0.00		0.00		0.00	
Crosswalk	Yes		Yes		Yes	

Volumes

Name						
Base Volume Input [veh/h]	0	40	122	0	0	0
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	1.59	1.59	1.59	1.59	1.59	1.59
Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	2	0	0	15	40	5
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	2	46	142	15	40	5
Peak Hour Factor	0.7900	0.7900	0.7900	0.7900	0.7900	0.7900
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	1	15	45	5	13	2
Total Analysis Volume [veh/h]	3	58	180	19	51	6
Pedestrian Volume [ped/h]	0		0		0	

Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			No
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.07	0.01
d_M, Delay for Movement [s/veh]	7.62	0.00	0.00	0.00	10.30	9.62
Movement LOS	A	A	A	A	B	A
95th-Percentile Queue Length [veh]	0.14	0.14	0.00	0.00	0.25	0.25
95th-Percentile Queue Length [ft]	3.48	3.48	0.00	0.00	6.19	6.19
d_A, Approach Delay [s/veh]	0.37		0.00		10.23	
Approach LOS	A		A		B	
d_I, Intersection Delay [s/veh]	1.91					
Intersection LOS	B					

Turning Movement Volume: Summary

ID	Intersection Name	Northeastbound		Southwestbound		Northwestbound		Total Volume
		Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	1520	49	105	2252	125	135	4186

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
ID		Left	Thru	Right										
3	Brutsher St at Hayes St	60	78	14	24	115	162	51	37	49	16	95	35	736

ID	Intersection Name	Northbound			Southbound			Eastbound			Westbound			Total Volume
ID		Left	Thru	Right										
4	Hayes at Werth	12	0	8	2	0	3	20	37	10	13	127	7	239

ID	Intersection Name	Northbound			Southbound		Eastbound		Total Volume
		Left	Thru	Thru	Right	Left	Right		
5	Site Access at Providence Dr.	2	46	142	15	40	5	250	

Turning Movement Volume: Detail

ID	Intersection Name	Volume Type	Northeastbound		Southwestbound		Northwestbound		Total Volume
			Thru	Right	Left	Thru	Left	Right	
1	Hwy 99W at Providence Dr	Final Base	1310	34	86	1941	85	104	3560
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	0	10	5	0	26	14	55
		Other	0	0	0	0	0	0	0
		Future Total	1520	49	105	2252	125	135	4186

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
3	Brutsher St at Hayes St	Final Base	52	67	12	21	99	140	44	30	42	14	78	30	629
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	2	0	0	5	0	7
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	60	78	14	24	115	162	51	37	49	16	95	35	736

ID	Intersection Name	Volume Type	Northbound			Southbound			Eastbound			Westbound			Total Volume
			Left	Thru	Right										
4	Hayes at Werth	Final Base	10	0	7	2	0	3	17	30	9	11	105	6	200
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0	0	0	0	0	0	0
		Net New Trips	0	0	0	0	0	0	0	2	0	0	5	0	7
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0
		Future Total	12	0	8	2	0	3	20	37	10	13	127	7	239

ID	Intersection Name	Volume Type	Northbound		Southbound		Eastbound		Total Volume
			Left	Thru	Thru	Right	Left	Right	
5	Site Access at Providence Dr.	Final Base	0	40	122	0	0	0	162
		Growth Rate	1.16	1.16	1.16	1.16	1.16	1.16	-
		In Process	0	0	0	0	0	0	0
		Net New Trips	2	0	0	15	40	5	62
		Other	0	0	0	0	0	0	0
		Future Total	2	46	142	15	40	5	250

Vistro File: J:I...|17-346 Newberg Ambulatory Surgery

Trip Generation summary

Added Trips

Zone ID: Name	Land Use variables	Code	Ind. Var.	Rate	Quantity	\% In	\% Out	Trips ln	Trips Out	Total Trips	$\%$ of Total Trips
7: Newberg Sugery Ctr	Med/Dental Office	$\begin{aligned} & \hline \text { ITE } \\ & 720 \end{aligned}$	ksf	3.570	17.500	28.00	72.00	17	45	62	100.00
					Added Trips Total			17	45	62	100.00

Vistro File: J:I...117-346 Newberg Ambulatory Surgery

Trip Distribution summary

Zone / Gate	Zone 7: Newberg Sugery Ctr			
	To Newberg Sugery Ctr:	From Newberg Sugery Ctr:		
	Share \%	Trips	Share \%	Trips
1: Gate	60.00	10	60.00	26
2: Gate	30.00	5	30.00	14
3: Gate	10.00	2	10.00	5
4: Gate	0.00	0	0.00	0
5: Gate	0.00	0	0.00	0
6: Gate	0.00	0	0.00	0
8: Gate	0.00	0	0.00	0
9: Gate	0.00	0	0.00	0
Total	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{4 5}$

Report Figure 1: Lane Configuration and Traffic Control

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2a: Traffic Volume - Base Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2c: Traffic Volume - Net New Site Trips

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 2e: Traffic Volume - Future Total Volume

Hwy 99W at Providence Dr Brutsher St at Hayes St

Report Figure 3: Traffic Conditions

Hwy 99W at Providence Dr Brutsher St at Hayes St

Appendix F
 Year 2020 Background with Reassigned Traffic Conditions Level of Service Worksheets

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	\%		\dagger		\%	$\stackrel{ }{ }$		\%	$\stackrel{ }{ }$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	61	27	174	37	13	15	66	155	5	16	117	69
Future Volume (vph)	61	27	174	37	13	15	66	155	5	16	117	69
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Hourly flow rate (vph)	73	33	210	45	16	18	80	187	6	19	141	83
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1	NB 2	SB 1	SB 2					
Volume Total (vph)	106	210	79	80	193	19	224					
Volume Left (vph)	73	0	45	80	0	19	0					
Volume Right (vph)	0	210	18	0	6	0	83					
Hadj (s)	0.42	-0.65	0.05	0.58	0.09	0.72	-0.16					
Departure Headway (s)	6.5	5.4	6.4	6.6	6.1	6.8	5.9					
Degree Utilization, x	0.19	0.32	0.14	0.15	0.33	0.04	0.37					
Capacity (veh/h)	521	624	510	520	564	501	581					
Control Delay (s)	9.8	9.7	10.5	9.5	10.8	8.8	11.0					
Approach Delay (s)	9.7		10.5	10.4		10.8						
Approach LOS	A		B	B		B						
Intersection Summary												
Delay			10.3									
Level of Service			B									
Intersection Capacity Utilization			36.6\%		U Level	f Service			A			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$	7	\%	$\uparrow \uparrow$	7	\%	\uparrow	7	\%	\uparrow	「
Traffic Volume (vph)	43	1338	75	81	804	75	179	140	99	206	120	70
Future Volume (vph)	43	1338	75	81	804	75	179	140	99	206	120	70
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		0\%			0\%			3\%			0\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1583	3197	1430	2906	3050	1403	2997	1642	1423	3101	1577	1408
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1583	3197	1430	2906	3050	1403	2997	1642	1423	3101	1577	1408
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	48	1503	84	91	903	84	201	157	111	231	135	79
RTOR Reduction (vph)	0	0	37	0	0	38	0	0	96	0	0	69
Lane Group Flow (vph)	48	1503	47	91	903	46	201	157	15	231	135	10
Confl. Peds. (\#/hr)							3					3
Heavy Vehicles (\%)	5\%	4\%	4\%	11\%	9\%	6\%	6\%	5\%	3\%	4\%	11\%	4\%
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	6.9	67.1	67.1	6.2	66.4	66.4	15.2	16.1	16.1	14.1	15.0	15.0
Effective Green, g (s)	6.9	67.1	67.1	6.2	66.4	66.4	15.2	16.1	16.1	14.1	15.0	15.0
Actuated g/C Ratio	0.06	0.56	0.56	0.05	0.55	0.55	0.13	0.13	0.13	0.12	0.12	0.12
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	2.3	4.2	4.2	2.3	4.0	4.0	2.3	2.3	2.3	2.3	2.3	2.3
Lane Grp Cap (vph)	91	1787	799	150	1687	776	379	220	190	364	197	176
v/s Ratio Prot	0.03	c0.47		0.03	c0.30		0.07	c0.10		c0.07	0.09	
v/s Ratio Perm			0.03			0.03			0.01			0.01
v/c Ratio	0.53	0.84	0.06	0.61	0.54	0.06	0.53	0.71	0.08	0.63	0.69	0.06
Uniform Delay, d1	55.0	22.0	12.1	55.7	17.0	12.4	49.1	49.7	45.5	50.5	50.2	46.3
Progression Factor	1.00	1.00	1.00	0.84	0.55	0.11	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.5	5.0	0.1	5.0	1.1	0.1	1.0	9.4	0.1	3.0	8.3	0.1
Delay (s)	58.5	27.0	12.2	52.0	10.6	1.5	50.0	59.1	45.6	53.4	58.5	46.3
Level of Service	E	C	B	D	B	A	D	E	D	D	E	D
Approach Delay (s)		27.2			13.4			52.0			53.7	
Approach LOS		C			B			D			D	

Intersection Summary			
HCM 2000 Control Delay	29.5	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.78	Sum of lost time (s)	16.5
Actuated Cycle Length (s)	120.0	C	
Intersection Capacity Utilization	65.0%	ICU Level of Service	

Analysis Period (min)
C Critical Lane Group

c Critical Lane Group

Intersection						
Int Delay, s/veh 0.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	$\uparrow \uparrow$	个 \uparrow		Y	
Traffic Vol, veh/h	3	1808	1153	29	62	6
Future Vol, veh/h	3	1808	1153	29	62	6
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	-2	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	33	4	7	7	3	0
Mvmt Flow	3	1903	1214	31	65	6

HCS 2010 Roundabouts Report																
General Information							Site Information									
Analyst	ZHB						Intersection				Springbrook/Crestview					
Agency or Co.	KAI						E/W Street Name				Crestview Dr					
Date Performed	10/21/2017						N/S Street Name				Springbrook Rd					
Analysis Year							Analysis Time Period (hrs)				0.25					
Time Period	Background with Reassigned Traffic PM						Peak Hour Factor				0.93					
Project Description	Crestview Crossing						Jurisdiction									
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR				LTR				LTR	
Volume (V), veh/h	0	53	2	13	0	5	2	162	0	7	374	13	2	182	263	49
Percent Heavy Vehicles, \%	0	0	0	0	20	20	0	0	0	0	3	0	0	0	2	0
Flow Rate (VpcE), pc/h	0	57	2	14	0	6	2	174	0	8	414	14	2	196	288	53
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Critical and Follow-Up Headway Adjustment																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		Left	Right	Bypass	Left	Right	Bypass	Left		Right	Bypass
Critical Headway (s)				4.9734				4.9734			4.9734				734	
Follow-Up Headway (s)				2.6087				2.6087			2.6087				008	
Flow Computations, Capacity and v/c Ratios																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		eft	Right	Bypass	Left	Right	Bypass		Left	ght	Bypass
Entry Flow (Ve), pc/h				73				182			436				39	
Entry Volume veh/h				73				181			424				33	
Circulating Flow (c_{c}), pc/h			492			481				257			16			
Exiting Flow (Vex), pc/h			212			63				647			308			
Capacity ($\mathrm{cpce}^{\text {a }}$, pc/h				836				845			1062				358	
Capacity (c), veh/h				836				841			1033				343	
v/c Ratio (x)				0.09				0.22			0.41				. 40	
Delay and Level of Service																
Approach			EB			WB				NB			SB			
Lane			Left	Right	Bypass		eft	Right	Bypass	Left	Right	Bypass		Left	ght	Bypass
Lane Control Delay (d), s/veh				5.2				6.5			7.9				6.4	
Lane LOS				A				A			A				A	
95\% Queue, veh				0.3				0.8			2.0				. 9	
Approach Delay, s/veh			5.2			6.5				7.9			6.4			
Approach LOS			A			A				A			A			
Intersection Delay, s/veh \| LOS			6.9							A						
HCS 2010™ Roundabouts Version 6.90 Background with Reroute PM.xro																

	\rightarrow	\geqslant	t		4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	F			\uparrow	M		
Traffic Volume (veh/h)	185	5	9	163	8	14	
Future Volume (Veh/h)	185	5	9	163	8	14	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	2\%		
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	
Hourly flow rate (vph)	234	6	11	206	10	18	
Pedestrians					2		
Lane Width (ft)					12.0		
Walking Speed (ft/s)					3.5		
Percent Blockage					0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume			242		467	239	
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol			242		467	239	
tC , single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free \%			99		98	98	
cM capacity (veh/h)			1334		552	803	
Direction, Lane \#	EB 1	WB 1	NB 1				
Volume Total	240	217	28				
Volume Left	0	11	10				
Volume Right	6	0	18				
cSH	1700	1334	691				
Volume to Capacity	0.14	0.01	0.04				
Queue Length 95th (ft)	0	1	3				
Control Delay (s)	0.0	0.5	10.4				
Lane LOS		A	B				
Approach Delay (s)	0.0	0.5	10.4				
Approach LOS			B				
Intersection Summary							
Average Delay			0.8				
Intersection Capacity Utilization			27.3\%	ICU Level of Service			A
Analysis Period (min)			15				

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		${ }^{4}$		*	F		\%	$\stackrel{\text { F }}{ }$	
Sign Control		Stop			Stop			Stop			Stop	
Trafic Volume (vph)	83	63	219	91	68	86	136	208	5	67	183	40
Future Volume (vph)	83	63	219	91	68	86	136	208	5	67	183	40
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	86	66	228	95	71	90	142	217	5	70	191	42
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1	NB 2	SB 1	SB 2					
Volume Total (vph)	152	228	256	142	222	70	233					
Volume Left (vph)	86	0	95	142	0	70	0					
Volume Right (vph)	0	228	90	0	5	0	42					
Hadj (s)	0.30	-0.68	-0.12	0.53	0.03	0.53	-0.06					
Departure Headway (s)	7.5	6.5	7.1	7.8	7.2	7.9	7.3					
Degree Utilization, x	0.32	0.41	0.51	0.31	0.45	0.15	0.47					
Capacity (veh/h)	453	522	467	432	463	429	461					
Control Delay (s)	12.8	12.8	17.2	12.9	14.8	11.1	15.3					
Approach Delay (s)	12.8		17.2	14.1		14.4						
Approach LOS	B		C	B		B						
Intersection Summary												
Delay			14.4									
Level of Service			B									
Intersection Capacity Utilization			53.3\%		Level	Service			A			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$	7	\% ${ }^{1}$	$\uparrow \uparrow$	7	7\%	\uparrow	7	\% ${ }^{1 / 1}$	\uparrow	F
Traffic Volume (vph)	104	1144	124	141	1458	150	374	179	124	217	212	86
Future Volume (vph)	104	1144	124	141	1458	150	374	179	124	217	212	86
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		0\%			0\%			3\%			0\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1583	3137	1440	2854	3197	1423	3177	1674	1361	3193	1699	1438
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1583	3137	1440	2854	3197	1423	3177	1674	1361	3193	1699	1438
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	106	1167	127	144	1488	153	382	183	127	221	216	88
RTOR Reduction (vph)	0	0	63	0	0	76	0	0	109	0	0	69
Lane Group Flow (vph)	106	1167	64	144	1488	77	382	183	18	221	216	19
Confl. Peds. (\#/hr)	2		9	9		2	14					14
Confl. Bikes (\#/hr)									2			1
Heavy Vehicles (\%)	5\%	6\%	1\%	13\%	4\%	2\%	0\%	3\%	6\%	1\%	3\%	0\%
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	11.5	71.0	71.0	9.9	69.4	69.4	20.5	19.9	19.9	22.7	22.1	22.1
Effective Green, $\mathrm{g}(\mathrm{s})$	11.5	71.0	71.0	9.9	69.4	69.4	20.5	19.9	19.9	22.7	22.1	22.1
Actuated g/C Ratio	0.08	0.51	0.51	0.07	0.50	0.50	0.15	0.14	0.14	0.16	0.16	0.16
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	2.3	4.2	4.2	2.3	4.0	4.0	2.3	2.3	2.3	2.3	2.3	2.3
Lane Grp Cap (vph)	130	1590	730	201	1584	705	465	237	193	517	268	226
v/s Ratio Prot	c0.07	0.37		0.05	c0.47		c0.12	0.11		0.07	c0.13	
v/s Ratio Perm			0.04			0.05			0.01			0.01
v / c Ratio	0.82	0.73	0.09	0.72	0.94	0.11	0.82	0.77	0.09	0.43	0.81	0.08
Uniform Delay, d1	63.2	27.1	17.8	63.7	33.3	18.8	58.0	57.9	52.2	52.8	56.9	50.3
Progression Factor	1.00	1.00	1.00	0.94	1.05	1.70	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	30.1	3.0	0.2	7.0	8.8	0.2	10.8	13.6	0.1	0.3	15.5	0.1
Delay (s)	93.3	30.1	18.0	66.6	43.8	32.2	68.8	71.5	52.3	53.1	72.3	50.4
Level of Service	F	C	B	E	D	C	E	E	D	D	E	D
Approach Delay (s)		33.8			44.6			66.5			60.6	
Approach LOS		C			D			E			E	

Intersection Summary			D
HCM 2000 Control Delay	46.5	HCM 2000 Level of Service	
HCM 2000 Volume to Capacity ratio	0.88		16.5
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	F
Intersection Capacity Utilization	92.0%	ICU Level of Service	
Analysis Period (min)	15		

		\rightarrow												

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	「	＊	性			\uparrow	「		＊	
Traffic Volume（vph）	0	1155	15	79	1774	140	114	10	116	174	0	0
Future Volume（vph）	0	1155	15	79	1774	140	114	10	116	174	0	0
Ideal Flow（vphpl）	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade（\％）		－3\％			2\％			3\％			2\％	
Total Lost time（s）		6.0	6.0	4.5	4.5			4.5	4.5		4.5	
Lane Util．Factor		0.95	1.00	1.00	0.95			1.00	1.00		1.00	
Frpb，ped／bikes		1.00	0.98	1.00	1.00			1.00	1.00		1.00	
Flpb，ped／bikes		1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt		1.00	0.85	1.00	0.99			1.00	0.85		1.00	
Flt Protected		1.00	1.00	0.95	1.00			0.96	1.00		0.95	
Satd．Flow（prot）		3184	1479	1646	3224			1631	1465		1614	
Flt Permitted		1.00	1.00	0.95	1.00			0.79	1.00		0.57	
Satd．Flow（perm）		3184	1479	1646	3224			1347	1465		972	
Peak－hour factor，PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj．Flow（vph）	0	1229	16	84	1887	149	121	11	123	185	0	0
RTOR Reduction（vph）	0	0	6	0	3	0	0	0	98	0	0	0
Lane Group Flow（vph）	0	1229	10	84	2033	0	0	132	25	0	185	0
Confl．Bikes（\＃／hr）			1									
Heavy Vehicles（\％）	2\％	6\％	0\％	0\％	4\％	2\％	1\％	2\％	0\％	2\％	2\％	2\％
Turn Type	Prot	NA	Perm	Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases			2				8		8	4		
Actuated Green，G（s）		83.9	83.9	12.3	102.2			28.8	28.8		28.8	
Effective Green，g（s）		83.9	83.9	12.3	102.2			28.8	28.8		28.8	
Actuated g／C Ratio		0.60	0.60	0.09	0.73			0.21	0.21		0.21	
Clearance Time（s）		6.0	6.0	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension（s）		5.0	5.0	4.0	4.0			4.0	4.0		4.0	
Lane Grp Cap（vph）		1908	886	144	2353			277	301		199	
v／s Ratio Prot		0.39		0.05	c0．63							
v／s Ratio Perm			0.01					0.10	0.02		c0．19	
v／c Ratio		0.64	0.01	0.58	0.86			0.48	0.08		0.93	
Uniform Delay，d1		18.3	11.3	61.4	13.8			49.0	44.9		54.6	
Progression Factor		0.42	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay，d2		1.4	0.0	7.0	4.5			1.8	0.2		44.3	
Delay（s）		9.1	11.3	68.3	18.3			50.7	45.1		98.9	
Level of Service		A	B	E	B			D	D		F	
Approach Delay（s）		9.1			20.3			48.0			98.9	
Approach LOS		A			C			D			F	

Intersection Summary			
HCM 2000 Control Delay	22.3	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.92		15.0
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	E
Intersection Capacity Utilization	90.3%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Intersection						
Int Delay, s/veh 4.4						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{1}$	个4	个 ${ }^{\text {P }}$		M	
Traffic Vol, veh/h	31	1441	1991	75	61	17
Future Vol, veh/h	31	1441	1991	75	61	17
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	-2	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	5	4	0	2	0
Mvmt Flow	33	1549	2141	81	66	18

Appendix G Select Zone Analysis Results

Newberg Transportation Model 2025
ODOT Request 001
Select Zone 117 PM Peak Volumes

Appendix H
 Year 2020 Total Conditions
 Level of Service Worksheets

HCS 2010 Roundabouts Report																
General Information							Site Information									
Analyst	ZHB						Intersection				Springbrook/Crestview					
Agency or Co.	KAI						E/W Street Name				Crestview Dr					
Date Performed	10/21/2017						N/S Street Name				Springbrook Rd					
Analysis Year	2020						Analysis Time Period (hrs)				0.25					
Time Period	Total AM						Peak Hour Factor				0.66					
Project Description	Crestview Crossing						Jurisdiction									
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR				LTR				LTR	
Volume (V), veh/h	2	54	29	54	0	20	40	83	2	49	254	8	1	216	145	135
Percent Heavy Vehicles, \%	9	9	13	3	0	0	0	0	2	2	4	0	25	25	4	7
Flow Rate (VPCE), pc/h	3	89	50	84	0	30	61	126	3	76	400	12	2	409	228	219
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Critical and Follow-Up Headway Adjustment																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass	Left		Right	Bypass	Left	Right	Bypass	Left		Right	Bypass
Critical Headway (s)				4.9734				4.9734			4.9734				9734	
Follow-Up Headway (s)				2.6087				2.6087			2.6087				. 6087	
Flow Computations, Capacity and v/c Ratios																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		ft	Right	Bypass	Left	Right	Bypass		Left	ight	Bypass
Entry Flow (ve), pc/h				226				217			491				858	
Entry Volume veh/h				210				217			474				753	
Circulating Flow (v_{c}, pc / h			672			573				553			173			
Exiting Flow (Vex), pc/h			471			359				617			345			
Capacity ($\mathrm{cpce}^{\text {e }}$, pc/h				696				770			785				157	
Capacity (c), veh/h				647				770			758				015	
v/c Ratio (x)				0.32				0.28			0.63				0.74	
Delay and Level of Service																
Approach			EB			WB				NB			SB			
Lane			Left	Right	Bypass		eft	Right	Bypass	Left	Right	Bypass		Left	ight	Bypass
Lane Control Delay (d), s/veh				9.8				7.9			15.4				6.7	
Lane LOS				A				A			C				C	
95\% Queue, veh				1.4				1.2			4.4				7.1	
Approach Delay, s/veh			9.8			7.9				15.4			16.7			
Approach LOS			A			A				C			C			
Intersection Delay, s/veh \| LOS			14.3							B						
 Copyright © 2018 University of Florida. All Rights Reserved. HCS 2010 Roundabouts Version 6.90 Total AM.xro																

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	\%		\dagger		\%	$\stackrel{ }{ }$		\%	$\stackrel{ }{ }$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	61	27	179	37	13	15	82	155	5	16	117	69
Future Volume (vph)	61	27	179	37	13	15	82	155	5	16	117	69
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Hourly flow rate (vph)	73	33	216	45	16	18	99	187	6	19	141	83
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1	NB 2	SB 1	SB 2					
Volume Total (vph)	106	216	79	99	193	19	224					
Volume Left (vph)	73	0	45	99	0	19	0					
Volume Right (vph)	0	216	18	0	6	0	83					
Hadj (s)	0.42	-0.65	0.05	0.58	0.09	0.72	-0.16					
Departure Headway (s)	6.5	5.5	6.5	6.6	6.1	6.8	5.9					
Degree Utilization, x	0.19	0.33	0.14	0.18	0.33	0.04	0.37					
Capacity (veh/h)	517	618	504	519	561	496	576					
Control Delay (s)	9.9	9.9	10.6	9.8	10.8	8.9	11.2					
Approach Delay (s)	9.9		10.6	10.5		11.0						
Approach LOS	A		B	B		B						
Intersection Summary												
Delay			10.4									
Level of Service			B									
Intersection Capacity Utilization			36.9\%		U Level	f Service			A			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$	7	\%	$\uparrow \uparrow$	7	\%	\uparrow	7	\% ${ }^{1 / 1}$	\uparrow	「
Traffic Volume (vph)	43	1349	75	89	836	91	179	140	102	211	120	70
Future Volume (vph)	43	1349	75	89	836	91	179	140	102	211	120	70
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		0\%			0\%			3\%			0\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1583	3197	1430	2906	3138	1403	2997	1642	1423	3101	1577	1408
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1583	3197	1430	2906	3138	1403	2997	1642	1423	3101	1577	1408
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	48	1516	84	100	939	102	201	157	115	237	135	79
RTOR Reduction (vph)	0	0	37	0	0	46	0	0	100	0	0	69
Lane Group Flow (vph)	48	1516	47	100	939	56	201	157	15	237	135	10
Confl. Peds. (\#/hr)							3					3
Heavy Vehicles (\%)	5\%	4\%	4\%	11\%	9\%	6\%	6\%	5\%	3\%	4\%	11\%	4\%
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	6.9	66.7	66.7	6.3	66.1	66.1	15.5	16.1	16.1	14.4	15.0	15.0
Effective Green, g (s)	6.9	66.7	66.7	6.3	66.1	66.1	15.5	16.1	16.1	14.4	15.0	15.0
Actuated g/C Ratio	0.06	0.56	0.56	0.05	0.55	0.55	0.13	0.13	0.13	0.12	0.12	0.12
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	2.3	4.2	4.2	2.3	4.0	4.0	2.3	2.3	2.3	2.3	2.3	2.3
Lane Grp Cap (vph)	91	1776	794	152	1728	772	387	220	190	372	197	176
v/s Ratio Prot	0.03	c0.47		0.03	c0.30		0.07	c0.10		c0.08	0.09	
v/s Ratio Perm			0.03			0.04			0.01			0.01
v/c Ratio	0.53	0.85	0.06	0.66	0.54	0.07	0.52	0.71	0.08	0.64	0.69	0.06
Uniform Delay, d1	55.0	22.5	12.2	55.8	17.3	12.6	48.8	49.7	45.5	50.3	50.2	46.3
Progression Factor	1.00	1.00	1.00	0.77	0.45	0.06	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.5	5.5	0.1	7.7	1.1	0.2	0.7	9.4	0.1	2.9	8.3	0.1
Delay (s)	58.5	28.0	12.4	50.8	8.9	0.9	49.5	59.1	45.6	53.2	58.5	46.3
Level of Service	E	C	B	D	A	A	D	E	D	D	E	D
Approach Delay (s)		28.1			11.8			51.7			53.6	
Approach LOS		C			B			D			D	

Intersection Summary			
HCM 2000 Control Delay	29.2	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.79		16.5
Actuated Cycle Length (s)	120.0	Sum of lost time (s)	C

Analysis Period (min)
c Critical Lane Group

c Critical Lane Group

Intersection						
Int Delay, s/veh 0.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	$\uparrow \uparrow$	个 \uparrow		Y	
Traffic Vol, veh/h	3	1832	1161	29	62	6
Future Vol, veh/h	3	1832	1161	29	62	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	1	-
Grade, \%	-	0	0	-	-2	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	33	4	7	7	3	0
Mvmt Flow	3	1928	1222	31	65	6

HCS 2010 Roundabouts Report																
General Information							Site Information									
Analyst	ZHB						Intersection				Springbrook/Crestview					
Agency or Co.	KAI						E/W Street Name				Crestview Dr					
Date Performed	10/21/2017						N/S Street Name				Springbrook Rd					
Analysis Year							Analysis Time Period (hrs)									
Time Period	Total PM						Peak Hour Factor				0.93					
Project Description	Crestview Crossing						Jurisdiction									
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR				LTR				LTR	
Volume (V), veh/h	0	53	20	13	0	16	13	172	0	7	374	31	2	200	263	49
Percent Heavy Vehicles, \%	0	0	0	0	20	20	0	0	0	0	3	0	0	0	2	0
Flow Rate (VPCE), pc/h	0	57	22	14	0	21	14	185	0	8	414	33	2	215	288	53
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Critical and Follow-Up Headway Adjustment																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		Left	Right	Bypass	Left	Right	Bypass	Left		Right	Bypass
Critical Headway (s)				4.9734				4.9734			4.9734				734	
Follow-Up Headway (s)				2.6087				2.6087			2.6087				. 087	
Flow Computations, Capacity and v/c Ratios																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		ft	Right	Bypass	Left	Right	Bypass		f	ght	Bypass
Entry Flow (ve), pc/h				93				220			455				58	
Entry Volume veh/h				93				217			443				52	
Circulating Flow (v_{c}), pc/h			526			481				296			43			
Exiting Flow (Vex), pc/h			270			75				658			323			
Capacity ($\mathrm{cpce}^{\text {e }}$, pc/h				807				845			1021				321	
Capacity (c), veh/h				807				832			994				307	
v/c Ratio (x)				0.12				0.26			0.45				. 42	
Delay and Level of Service																
Approach			EB			WB				NB			SB			
Lane			Left	Right	Bypass		ft	Right	Bypass	Left	Right	Bypass		ft	ght	Bypass
Lane Control Delay (d), s/veh				5.6				7.1			8.7				6.9	
Lane LOS				A				A			A				A	
95\% Queue, veh				0.4				1.0			2.3				2.1	
Approach Delay, s/veh			5.6			7.1				8.7			6.9			
Approach LOS			A			A				A			A			
Intersection Delay, s/veh \| LOS			7.5							A						
$\text { Copyright © } 2018 \text { University of Florida. All Rights Reserved. } \quad \text { HCS 2010™ }$						Roundabouts Version 6.90 Total PM.xro				2/15/2018 9:32:49 AM						

	\rightarrow	\geqslant	t	4	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	F			\uparrow	M		
Traffic Volume (veh/h)	239	5	9	195	8	14	
Future Volume (Veh/h)	239	5	9	195	8	14	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	2\%		
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	
Hourly flow rate (vph)	303	6	11	247	10	18	
Pedestrians					2		
Lane Width (ft)					12.0		
Walking Speed (ft/s)					3.5		
Percent Blockage					0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume			311		577	308	
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol			311		577	308	
tC , single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free \%			99		98	98	
cM capacity (veh/h)			1258		476	735	
Direction, Lane \#	EB 1	WB 1	NB 1				
Volume Total	309	258	28				
Volume Left	0	11	10				
Volume Right	6	0	18				
cSH	1700	1258	616				
Volume to Capacity	0.18	0.01	0.05				
Queue Length 95th (ft)	0	1	4				
Control Delay (s)	0.0	0.4	11.1				
Lane LOS		A	B				
Approach Delay (s)	0.0	0.4	11.1				
Approach LOS			B				
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utilization			27.6\%	ICU Level of Service			A
Analysis Period (min)			15				

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$	7	\% ${ }^{\text {\% }}$	$\uparrow \uparrow$	7	7\%	\uparrow	7	\% ${ }^{1 / 4}$	\uparrow	F
Traffic Volume (vph)	94	1182	124	151	1478	155	374	179	142	224	212	81
Future Volume (vph)	94	1182	124	151	1478	155	374	179	142	224	212	81
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		0\%			0\%			3\%			0\%	
Total Lost time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1583	3137	1440	2854	3288	1423	3177	1674	1361	3193	1699	1438
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1583	3137	1440	2854	3288	1423	3177	1674	1361	3193	1699	1438
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	96	1206	127	154	1508	158	382	183	145	229	216	83
RTOR Reduction (vph)	0	0	63	0	0	77	0	0	124	0	0	65
Lane Group Flow (vph)	96	1206	64	154	1508	81	382	183	21	229	216	18
Confl. Peds. (\#/hr)	2		9	9		2	14					14
Confl. Bikes (\#/hr)									2			1
Heavy Vehicles (\%)	5\%	6\%	1\%	13\%	4\%	2\%	0\%	3\%	6\%	1\%	3\%	0\%
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	10.7	70.6	70.6	10.4	70.3	70.3	20.4	19.9	19.9	22.6	22.1	22.1
Effective Green, $\mathrm{g}(\mathrm{s})$	10.7	70.6	70.6	10.4	70.3	70.3	20.4	19.9	19.9	22.6	22.1	22.1
Actuated g/C Ratio	0.08	0.50	0.50	0.07	0.50	0.50	0.15	0.14	0.14	0.16	0.16	0.16
Clearance Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	2.3	4.2	4.2	2.3	4.0	4.0	2.3	2.3	2.3	2.3	2.3	2.3
Lane Grp Cap (vph)	120	1581	726	212	1651	714	462	237	193	515	268	226
v/s Ratio Prot	c0.06	0.38		0.05	c0.46		c0.12	0.11		0.07	c0.13	
v/s Ratio Perm			0.04			0.06			0.02			0.01
v / c Ratio	0.80	0.76	0.09	0.73	0.91	0.11	0.83	0.77	0.11	0.44	0.81	0.08
Uniform Delay, d1	63.6	28.0	18.0	63.4	32.1	18.4	58.1	57.9	52.3	53.0	56.9	50.3
Progression Factor	1.00	1.00	1.00	1.02	0.95	1.43	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	29.5	3.5	0.2	7.2	6.5	0.2	11.2	13.6	0.1	0.4	15.5	0.1
Delay (s)	93.1	31.5	18.2	71.8	36.9	26.6	69.3	71.5	52.5	53.4	72.3	50.4
Level of Service	F	C	B	E	D	C	E	E	D	D	E	D
Approach Delay (s)		34.5			39.0			66.4			60.7	
Approach LOS		C			D			E			E	

Intersection Summary			
HCM 2000 Control Delay	44.4	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.86		16.5
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	E
Intersection Capacity Utilization	90.7%	ICU Level of Service	
Analysis Period (min)	15		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	¢ \uparrow	7	\%	个 \uparrow			\uparrow	7		¢	
Traffic Volume (vph)	81	1155	32	79	1774	167	114	28	116	190	11	51
Future Volume (vph)	81	1155	32	79	1774	167	114	28	116	190	11	51
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		-3\%			2\%			3\%			2\%	
Total Lost time (s)	6.0	6.0	6.0	4.5	4.5			4.5	4.5		4.5	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95			1.00	1.00		1.00	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00			1.00	1.00		1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.96	1.00		0.96	
Satd. Flow (prot)	1654	3184	1479	1646	3219			1638	1465		1592	
Flt Permitted	0.95	1.00	1.00	0.95	1.00			0.70	1.00		0.58	
Satd. Flow (perm)	1654	3184	1479	1646	3219			1187	1465		964	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	86	1229	34	84	1887	178	121	30	123	202	12	54
RTOR Reduction (vph)	0	0	15	0		,	0	0	92	0	7	0
Lane Group Flow (vph)	86	1229	19	84	2060	O	0	151	31	0	261	0
Confl. Bikes (\#/hr)			1									
Heavy Vehicles (\%)	2\%	6\%	0\%	0\%	4\%	2\%	1\%	2\%	0\%	2\%	2\%	2\%
Turn Type	Prot	NA	Perm	Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2				8		8	4		
Actuated Green, G (s)	7.0	77.8	77.8	12.3	83.1			34.9	34.9		34.9	
Effective Green, g (s)	7.0	77.8	77.8	12.3	83.1			34.9	34.9		34.9	
Actuated g/C Ratio	0.05	0.56	0.56	0.09	0.59			0.25	0.25		0.25	
Clearance Time (s)	6.0	6.0	6.0	4.5	4.5			4.5	4.5		4.5	
Vehicle Extension (s)	4.0	5.0	5.0	4.0	4.0			4.0	4.0		4.0	
Lane Grp Cap (vph)	82	1769	821	144	1910			295	365		240	
v/s Ratio Prot	c0.05	0.39		0.05	c0.64							
v/s Ratio Perm			0.01					0.13	0.02		c0.27	
v/c Ratio	1.05	0.69	0.02	0.58	1.08			0.51	0.08		1.09	
Uniform Delay, d1	66.5	22.5	14.0	61.4	28.5			45.2	40.3		52.5	
Progression Factor	1.09	0.53	1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	101.6	1.8	0.0	7.0	45.4			2.0	0.1		83.7	
Delay (s)	173.8	13.7	14.0	68.3	73.9			47.2	40.4		136.3	
Level of Service	F	B	B	E	E			D	D		F	
Approach Delay (s)		23.9			73.7			44.2			136.3	
Approach LOS		C			E			D			F	

Intersection Summary			
HCM 2000 Control Delay	59.2	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	1.08	Sum of lost time (s)	15.0
Actuated Cycle Length (s)	140.0	F	
Intersection Capacity Utilization	96.8%	ICU Level of Service	F

Analysis Period (min)
c Critical Lane Group

Intersection						
Int Delay, s/veh 4.5						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	$\uparrow \uparrow$	个 \uparrow		Y	
Traffic Vol, veh/h	31	1430	2018	75	61	17
Future Vol, veh/h	31	1430	2018	75	61	17
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	1	-
Grade, \%	-	0	0	-	-2	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	5	4	0	2	0
Mvmt Flow	33	1538	2170	81	66	18

HCS 2010 Roundabouts Report																
General Information							Site Information									
Analyst	ZHB						Intersection				Crestview/East-West Connector					
Agency or Co.	KAI						E/W Street Name				East-West Connector					
Date Performed	10/21/2017						N/S Street Name				Crestview Dr					
Analysis Year							Analysis Time Period (hrs)				0.25					
Time Period	Total PM						Peak Hour Factor				0.94					
Project Description	Crestview Crossing						Jurisdiction									
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR				LTR				LTR	
Volume (V), veh/h	0	9	0	21	0	25	0	11	0	36	197	43	0	19	201	15
Percent Heavy Vehicles, \%	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0
Flow Rate (VpcE), pc/h	0	10	0	22	0	27	0	12	0	38	214	46	0	20	218	16
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p / h	0				0				0				0			
Critical and Follow-Up Headway Adjustment																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		Left	Right	Bypass	Left	Right	Bypass	Left		Right	Bypass
Critical Headway (s)				4.9734				4.9734			4.9734				734	
Follow-Up Headway (s)				2.6087				2.6087			2.6087				008	
Flow Computations, Capacity and v/c Ratios																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		ft	Right	Bypass	Left	Right	Bypass			ght	Bypass
Entry Flow (Ve), pc/h				32				39			298				54	
Entry Volume veh/h				32				39			294				50	
Circulating Flow (v_{c}), pc / h			265			262				30			65			
Exiting Flow (Vex), pc/h			66			54				236			267			
Capacity ($\mathrm{cpce}^{\text {e }}$, pc / h				1053				1057			1338				292	
Capacity (c), veh/h				1053				1057			1320				270	
v/c Ratio (x)				0.03				0.04			0.22				20	
Delay and Level of Service																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		eft	Right	Bypass	Left	Right	Bypass			ght	Bypass
Lane Control Delay (d), s/veh				3.7				3.7			4.6				4.5	
Lane LOS				A				A			A				A	
95\% Queue, veh				0.1				0.1			0.9				0.7	
Approach Delay, s/veh			3.7			3.7				4.6			4.5			
Approach LOS			A			A				A			A			
Intersection Delay, s/veh \| LOS			4.5							A						
Copyright © 2018 University of Florida. All Rights Reserved. HCS 2010 ${ }^{\text {TM }}$ Roundabouts Version 6.90 9 Total PM.xro																

Appendix I
 Year 2020 Total Conditions with Mitigation Level of Service Worksheets

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 \uparrow	7	\%	¢ \uparrow	7	\%	\uparrow	7	\%	\uparrow	F
Traffic Volume (vph)	81	1155	32	79	1774	167	114	28	116	190	11	46
Future Volume (vph)	81	1155	32	79	1774	167	114	28	116	190	11	46
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		-3\%			2\%			3\%			2\%	
Total Lost time (s)	6.0	6.0	6.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1654	3184	1479	1646	3256	1444	1621	1690	1465	1614	1699	1444
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.75	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	1654	3184	1479	1646	3256	1444	1280	1690	1465	1253	1699	1444
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	86	1229	34	84	1887	178	121	30	123	202	12	49
RTOR Reduction (vph)	0	0	13	0	0	46	0	0	100	0	0	40
Lane Group Flow (vph)	86	1229	21	84	1887	132	121	30	23	202	12	9
Confl. Bikes (\#/hr)			1									
Heavy Vehicles (\%)	2\%	6\%	0\%	0\%	4\%	2\%	1\%	2\%	0\%	2\%	2\%	2\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8		8	4		4
Actuated Green, G (s)	9.8	86.0	86.0	12.3	88.5	88.5	26.7	26.7	26.7	26.7	26.7	26.7
Effective Green, g (s)	9.8	86.0	86.0	12.3	88.5	88.5	26.7	26.7	26.7	26.7	26.7	26.7
Actuated g/C Ratio	0.07	0.61	0.61	0.09	0.63	0.63	0.19	0.19	0.19	0.19	0.19	0.19
Clearance Time (s)	6.0	6.0	6.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Grp Cap (vph)	115	1955	908	144	2058	912	244	322	279	238	324	275
v / s Ratio Prot	c0.05	0.39		0.05	c0.58			0.02			0.01	
v/s Ratio Perm			0.01			0.09	0.09		0.02	c0.16		0.01
v/c Ratio	0.75	0.63	0.02	0.58	0.92	0.15	0.50	0.09	0.08	0.85	0.04	0.03
Uniform Delay, d1	63.9	17.0	10.6	61.4	22.5	10.4	50.6	46.7	46.6	54.7	46.2	46.1
Progression Factor	1.26	0.14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	19.5	1.2	0.0	7.0	8.0	0.3	2.2	0.2	0.2	24.3	0.1	0.1
Delay (s)	100.0	3.6	10.6	68.3	30.5	10.8	52.8	46.8	46.8	79.0	46.2	46.2
Level of Service	F	A	B	E	C	B	D	D	D	E	D	D
Approach Delay (s)		10.0			30.3			49.4			71.4	
Approach LOS		A			C			D			E	

Intersection Summary			
HCM 2000 Control Delay	27.5	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.89	Sum of lost time (s)	15.0
Actuated Cycle Length (s)	140.0	ICU Level of Service	E
Intersection Capacity Utilization	87.2%		

Analysis Period (min)
C Critical Lane Group

Appendix J
 SimTraffic Queuing Worksheets

Intersection: 2: Libra St \& Crestview Dr

Movement	NB
Directions Served	LR
Maximum Queue (ft)	44
Average Queue (ft)	9
95th Queue (ft)	34
Link Distance (ft)	217
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	95	168	66	95	158	114	210
Average Queue (ft)	38	56	31	31	58	18	108
95th Queue (ft)	67	125	57	69	109	69	190
Link Distance (ft)		420	165		443		183
Upstream Blk Time (\%)							6
Queuing Penalty (veh)				90		90	0
Storage Bay Dist (ft)	90			9	2	0	16
Storage Blk Time (\%)	0	2		0	1	0	3

Intersection: 4: Springbrook Rd \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	T	R	L	L	T
Maximum Queue (ft)	320	524	561	225	77	95	228	239	24	130	148	241
Average Queue (ft)	43	273	273	21	21	46	128	135	0	42	80	99
95th Queue (ft)	154	447	453	162	59	83	207	219	0	102	133	186
Link Distance (ft)		2053	2053				1271	1271				1159
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	350			350	430	430			370	320	320	
Storage BIk Time (\%)		4	4	0								
Queuing Penalty (veh)		2	3	0								

Intersection: 4: Springbrook Rd \& OR 99W

Movement	NB	SB	SB	SB	SB
Directions Served	R	L	L	T	R
Maximum Queue (ft)	106	182	194	417	155
Average Queue (ft)	47	143	165	159	37
95th Queue (ft)	95	212	220	353	108
Link Distance (ft)				443	
Upstream Blk Time (\%)				1	
Queuing Penalty (veh)				3	
Storage Bay Dist (ft)	320	170	170		130
Storage Blk Time (\%)		2	12	7	0
Queuing Penalty (veh)		3	22	33	0

Intersection: 5: Brutscher St \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	T	R	L	T	T	R	L	TR	L	TR
Maximum Queue (ft)	53	140	162	35	128	138	174	75	145	137	53	62
Average Queue (ft)	11	35	43	4	44	36	52	5	53	45	8	16
95th Queue (ft)	38	99	115	21	101	101	130	32	118	103	34	44
Link Distance (ft)		1271	1271			1266	1266			345		357
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	260			200	350			80	220		50	
Storage Blk Time (\%)			0				2	0			1	1
Queuing Penalty (veh)			0				1	0			0	0

Intersection: 6: OR 99W \& Vittoria Way

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	23	163
Average Queue (ft)	2	62
95th Queue (ft)	15	126
Link Distance (ft)		204
Upstream Blk Time (\%)		0
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	100	
Storage Blk Time (\%)		

Intersection: 7: Providence Dr \& OR 99W

Movement	EB	EB	EB	WB	WB	WB	NB	NB
Directions Served	T	T	R	L	T	T	L	R
Maximum Queue (ft)	219	230	125	128	90	98	78	105
Average Queue (ft)	91	104	16	61	34	30	28	35
95th Queue (ft)	191	216	76	117	83	82	66	77
Link Distance (ft)	447	447			1785	1785	301	
Upstream Blk Time (\%)								
Queuing Penalty (veh)								160
Storage Bay Dist (ft)			100	230			0	
Storage Blk Time (\%)		6	0				0	

Intersection: 8: OR 99W \& Benjamin Rd

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	38	297
Average Queue (ft)	2	158
95th Queue (ft)	17	349
Link Distance (ft)		526
Upstream Blk Time (\%)		1
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	250	
Storage Blk Time (\%)		

Network Summary

Network wide Queuing Penalty: 77

Intersection: 2: Libra St \& Crestview Dr

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	6	35
Average Queue (ft)	0	15
95th Queue (ft)	0	40
Link Distance (ft)	476	243
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	115	485	220	115	296	115	326
Average Queue (ft)	86	351	171	68	114	72	289
95th Queue (ft)	156	600	263	131	224	163	314
Link Distance (ft)		441	194		432		267
Upstream Blk Time (\%)		48	55				99
Queuing Penalty (veh)		0	0				0
Storage Bay Dist (ft)	90			90		90	
Storage Blk Time (\%)	7	73		1	18	0	99
Queuing Penalty (veh)	14	106		4	25	0	67

Intersection: 4: Springbrook Rd \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	T	R	L	L	T
Maximum Queue (ft)	328	465	475	148	214	410	571	589	395	332	345	1699
Average Queue (ft)	201	213	217	5	79	111	254	266	87	303	335	1616
95th Queue (ft)	385	475	455	76	174	257	530	553	352	394	383	1901
Link Distance (ft)		3631	3631				1270	1270				1649
Upstream Blk Time (\%)												77
Queuing Penalty (veh)												0
Storage Bay Dist (ft)	350			350	430	430			370	320	320	
Storage Blk Time (\%)	14	0	1	0			2	4	0	9	65	12
Queuing Penalty (veh)	76	0	1	0			2	11	0	26	197	62

Intersection: 4: Springbrook Rd \& OR 99W

Movement	NB	SB	SB	SB	SB
Directions Served	R	L	L	T	R
Maximum Queue (ft)	276	182	195	451	155
Average Queue (ft)	91	144	171	427	69
95th Queue (ft)	259	229	247	482	175
Link Distance (ft)				432	
Upstream Blk Time (\%)				40	
Queuing Penalty (veh)				265	
Storage Bay Dist (ft)	320	170	170		
Storage Blk Time (\%)	0	11	30	60	130
Queuing Penalty (veh)	0	33	89	286	5

Intersection: 5: Brutscher St \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	T	R	L	T	T	R	L	TR	L	TR
Maximum Queue (ft)	211	409	375	225	374	984	979	105	245	388	61	123
Average Queue (ft)	27	180	188	70	313	571	565	10	214	250	12	33
95th Queue (ft)	109	360	364	216	453	1383	1382	55	295	487	41	87
Link Distance (ft)		1270	1270			1264	1264			345		357
Upstream BIk Time (\%)						6	6			41		
Queuing Penalty (veh)						54	56			0		
Storage Bay Dist (ft)	260			200	350			80	220		50	
Storage Blk Time (\%)		3	7	0	39	2	18	0	50	3	2	7
Queuing Penalty (veh)		1	7	0	297	4	8	0	74	8		2

Intersection: 6: OR 99W \& Vittoria Way

Movement	EB	WB	WB	SB
Directions Served	L	T	TR	LR
Maximum Queue (ft)	72	204	208	158
Average Queue (ft)	20	94	95	88
95th Queue (ft)	52	382	384	200
Link Distance (ft)		449	449	209
Upstream Blk Time (\%)		4	5	10
Queuing Penalty (veh)		42	45	0
Storage Bay Dist (ft)	100			
Storage Blk Time (\%)	0			
Queuing Penalty (veh)	2			

Intersection: 7: Providence Dr \& OR 99W

Movement	EB	EB	EB	WB	WB	WB	NB	NB
Directions Served	T	T	R	L	T	T	L	R
Maximum Queue (ft)	259	285	106	189	768	748	218	131
Average Queue (ft)	118	128	7	92	303	305	90	46
95th Queue (ft)	214	228	51	196	1174	1169	177	106
Link Distance (ft)	449	449			1785	1785	301	
Upstream Blk Time (\%)					1	1	0	
Queuing Penalty (veh)					11	13	0	
Storage Bay Dist (ft)			100	230				160
Storage Blk Time (\%)		10	0	0	12		2	0
Queuing Penalty (veh)		2	0	0	8		2	0

Intersection: 8: OR 99W \& Benjamin Rd

Movement	EB	WB	WB	SB
Directions Served	L	T	TR	LR
Maximum Queue (ft)	95	158	164	541
Average Queue (ft)	28	52	51	510
95th Queue (ft)	73	354	347	607
Link Distance (ft)		746	746	526
Upstream Blk Time (\%)		2	3	83
Queuing Penalty (veh)		0	0	0
Storage Bay Dist (ft)	250			
Storage Blk Time (\%)				

Network Summary

Network wide Queuing Penalty: 1908

Intersection: 2: Libra St \& Crestview Dr

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	30	54
Average Queue (ft)	3	10
95th Queue (ft)	17	37
Link Distance (ft)	400	217
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	80	90	75	90	119	56	101
Average Queue (ft)	34	48	33	30	48	13	51
95th Queue (ft)	60	75	60	62	91	41	84
Link Distance (ft)		420	165		443		183
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	90			90		90	
Storage Blk Time (\%)	0	0		0	1	0	0
Queuing Penalty (veh)	0	0		0	1	0	0

Intersection: 4: Springbrook Rd \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	T	\uparrow	R	L	L	T	T	L	L	T	R
Maximum Queue (ft)	235	390	410	62	81	98	184	185	160	190	210	118
Average Queue (ft)	36	237	233	4	23	45	90	92	41	103	100	41
95th Queue (ft)	122	353	361	70	62	87	160	162	131	175	178	95
Link Distance (ft)		2012	2012				1271	1271			526	
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	350			350	430	430			320	320		320
Storage BIk Time (\%)		,	,	0								
Queuing Penalty (veh)		0	1	0								

Intersection: 4: Springbrook Rd \& OR 99W

Movement	SB	SB	SB	SB
Directions Served	L	L	T	R
Maximum Queue (ft)	164	194	319	154
Average Queue (ft)	67	104	105	45
95th Queue (ft)	141	176	240	119
Link Distance (ft)			443	
Upstream Blk Time (\%)			0	
Queuing Penalty (veh)			0	
Storage Bay Dist (ft)	170	170		130
Storage Blk Time (\%)	0	1	6	0
Queuing Penalty (veh)	0	1	16	1

Intersection: 5: Brutscher St \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	T	R	L	T	T	R	L	TR	L	TR
Maximum Queue (ft)	43	166	180	47	148	126	130	51	146	125	37	62
Average Queue (ft)	8	57	68	6	49	18	24	3	52	43	7	15
95th Queue (ft)	29	135	145	28	110	71	80	23	109	91	27	42
Link Distance (ft)		1271	1271			1266	1266			345		357
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	260			200	350			80	220		50	
Storage Blk Time (\%)			0				1				0	1
Queuing Penalty (veh)			0				0				0	0

Intersection: 6: OR 99W \& Vittoria Way

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	25	30	56	4	197
Average Queue (ft)	2	1	2	0	88
95th Queue (ft)	15	13	23	3	174
Link Distance (ft)		1266	1266	458	204
Upstream Blk Time (\%)					4
Queuing Penalty (veh)					0
Storage Bay Dist (ft)	100				
Storage Blk Time (\%)		0			

Intersection: 7: Providence Dr/Crestview Dr \& OR 99W

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB
Directions Served	T	T	R	L	T	TR	LT	R	LTR
Maximum Queue (ft)	435	450	125	133	174	197	99	94	314
Average Queue (ft)	240	257	36	57	70	75	32	29	167
95th Queue (ft)	400	408	119	109	138	152	77	67	263
Link Distance (ft)	458	458			1777	1777	1122	1218	
Upstream Blk Time (\%)	0	0							
Queuing Penalty (veh)	0	1							
Storage Bay Dist (ft)			100	230				160	
Storage Blk Time (\%)	17	19	0		0		0		
Queuing Penalty (veh)	0	13	0		0		0		

Intersection: 8: OR 99W \& Benjamin Rd

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	34	454
Average Queue (ft)	2	290
95th Queue (ft)	15	541
Link Distance (ft)		526
Upstream Blk Time (\%)		17
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	250	
Storage Blk Time (\%)		

Network Summary

Network wide Queuing Penalty: 35

Intersection: 2: Libra St \& Crestview Dr

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	33	40
Average Queue (ft)	2	19
95th Queue (ft)	16	45
Link Distance (ft)	476	243
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	95	123	134	113	138	90	161
Average Queue (ft)	45	59	63	47	60	32	64
95th Queue (ft)	77	97	108	88	105	67	112
Link Distance (ft)		441	194		432		267
Upstream Blk Time (\%)			0				
Queuing Penalty (veh)			0				
Storage Bay Dist (ft)	90			90		90	
Storage Blk Time (\%)	0	1		1	2	0	3
Queuing Penalty (veh)	1	2		1	2	0	2

Intersection: 4: Springbrook Rd \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	T	R	L	L	T
Maximum Queue (ft$)$	344	444	450	299	146	454	900	896	395	268	307	271
Average Queue (ft)	131	284	273	15	52	140	492	505	198	166	209	137
95th Queue (ft)	267	406	392	137	113	384	851	861	523	258	296	231
Link Distance (ft)		1827	1827				1270	1270				526
Upstream Blk Time (\%)							1	1				
Queuing Penalty (veh)							6	8				
Storage Bay Dist (ft)	350			350	430	430			370	320	320	
Storage Blk Time (\%)	0	2	2	0		0	11	18	0		0	0
Queuing Penalty (veh)	0	2	3	0		0	15	27	1		1	0

Intersection: 4: Springbrook Rd \& OR 99W

Movement	NB	SB	SB	SB	SB
Directions Served	R	L	L	T	R
Maximum Queue (ft)	124	180	195	427	155
Average Queue (ft)	46	67	121	199	76
95th Queue (ft)	94	142	214	384	170
Link Distance (ft)				432	
Upstream Blk Time (\%)				1	
Queuing Penalty (veh)				3	
Storage Bay Dist (ft)	320	170	170		130
Storage Blk Time (\%)		0	1	23	0
Queuing Penalty (veh)		1	2	68	2

Intersection: 5: Brutscher St \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	T	R	L	T	T	R	L	TR	L	TR
Maximum Queue (ft)	70	386	423	225	374	790	744	105	245	372	71	127
Average Queue (ft)	23	184	200	60	297	485	482	15	212	227	15	36
95th Queue (ft)	57	345	375	199	439	1292	1292	67	288	460	47	88
Link Distance (ft)		1270	1270			1264	1264			345		357
Upstream Blk Time (\%)						3	3			28		
Queuing Penalty (veh)						23	27			0		
Storage Bay Dist (ft)	260			200	350			80	220		50	
Storage Blk Time (\%)		2	7	0	29	4	19	0	42	0	1	9
Queuing Penalty (veh)		1	7	0	214	8	8	0	63	1	1	2

Intersection: 6: OR 99W \& Vittoria Way

Movement	EB	WB	WB	SB
Directions Served	L	T	TR	LR
Maximum Queue (ft)	70	194	210	186
Average Queue (ft)	25	64	67	73
95th Queue (ft)	63	301	311	182
Link Distance (ft)		454	454	209
Upstream Blk Time (\%)		1	2	7
Queuing Penalty (veh)		13	15	0
Storage Bay Dist (ft)	100			
Storage Blk Time (\%)	0			
Queuing Penalty (veh)	0			

Intersection: 7: Providence Dr/Crestview Dr \& OR 99W

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB
Directions Served	T	T	R	L	T	TR	LT	R	LTR
Maximum Queue (ft)	257	255	59	215	612	610	214	164	282
Average Queue (ft)	105	113	3	81	236	244	99	59	152
95th Queue (ft)	202	207	27	170	780	781	187	128	250
Link Distance (ft)	454	454			1780	1780	301		852
Upstream Blk Time (\%)					0		0		
Queuing Penalty (veh)					0		0		
Storage Bay Dist (ft)			100	230				160	
Storage Blk Time (\%)	8	10	0		5		3	0	

Intersection: 8: OR 99W \& Benjamin Rd

Movement	EB	WB	WB	SB
Directions Served	L	T	TR	LR
Maximum Queue (ft)	100	16	43	541
Average Queue (ft)	32	1	3	512
95th Queue (ft)	74	12	21	594
Link Distance (ft)		746	746	526
Upstream Blk Time (\%)				87
Queuing Penalty (veh)				0
Storage Bay Dist (ft)	250			
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty: 538

Intersection: 2: Libra St \& Crestview Dr

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	39	58
Average Queue (ft)	2	11
95th Queue (ft)	16	41
Link Distance (ft)	400	217
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	74	90	67	86	94	47	119
Average Queue (ft)	34	47	32	32	37	11	51
95th Queue (ft)	58	75	58	63	69	37	87
Link Distance (ft)		420	165		443		183
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	90			90		90	
Storage Blk Time (\%)	0	0		0	0	0	1
Queuing Penalty (veh)	0	0		0	0	0	0

Intersection: 4: Springbrook Rd \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	T	L	L	T	R
Maximum Queue (ft)	152	526	518	150	82	102	192	187	157	204	208	146
Average Queue (ft)	33	270	267	13	26	50	91	92	44	112	94	44
95th Queue (ft)	96	456	459	126	67	88	159	156	136	183	171	103
Link Distance (ft)		2201	2201				1271	1271			526	
Upstream Blk Time (\%)												
Queuing Penalty (veh)				350	430	430			320	320		320
Storage Bay Dist (ft)	350	4	4	0								
Storage Blk Time (\%)		2	4	0								
Queuing Penalty (veh)		2										

Intersection: 4: Springbrook Rd \& OR 99W

Movement	SB	SB	SB	SB
Directions Served	L	L	T	R
Maximum Queue (ft)	158	188	258	139
Average Queue (ft)	63	102	91	37
95th Queue (ft)	135	168	175	93
Link Distance (ft)			443	
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	170	170		130
Storage Blk Time (\%)	0	0	4	0
Queuing Penalty (veh)	0	0	13	0

Intersection: 5: Brutscher St \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	T	R	L	T	T	R	L	TR	L	TR
Maximum Queue (ft)	60	227	210	80	169	103	101	56	133	143	51	86
Average Queue (ft)	10	70	79	8	72	12	20	3	56	49	8	19
95th Queue (ft)	36	175	179	44	144	58	72	25	119	108	29	66
Link Distance (ft)		1271	1271			1266	1266			345		357
Upstream BIk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	260			200	350			80	220		50	
Storage BIk Time (\%)		0	1	0			1	0			0	2
Queuing Penalty (veh)		0	0	0			0	0			0	0

Intersection: 6: OR 99W \& Vittoria Way

Movement	EB	EB	EB	SB
Directions Served	L	T	T	LR
Maximum Queue (ft)	18	108	129	194
Average Queue (ft)	1	9	11	125
95th Queue (ft)	12	59	68	239
Link Distance (ft)		1266	1266	204
Upstream Blk Time (\%)				25
Queuing Penalty (veh)				0
Storage Bay Dist (ft)	100			
Storage Blk Time (\%)		0		
Queuing Penalty (veh)		0		

Intersection: 7: Providence Dr \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (ft)	93	455	463	125	151	230	240	48	84	49	74	223
Average Queue (ft)	23	283	302	31	60	116	111	12	26	9	32	165
95th Queue (ft)	66	438	457	111	118	209	215	38	69	35	67	237
Link Distance (ft)		446	446			1773	1773			820		
Upstream Blk Time (\%)		0	1									
Queuing Penalty (veh)		4	7									
Storage Bay Dist (ft)	100			100	230			230	160		160	200
Storage Blk Time (\%)	0	21	23	0		0	0					9
Queuing Penalty (veh)	2	5	15	0		0	0					8

Intersection: 7: Providence Dr \& OR 99W

Movement	SB	SB
Directions Served	T	R
Maximum Queue (ft)	318	102
Average Queue (ft)	56	25
95th Queue (ft)	236	66
Link Distance (ft)	1100	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	0	200
Storage Blk Time (\%)	0	
Queuing Penalty (veh)	0	

Intersection: 8: OR 99W \& Benjamin Rd

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	32	502
Average Queue (ft)	2	401
95th Queue (ft)	15	642
Link Distance (ft)		526
Upstream Blk Time (\%)		33
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	250	
Storage Blk Time (\%)		

Network Summary
Network wide Queuing Penalty: 62

Intersection: 2: Libra St \& Crestview Dr

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	42	40
Average Queue (ft)	3	15
95th Queue (ft)	20	41
Link Distance (ft)	476	243
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: Springbrook Rd \& Haworth Ave/Shopping Center

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	95	122	113	93	94	58	104
Average Queue (ft)	42	57	60	50	41	30	56
95th Queue (ft)	72	97	93	86	75	53	88
Link Distance (ft)		441	194		432		267
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	90			90		90	
Storage Blk Time (\%)	0	1		0	0	0	1
Queuing Penalty (veh)	0	2		1	0	0	0

Intersection: 4: Springbrook Rd \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	T	R	L	L	T
Maximum Queue (ft)	351	449	429	300	150	454	680	695	395	264	303	271
Average Queue (ft)	114	296	293	21	66	158	458	471	117	155	203	132
95th Queue (ft)	255	416	408	161	132	408	641	658	413	232	278	229
Link Distance (ft)		1902	1902				1270	1270				526
Upstream BIk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	350			350	430	430			370	320	320	
Storage Blk Time (\%)		3	3	0		0	9	19	0		0	
Queuing Penalty (veh)		3	3	0		0	14	15	0		0	

Intersection: 4: Springbrook Rd \& OR 99W

Movement	NB	SB	SB	SB	SB
Directions Served	R	L	L	T	R
Maximum Queue (ft)	155	169	195	413	155
Average Queue (ft)	52	78	127	202	72
95th Queue (ft)	115	150	216	377	170
Link Distance (ft)				432	
Upstream Blk Time (\%)				0	
Queuing Penalty (veh)				3	
Storage Bay Dist (ft)	320	170	170		130
Storage Blk Time (\%)		0	0	25	0
Queuing Penalty (veh)		0	1	75	1

Intersection: 5: Brutscher St \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	T	R	L	T	T	R	L	TR	L	TR
Maximum Queue (ft)	192	369	394	225	340	550	548	105	244	364	47	82
Average Queue (ft)	26	179	193	53	212	300	306	19	176	112	12	25
95th Queue (ft)	103	339	353	177	369	529	512	76	265	279	37	61
Link Distance (ft)		1270	1270			1264	1264			345		357
Upstream Blk Time (\%)										1		
Queuing Penalty (veh)										0		
Storage Bay Dist (ft)	260			200	350			80	220		50	
Storage Blk Time (\%)		2	5	0	8	2	23	0	9			3
Queuing Penalty (veh)		1	6	0	59	5	9	0	14		1	1

Intersection: 6: OR 99W \& Vittoria Way

Movement	EB	WB	WB	SB
Directions Served	L	T	TR	LR
Maximum Queue (ft)	83	5	72	146
Average Queue (ft)	30	0	2	48
95th Queue (ft)	69	3	43	115
Link Distance (ft)		447	447	209
Upstream Blk Time (\%)				1
Queuing Penalty (veh)				0
Storage Bay Dist (ft)	100			
Storage Blk Time (\%)	1			
Queuing Penalty (veh)	4			

Intersection: 7: Providence Dr/Crestview Dr \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (ft)	123	180	170	84	255	571	582	255	182	196	119	224
Average Queue (ft)	78	63	60	6	94	319	323	100	95	32	54	160
95th Queue (ft)	131	148	134	41	212	535	543	279	163	98	103	241
Link Distance (ft)		447	447			1773	1773			1329		
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	100			100	230			230	160		160	200
Storage Blk Time (\%)	14	2	2	0		13	13	0	3			11
Queuing Penalty (veh)	83	2	1	0		11	22	0	4			6

Intersection: 7: Providence Dr/Crestview Dr \& OR 99W

Movement	SB	SB
Directions Served	T	R
Maximum Queue (ft)	376	108
Average Queue (ft)	54	25
95th Queue (ft)	237	71
Link Distance (ft)	1119	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	0	200
Storage Blk Time (\%)	0	
Queuing Penalty (veh)	0	

Intersection: 8: OR 99W \& Benjamin Rd

Movement	EB	WB	SB
Directions Served	L	TR	LR
Maximum Queue (ft)	78	14	545
Average Queue (ft)	26	1	523
95th Queue (ft)	68	7	589
Link Distance (ft)		746	526
Upstream Blk Time (\%)			90
Queuing Penalty (veh)			0
Storage Bay Dist (ft)	250		
Storage Blk Time (\%)			

Network Summary
Network wide Queuing Penalty: 348

Intersection: 7: Providence Dr \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (ft)	125	461	466	125	159	288	276	207	91	62	103	224
Average Queue (ft)	71	296	313	27	62	151	150	24	31	19	38	176
95th Queue (ft)	130	479	491	99	120	252	257	99	74	49	79	244
Link Distance (ft)		445	445			1774	1774			1117		
Upstream Blk Time (\%)		1	1									
Queuing Penalty (veh)		6	10									
Storage Bay Dist (ft)	100			100	230			230	160		160	200
Storage Blk Time (\%)	8	21	24	0		1	1	0				11
Queuing Penalty (veh)	64	15	16	0		1	1	0				14

Intersection: 7: Providence Dr \& OR 99W

Movement	SB	SB
Directions Served	T	R
Maximum Queue (ft)	419	146
Average Queue (ft)	83	35
95th Queue (ft)	308	90
Link Distance (ft)	1221	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		200
Storage Bay Dist (ft)		0
Storage Blk Time (\%)		0

Intersection: 7: Providence Dr/Crestview Dr \& OR 99W

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (ft)	124	302	273	83	254	894	891	255	160	125	146	225
Average Queue (ft)	102	111	95	6	111	470	473	131	81	31	53	174
95th Queue (ft)	147	245	204	36	248	965	968	312	140	84	106	253
Link Distance (ft)		446	446			1774	1774			951		
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	100			100	230			230	160		160	200
Storage Blk Time (\%)	32	3	5	0	0	20	20	0	1		0	17
Queuing Penalty (veh)	181	4	2	0	0	16	41	1	1		0	23

Intersection: 7: Providence Dr/Crestview Dr \& OR 99W

Movement	SB	SB
Directions Served	T	R
Maximum Queue (ft)	464	183
Average Queue (ft)	108	65
95th Queue (ft)	362	134
Link Distance (ft)	980	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Appendix K
 Year 2020 Phase II Sensitivity Analysis Level of Service Worksheets

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	$\uparrow \uparrow$	7	7	$\uparrow \uparrow$	7	7	\uparrow	7	7	\uparrow	F
Traffic Volume (vph)	69	1536	67	73	1019	92	35	22	63	246	27	96
Future Volume (vph)	69	1536	67	73	1019	92	35	22	63	246	27	96
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		-3\%			2\%			3\%			2\%	
Total Lost time (s)	6.0	6.0	6.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1607	3214	1480	1614	3135	1402	1590	1642	1465	1567	1650	1402
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.74	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	1607	3214	1480	1614	3135	1402	1236	1642	1465	1224	1650	1402
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	75	1670	73	79	1108	100	38	24	68	267	29	104
RTOR Reduction (vph)	0	0	24	0	0	44	0	0	52	0	0	79
Lane Group Flow (vph)	75	1670	49	79	1108	56	38	24	16	267	29	25
Heavy Vehicles (\%)	5\%	5\%	2\%	2\%	8\%	5\%	3\%	5\%	0\%	5\%	5\%	5\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	,			8			4	
Permitted Phases			2			6	8		8	4		4
Actuated Green, G (s)	9.2	68.2	68.2	7.9	66.9	66.9	28.9	28.9	28.9	28.9	28.9	28.9
Effective Green, $\mathrm{g}(\mathrm{s})$	9.2	68.2	68.2	7.9	66.9	66.9	28.9	28.9	28.9	28.9	28.9	28.9
Actuated g/C Ratio	0.08	0.57	0.57	0.07	0.56	0.56	0.24	0.24	0.24	0.24	0.24	0.24
Clearance Time (s)	6.0	6.0	6.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Grp Cap (vph)	123	1826	841	106	1747	781	297	395	352	294	397	337
v/s Ratio Prot	0.05	c0.52		c0.05	0.35			0.01			0.02	
v / s Ratio Perm			0.03			0.04	0.03		0.01	c0.22		0.02
v/c Ratio	0.61	0.91	0.06	0.75	0.63	0.07	0.13	0.06	0.05	0.91	0.07	0.07
Uniform Delay, d1	53.7	23.3	11.6	55.1	18.2	12.2	35.7	35.1	35.0	44.3	35.2	35.2
Progression Factor	0.86	1.55	1.93	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	7.2	6.7	0.1	25.8	1.8	0.2	0.3	0.1	0.1	30.1	0.1	0.1
Delay (s)	53.2	42.9	22.4	80.9	19.9	12.4	35.9	35.2	35.0	74.4	35.3	35.3
Level of Service	D	D	C	F	B	B	D	D	D	E	D	D
Approach Delay (s)		42.5			23.1			35.3			61.4	
Approach LOS		D			C			D			E	
Intersection Summary												
			37.4		HCM 2000	Level of	ervice		D			
HCM 2000 Volume to Capacity ratio			0.90									
Actuated Cycle Length (s)			120.0		Sum of los	time (s)			15.0			
Intersection Capacity Utilization			84.5\%		CU Level	f Service			E			
Analysis Period (min)			15									

c Critical Lane Group

HCS 2010 Roundabouts Report																
General Information							Site Information									
Analyst	ZHB						Intersection				Crestview/East-West Connector					
Agency or Co.	KAI						E/W Street Name				East-West Connector					
Date Performed	10/21/2017						N/S Street Name				Crestview Dr					
Analysis Year							Analysis Time Period (hrs)				0.25					
Time Period	Total AM Phase II Sensitivity Analysis						Peak Hour Factor				0.92					
Project Description	Crestview Crossing						Jurisdiction									
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR				LTR				LTR	
Volume (V), veh/h	0	14	0	32	0	77	0	35	0	11	89	83	0	37	260	5
Percent Heavy Vehicles, \%	0	0	0	0	0	0	0	0	0	0	5	0	0	0	5	0
Flow Rate (VpcE), pc/h	0	15	0	35	0	84	0	38	0	12	102	90	0	40	297	5
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Critical and Follow-Up Headway Adjustment																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		Left	Right	Bypass	Left	Right	Bypass		Right		Bypass
Critical Headway (s)				4.9734				4.9734			4.9734				734	
Follow-Up Headway (s)				2.6087				2.6087			2.6087				87	
Flow Computations, Capacity and v/c Ratios																
Approach			EB				WB			NB			SB			
Lane			Left	Right	Bypass		Left	Right	Bypass	Left	Right	Bypass			ht	Bypass
Entry Flow (ve), pc/h				50				122			204				42	
Entry Volume veh/h				50				122			199				28	
Circulating Flow (vc), pc/h			421			129				55			96			
Exiting Flow (Vex), pc/h			130			17				155			416			
Capacity (cpec), pc/h				899				1210			1305				551	
Capacity (c), veh/h				899				1210			1274				200	
v/c Ratio (x)				0.06				0.10			0.16				27	
Delay and Level of Service																
Approach			EB			WB				NB			SB			
Lane			Left	Right	Bypass		ft	Right	Bypass	Left	Right	Bypass			ght	Bypass
Lane Control Delay (d), s/veh				4.5				3.8			4.1				. 5	
Lane LOS				A				A			A				A	
95\% Queue, veh				0.2				0.3			0.6				. 1	
Approach Delay, s/veh			4.5			3.8				4.1			5.5			
Approach LOS			A			A				A			A			
Intersection Delay, s/veh \| LOS			4.7							A						

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	¢ \uparrow	7	\%	$\uparrow \uparrow$	7	\%	\uparrow	7	\%	\uparrow	F
Traffic Volume (vph)	130	1136	32	79	1745	206	114	35	116	222	19	116
Future Volume (vph)	130	1136	32	79	1745	206	114	35	116	222	19	116
Ideal Flow (vphpl)	1750	1750	1750	1750	1800	1750	1750	1750	1750	1750	1750	1750
Grade (\%)		-3\%			2\%			3\%			2\%	
Total Lost time (s)	6.0	6.0	6.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1654	3184	1479	1646	3256	1444	1621	1690	1465	1614	1699	1444
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.74	1.00	1.00	0.73	1.00	1.00
Satd. Flow (perm)	1654	3184	1479	1646	3256	1444	1270	1690	1465	1245	1699	1444
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	138	1209	34	84	1856	219	121	37	123	236	20	123
RTOR Reduction (vph)	0	0	14	0	0	59	0	0	98	,	0	98
Lane Group Flow (vph)	138	1209	20	84	1856	160	121	37	25	236	20	25
Confl. Bikes (\#/hr)			,									
Heavy Vehicles (\%)	2\%	6\%	0\%	0\%	4\%	2\%	1\%	2\%	0\%	2\%	2\%	2\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	,			8			4	
Permitted Phases			2			6	8		8	4		4
Actuated Green, G (s)	13.0	83.8	83.8	12.3	83.1	83.1	28.9	28.9	28.9	28.9	28.9	28.9
Effective Green, g (s)	13.0	83.8	83.8	12.3	83.1	83.1	28.9	28.9	28.9	28.9	28.9	28.9
Actuated g/C Ratio	0.09	0.60	0.60	0.09	0.59	0.59	0.21	0.21	0.21	0.21	0.21	0.21
Clearance Time (s)	6.0	6.0	6.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Grp Cap (vph)	153	1905	885	144	1932	857	262	348	302	257	350	298
v / s Ratio Prot	c0.08	0.38		0.05	c0.57			0.02			0.01	
v/s Ratio Perm			0.01			0.11	0.10		0.02	c0.19		0.02
v / C Ratio	0.90	0.63	0.02	0.58	0.96	0.19	0.46	0.11	0.08	0.92	0.06	0.09
Uniform Delay, d1	62.9	18.2	11.4	61.4	26.9	13.0	48.7	45.1	44.9	54.4	44.6	44.9
Progression Factor	1.29	0.13	0.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	37.7	1.2	0.0	7.0	13.1	0.5	1.8	0.2	0.2	35.2	0.1	0.2
Delay (s)	118.6	3.6	0.2	68.3	40.0	13.5	50.5	45.3	45.0	89.6	44.7	45.0
Level of Service	F	A	A	E	D	B	D	D	D	F	D	D
Approach Delay (s)		15.0			38.4			47.4			72.7	
Approach LOS		B			D			D			E	

Intersection Summary			
HCM 2000 Control Delay	34.4	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.94		15.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	F
Intersection Capacity Utilization	91.3%	ICU Level of Service	

Analysis Period (min)
C Critical Lane Group

Have we delivered World Class Client Service?
Please let us know by visiting www.geoengineers.com/feedback.

GeoEngineers

LAND USE DOCUMENTS
CRESTVIEW CROSSING PLANNED UNIT DEVELOPMENT

PREPARED FOR
JT SMITH COMPANIES

VICIIITY MAP

$\frac{\text { SITE MAP }}{\text { SCAEE } 1=2000}{ }^{\mathrm{N}}$

PROJECT TEAM

owner/applicant	Civil engineer	PLANNING Consultant	LANDSCAPE ARCHITECT
込		Esure	
Sisisfene			边
Sex	Provel Eise	Prine bib	

SITE INFORMATION

$\underset{\text { TS2WL6 } 1 \text { 1300, } 1100}{\text { TAX }}$
lood hazard

JURISDICTION
cIr O F NWWURG

R.1, R2: 2 ANO
ZON

$\underset{3}{\mathbf{G}, 3 \text { ROCCRES }}$
UTILITIES \& SERVICES
STIORM, SEWER
CITO OEWERER
WATER
GTro on New
${ }_{\text {PGE }}^{\text {POWER }}$
$\underset{\text { Nortivis }}{\text { GAS }}$
cable
bLE
FiRE
Chools
PARKS
CHEALEM
$\underset{\text { NEWERERG POLCE DEPARTMENT }}{ }$ ${ }_{\text {RITY OF NEWERG, ODot }}^{\text {ROAD }}$
 PECIFICATIONS FOUND
 CONSTRUCTION STANDARD.

EROSION AND SEDIMENT CONTROL PLAN (ESCP) COVER SHEET

PROPERTY DESCRIPTION

PROJECT LOCATION

OWNER/APPLICANT

LANNING CONSULTANT

 CIVIL ENGINEER

 coll
LANDSCAPE ARCHITECT

NARRATIVE DESCRIPTIONS ExISTING SITE CONDITIONS
 DEVELOPED CONDITIONS

NATURE OF CONSTRUCTION ACTVITY AND
MIEARNG (INE 20.9)
 NAL STABLLLZATION (UNE O202O)
TALON-STEE AREA $=1,442,521$ SF $=33.13$ ACRES TTAL OFF-STIE AREA $=50,990$ SF $=1.17 \mathrm{ACR}$ TAP $\operatorname{PEA}=1,493,511 \mathrm{SF}=34.30 \mathrm{ACRES}$ Site soll classification

 RECEIVING WATTR Bodies:

> LOCAL AGENCY (CITY OF NEWBERG) SPECIFIC EROSION CONTROL NOTES:

STANDARD EROSION AND SEDIMENT CONTROL PLAN DRAWING NOTES:

 BMP MATRIX FOR CONSTRUCTION PHASES AVALABLE EMPS.

	cleanc	${ }^{\text {mass }}$ dend	unuly usaluron	$\left.\right\|_{\text {cousisuctrow }} ^{\text {sin }}$		
- masemememen	${ }^{-\times}$					
Woumememme						
, mismeme	\times	\times		\times		
Timememmensems						
	${ }^{-\times}$	x				
$0^{\text {a }}$						
nimperim	${ }^{-\times}$					
Maxderferememer	-	$\stackrel{\square}{-}$	\times	\times	\times	
	-	${ }^{\times}$				
		-	-	${ }_{x}$	x	
	$\stackrel{+1}{ }$		-			
- numbereamer						
		$\frac{\frac{x}{x}}{\frac{x}{x}}$				
cometmentram	-					

RATIONALE STATEMENT

SHEET INDEX
EROSION AND SEDIMENT CONTROL PLANS
C120 EROSION AND SEDIMENT CONTROL COVER SHEET
C121 CLEARING AND DEMOLITION EROSION AND SEDIMENT CONTROL PLAI C122 GRADING AND STREET CONSTRUCTION EROSION AND SEDIMENT CONTROL PLAN C123 EROSION AND SEDMENT CONTROLDETALLS

NTITAL

C124 EROSION AND SEDIMENT CONTROL DETALLS II

EROSION CONTROL KEY NOTES

55 constuor concrie washur bain ien newer
6 Provid constuctov stagn and parkng are for ste access

GRADING, STREET AND UTLITY EROSION AND SEDIMENT CONSTRUCTION

 THE STock

 Noll

 G. SEEDNG S. Shall

Rosion and sediment control bup implementation

 .

\qquad

SUBDIVISION STATISTICS

zonne	ZONER-1	ZONER.2	$\begin{gathered} \text { ZONE R-2 } \\ \text { PUD* } \\ \text { AS PROPOSED } \end{gathered}$	20
ZONE AREA	${ }^{4.31}$ ACRES	6.58 ACRES	6.58ACRES	$2224 A C$ CES
maxmum denstrr		310 Devstr	310 Onsiry Poinsicher	
maxmum Lot size	10.000 SF	5,00 SF	3,100 SF	NA
mnnum Lot stze	5,00 SF	3.000 SF	1,440 SF	$5_{50005 F}$
ммmum Lot wioth	${ }^{\text {55Fт@ }}$ ¢	${ }^{5} 5 \mathrm{FT}$ @ ${ }^{\text {b }}$	21.5 ¢T	n/
maxmum Lot coverage	30\%	50\%	60\%	nA
maxmum bulomg height	${ }_{30 \mathrm{FT}}$	${ }_{30 \mathrm{FT}}$	${ }_{30 \mathrm{FT}}$	NA
setbacks				
front	${ }_{15 \mathrm{FT}}$	${ }_{15 \mathrm{FT}}$	${ }^{10 \mathrm{Ft}}$	${ }^{10 \mathrm{Ft}}$
interor	${ }_{5 \text { st }}$	5 5t	2.5 FT	овтTIOFT

SUBDIVISION STATISTIC

zonnc Coob Chaprer 3 320	Zoner-1	ZONER.2	$\begin{gathered} \text { ZONE R-2 } \\ \text { PUD* } \\ \text { AS PROPOSED } \end{gathered}$	ZONE C.2
zONE AREA	4.31 ACRES	6.5. ACRESS	6.58ACRES	2224 ACRES
maxmum densitr				
maxmum Lotsize	${ }^{10,000 ~ S F}$	5,000 SF	3,100 SF	NA
MnMum Lot size	5,000 SF	3.000 SF	${ }^{1.400 ~ S F}$	5.000 SF
MnMum Lot wioth	${ }^{35} \mathrm{FT}$ @ EL	${ }^{35} 5$ т@ ${ }^{\text {¢ }}$	21.5 rt	NA
maxmum Lot coverage	30\%	50\%	60\%	NA
maxmumbulowng height	${ }_{30}$ FT	${ }_{30}$ FT	${ }_{\text {30 F }}$	NA
setbacks				
front	${ }_{15 \text { FT }}$	${ }_{15 \mathrm{FT}}$	${ }_{10 \mathrm{Ft}}$	${ }^{10 \mathrm{Ft}}$
intrror	${ }_{5 \text { fr }}$	${ }_{56 T}$	2.5 FT	огт

LEGEND	
	PROPOSED CAR CIRCULATION
-	proposed standoro parkn s stall
I	proposeo parallel Parkng stal
N	
N	Proposed ada Parkng stals

PARKING STATISTICS
PROPOSED STALL COUNT \& SUMMA

multifamily Lot parking - accessible

LIGHTING ZONE CALCULATIONS

ARI 1: ARTERIAL RESIDENTIAL INTERSECTION \#1 | | CITr STANOARD | Calculateo |
| :--- | :--- | :--- |
| | | |
| AVERAGE MANTANED ILUMNANCE (FC) | 20 MIN | 2.46 | ARR 2: ARTERIAL RESIDENTIAL ROAD \#2

 CCI 2: COLLECTOR COMMERCIALINTERSECTION \#2

CCR 2: COLLECTOR COMMERCIAL ROAD \#1		CITY STANDARO	Calculateo
AVERAGE MANTANED ILUMNANCE (FC)	1.2 MN	1.31	

CCR 3: COLLECTOR COMMERCIAL ROAD \#3

CRI 1: COLLECTOR RESIDENTIAL INTERSECTION \#1

CRI 3: COLLECTOR RESIDENTIAL INTERSECTION \#3
 CRR 1: COLLECTOR RESIDENTIAL ROAD \#1

\section*{CRR 3: COLLECTOR RESIDENTIAL ROAD \#3} | | CITY STANOARD | Callculated |
| :--- | :--- | :--- |
| Average mantaned ILUMMNANE (FC) | 0.7 MN | 0.96 |

CRR 5: COLLECTOR RESIDENTIAL ROAD \#5

CRR 7: COLLECTOR RESIDENTIAL ROAD \#7 Citis standaro calculated (
LRR 2: LOCAL RESIDENTIAL ROAD \#2 (PRIVATE)

ACR 1: ARTERIAL COMMERCIAL ROAD \#

ARR 1: ARTERIAL RESIDENTIAL ROAD \#1 | | atr STANDARD | Calculated |
| :--- | :--- | :--- |
| AVERAGE NANTANED ILUMMNANEE FOC) | 1.0 MIN | 1.41 |

CCI 1: COLLECTOR COMMERCIAL INTERSECTION \#1
 CCI 3: COLLECTOR COMMERCIAL INTERSECTION \#3

CCR 1: COLLECTOR COMMERCIAL ROAD \#2

CCR 3: COLLECTOR COMMERCIAL ROAD \#4		CITY STANDARD	calculated
AVEEAGE MANTANED ILUMNNANCE (FC)	1.2 IN	1.39	

CRI 2: COLLECTOR RESIDENTIAL INTERSECTION \#2
 CRI 4: COLLECTOR RESIDENTIAL INTERSECTION \#4

CRR 2: COLLECTOR RESIDENTIAL ROAD \#2		CITr STANDARD	CaLCULATED
AVERAGE MANTANED ILUUNNANCE (FC)	0.7 MN	1.15	CRR 4: COLLECTOR RESIDENTIAL ROAD \#4

 CRR 6: COLLECTOR RESIDENTIAL ROAD \#6
 LRR 1: LOCAL RESIDENTIAL ROAD \#1 (PRIVATE)

LRR 3: LOCAL RESIDENTIAL ROAD \#3 (PRIVATE)

APL 1: APARTMENTS PARKING LOT \#1 (PRIVATE)

ONSTRUCTION KEY NOTE

(

EGEND

LLUMINATION GENERAL NOTES

ILLUMINATION GENERAL NOTES

construction key notes

7 Instal smw Le luminare Tre

LIGHTING ZONE CALCULATIONS
APL 1: APARTMENTS PARKING LOT \#1 (PRIVATE)

GENERAL LANDSCAPE NOTES
Anoscape phanting shall conoorn to the stañ
AlL PLant teos shal have a 3 " Depth of bark much

J.

I Enargement
!LSS 1.4

A MAIN ENTRY SIGNAGE

LANDSCAPE PLANT MATERIAL SCHEDULE

LANDSCAPE PLANT MATERIAL SCHEDULE

$\underset{\text { smmeon }}{\text { LANDSAPE PLANT MATERIAL SCHEDUL }}$

ACER RUBRUM 'FRANKSRED PLATANUS X ACERIFOLIA 'BLOODGOOD
TREES

sze
${ }_{2}$ coal.

 osax xaprazzi $\quad 3$ cal. Shruss - Evergreen Privus Lavoockrauss Nana
 ellax \times granoflic

 MBuencum davion
 GRasses a Accen Cition Mig

\section*{| grouncovers |
| :---: |
| ITEM |}

Pa
 ANUNALS

C Cardino
 J. . SMITH
 \qquad

[^7]

CRESTVIEW CROSSING PLANNED DEVELOPMENT

10. BUILDING TYPE A2 - TYPICAL END ELEVATION

5. PERSPECTIVE

Lrs
ARCHITECTS

$\underset{\substack{\text { Prebilinary } \\ \text { construction }}}{ }$
consultant:

RouEct Number:
Crestview
Crossing
NEWBERGG
sheit Trie
BUILDING A2
EXTERIOR
ELEVATIONS

A102

10. BUILDING TYPE A2 - TYPICAL END ELEVATION

5. PERSPECTIVE

Lrs
ARCHITECTS

$\underset{\substack{\text { Prebilinary } \\ \text { construction }}}{ }$
consultant:

RouEct Number:
Crestview
Crossing
NEWBERGG
sheit Trie
BUILDING A2
EXTERIOR
ELEVATIONS

A102

10. SOUTH ELEVATION

11. NORTH ELEVATION

12. MAIN LEVEL PLAN VIEW

ARCHITECTS

5. eASt elevation

6. PERSPECTIVE

Roject number.
Crestview
Crossing

SHEET TLIE
CLUBHOUSE

CLUBHOUSE
EXTERIOR
ELEVATIONS

A103

GENERAL NOTES:

c. SEA AHEET FR STANARDEXTURE

WALL TYPES

Extroor walls

-Trpcal wall w wimg sixtemispe
-trecal wall is tre

8. NTEROR WaLls

Alderbrook

 Apartments
wals wrt wooo sheatine

HORIZONTAL ASSEMBLIES

OrDucra
LEGEND
Hour frem partion

21 ft rear loaded plan concept

ground floor	298 sq ft
main lioor	772 sq
upper floor	721 sq ft
total	

2Iff front loaded plan concept

ground floor	445 sq ft
main floor	748 stt
upper floor	755 ft
total	$1,948 \mathrm{ft}$

445 sq ft
748 sqft
755 sqft
1,988 sqft

$25 f t$ rear loaded plan concept

ground floor	365 sq ft
min floor	790 sft
upper floor	823 sq
total	$1,978 \mathrm{sq} \mathrm{ft}$

$25 f t$ front loaded plan concept

ground floor	445 sqft
main	
uppor	881 sft
tpper floor	852 ftt
total	$2,178 \mathrm{sq} \mathrm{ft}$

21 ft rear loaded plan concept

ground floor	298 sq ft
main lioor	772 sq
upper floor	721 sq ft
total	

2Iff front loaded plan concept

ground floor	445 sq ft
main floor	748 stt
upper floor	755 ft
total	$1,948 \mathrm{ft}$

445 sq ft
748 sqft
755 sqft
1,988 sqft

$25 f t$ rear loaded plan concept

ground floor	365 sq ft
min floor	790 sft
upper floor	823 sq
total	$1,978 \mathrm{sq} \mathrm{ft}$

$25 f t$ front loaded plan concept

ground floor	445 sqft
main	
uppor	881 sft
tpper floor	852 ftt
total	$2,178 \mathrm{sq} \mathrm{ft}$

Attachment 2: Agency Comments

From:
Sent:
To:
Cc:
Subject:

CARY Dan dan.cary@state.or.us
Monday, July 30, 2018 1:54 PM
Keith Leonard
Doug Rux; BROWN Jevra
RE: File No.PUD18-0001/CUP18-0004 Yamhill County Tax Map and Lot Numbers 3216-13800 \& 3216-01100

Keith,
I am told by the applicant that there is a new revised application coming but I have not seen it. I am not reviewing any application at this time. They are in an extension of my permit decision deadline until August 31, 2018. They will likely need to request another extension to maintain this file number since I still haven't received a new application. From the informal plans I have seen the project has changed significantly and it will go back out for public review and restart the clock for the whole process when I get a complete application. That is all I have.

Dan
Dan Cary, PWS
Aquatic Resource Coordinator Columbia and Clatsop Counties
Aquatic Resource Management Program
Oregon Department of State Lands
775 Summer Street NE, Suite 100
Salem OR 97301-1279
Phone: (503) 986-5302
DSL websites: www.oregon.gov/dsl; www.statelandsonline.com

From: BROWN Jevra
Sent: Monday, July 30, 2018 12:11 PM
To: 'Keith Leonard'
Cc: CARY Dan ; Doug Rux
Subject: RE: File No.PUD18-0001/CUP18-0004 Yamhill County Tax Map and Lot Numbers 3216-13800 \& 3216-01100
WD2013-0148, delineation, is for tax lots $1100 \& 13800$. This is still active for a few more months. Technically delineations expire after five years unless 1) there is a request for reissuance within one year of the expiration date (November 8,2018) or 2) it is associated with an active authorization.
From there I leave it to Dan...

Jevra Brown, Aquatic Resource Planner
Department of State Lands
Office 503-986-5297 (M, T, W); cell: 503-580-3172 (Th, F); fax 503-378-4844
jevra.brown@state.or.us http://www.oregon.gov/DSL/pages/index.aspx
Messages to and from this e-mail address may be available to the public under Oregon Public Record Law.

From: Keith Leonard Keith.Leonard@newbergoregon.gov
Sent: Friday, July 27, 2018 6:00 AM
To: BROWN Jevra jevra.brown@dsl.state.or.us
Cc: CARY Dan dan.cary@dsl.state.or.us; Doug Rux Doug.Rux@newbergoregon.gov
Subject: RE: File No.PUD18-0001/CUP18-0004 Yamhill County Tax Map and Lot Numbers 3216-13800 \& 3216-01100

Hello,
To verify, the property owner does not have a wetlands delineation permit in review for either tax lots 1100 or 13800 due to expiration? Please let me know what time would be good to call Mr. Cary. I am in the office and would like to talk to you regarding this project. Thanks!

Keith Leonard, AICP |Associate Planner
City of Newberg
(503) 537-1215
keith.leonard@newbergoregon.gov

From: BROWN Jevra [mailto:jevra.brown@state.or.us]
Sent: Thursday, July 26, 2018 6:36 PM
To: Keith Leonard Keith.Leonard@newbergoregon.gov
Cc: CARY Dan dan.cary@state.or.us
Subject: File No.PUD18-0001/CUP18-0004 Yamhill County Tax Map and Lot Numbers 3216-13800 \& 3216-01100

RE https://www.newbergoregon.gov/cd/page/crestview-crossing-planned-unit-development

Hi Keith,
A database search returned the following:
Expired delineation WD2000-0260 for tax lot 1100
Expired delineation WD2006-0698 associated with administratively closed permits 40337-RF and 48735-RF for Crestview Crossing - Part 1.
Crestview Crossing - Part 2 WD2013-0148, administratively closed application 57027-RF, 58464-RF application on extension.
No Wetland Land Use Notices

Dan Cary is reviewing the permit, I have copied him if you have questions.
You may check the status of permits and delineations in review here:
http://www.statelandsonline.com/index.cfm?fuseaction=Home.home

Best,
Jevra Brown, Aquatic Resource Planner
Planning and Policy Unit, Aquatic Resource Management Program
Department of State Lands
775 Summer St. NE Suite 100, Salem, Oregon, 97301
Office (M-W) 503-986-5297; cell (Th-F) 503-580-3172; fax 503-378-4844
jevra.brown@state.or.us
http://www.oregon.gov/DSL/pages/index.aspx
Messages to and from this e-mail address may be available to the public under Oregon Public Record Law.

City Manager
(503) 538-9421
(503) 538-5013 Fax

Community Development Department - Planning Division
P.O. Box 970-414 E, First Street - Newberg, Oregon 97132 - (503) 537-1240 - Fax (503) 537-1272

REFERRAL TO: PGE, Service \& Design

The enclosed material has been referred to you for your information and comment. Any comments you wish to make should be returned to the Community Development Department prior to July 20, 2018. Please refer questions and comments to Keith Leonard.

NOTE: Full size plans are available at the Community Development Department Office.
APPLICANT: 3J Consulting, Inc., Andrew Tull
REQUEST: Crestview Crossing Planned Unit Development \& Conditional Use Permit
SITE ADDRESS: 4505 E Portland Rd
LOCATION: Newberg

TAX LOT: \quad R321601100
FILE NO: PUD18-0001 / CUP18-0004

ZONE:
COM, MDR, LDR

HEARING DATE: 08/09/2018 Reviewed; no conflict.
\qquad Reviewed; recommend denial for the following reasons:
\qquad Require additional information to review. (Please list information required)
\qquad Meeting requested.
\qquad Comments. (Attach additional pages as needed)

Reviewed By:

Keith Leonard

From:
Rick Schiedler Rick.Schiedler@pgn.com
Sent:
Tuesday, July 24, 2018 12:58 PM
To:
Subject:

Keith Leonard
RE: Crestview Crossing-Newberg

Keith,

Tell them that they need 10 ft . PUEs along all street frontages.

Thanks Rick

From: Keith Leonard [mailto:Keith.Leonard@newbergoregon.gov]
Sent: Thursday, July 19, 2018 2:55 PM
To: Rick Schiedler
Subject: RE: Crestview Crossing-Newberg
Please take care when opening links, attachments or responding to this email as it originated outside of PGE.
Thank you! I have forwarded your comment to the applicant, I see they have 8' PUEs along internal streets.

Keith Leonard, AICP |Associate Planner
City of Newberg
(503) 537-1215
keith.leonard@newbergoregon.gov

From: Rick Schiedler [mailto:Rick.Schiedler@pgn.com]
Sent: Thursday, July 19, 2018 1:55 PM
To: Keith Leonard Keith.Leonard@newbergoregon.gov
Subject: Crestview Crossing-Newberg

Keith Leonard

From:
Sent:
To:
Cc:
Subject:
Attachments:

FRICKE Daniel L Daniel.L.FRICKE@odot.state.or.us
Monday, July 23, 2018 8:21 AM
Keith Leonard
KNECHT Casey; EARL Robert
ODOT Comments on PUD 18-0001/CUP 18-0004 - Crestview Crossing
Crestview Crossing (Newberg) - ODOT TIA Review Comments

Keith -

Thank you for providing the Oregon Department of Transportation (ODOT) with an opportunity to review and comment on the subject application. The project site fronts on OR 99W and proposes to connect a new city street (Crestview Drive) to the highway at the existing signalized intersection at Providence Drive. ODOT staff have reviewed the project plans and the transportation impact analysis that have been submitted to the city. Our comments and recommendations are as follows.

TIA Review

The TIA has been reviewed by Region 2 Traffic - comments and recommendations are in included in the attached document. Questions on the TIA comments should be directed to Fahad Alhajri (503-986-2996 or fahad.alhajri@odot.state.or.us). Note that ODOT supports all improvements identified in the TIA necessary to meet operational standards.

Roadway Improvements

The following roadway improvements have been identified

- Installation of a westbound right-turn deceleration lane on OR 99W approaching Crestview Drive
- At the northeast corner of the OR 99W/Crestview Drive intersection, the sidewalk will need to connect to the highway shoulder with an "End of Walk" ADA compliant connection (ODOT Standard Drawing RD 754).
- The crosswalk on the east leg of the intersection (across OR 99W) must be reinstalled along with appropriate modifications to the traffic signal (signal modifications are addressed in more detail below)
- The required roadway and signal improvements will trigger the need to assess all curb ramps and push buttons at OR 99W/Crestview Drive. Any non-compliant curb ramps shall be remediated to meet State ADA standards.

The following condition of approval is proposed to address required roadway improvements:
Prior to the issuance of the first grading or building permit, the applicant shall submit plans and specifications for all improvements/construction within ODOT right-of-way for review and approval by ODOT District 3 and issuance of a permit to construct within ODOT right-of-way. ODOT shall certify that all construction activities have been completed pursuant to the approved plans and specifications prior to the issuance of the first certificate of use and occupancy, or the city's equivalent.

Signal Modifications

It is likely that the entire signal installation will need to be replaced to accommodate the Crestview Drive leg being added to the existing intersection. The following is a list of the minimum modifications that are anticipated to be necessary:

- The existing signal poles on the north side of the intersection will need to be replaced to accommodate the new Crestview Drive
- A new mast arm will be needed in the southwest quadrant of the intersection to signalize the new Crestview Drive leg.
- New pedestrian signal and push-button pedestal for the pedestrian crossing on the east leg of the intersection.
- New detection will be needed depending on how new ADA ramps affect crosswalk locations (note that Region 2 is using radar detection)

The following condition if approval is proposed to address the required signal modification:
Prior to issuance of the first grading or building permit, the applicant shall submit signal modification plans for the review of the ODOT Region 2 Traffic Engineer and the review and approval of the State Traffic Engineer. ODOT shall certify that all required signal modifications have been completed and the signal operational prior to the issuance of the first certificate of use and occupancy, or the city's equivalent.

This should be included in the record as ODOT testimony. ODOT should be considered a party to the hearing and be entitled to notices of future hearings, or hearing continuances or extensions. Please provide me with a copy of the City's decision, including findings and conditions of approval.

Dan Fricke, Senior Transportation Planner
Oregon Department of Transportation
Region 2
455 Airport Road SE Building B
Salem, OR 97301-5395
Ph: 503-986-2663
e-mail: daniel.l.fricke@odot.state.or.us

Fax (503) 986-2839
DATE: July 19, 2018
TO:
Dan Fricke
Region 2 Senior Planner

FROM:

Region 2 Traffic Analyst
SUBJECT: Crestview Crossing (Newberg) - Outright Use TIA Review Comments

ODOT Region 2 Traffic has completed our review of the submitted traffic impact analysis (dated June 2018) to address traffic impacts due to development of a 33.13acre property consisting of 260 single family homes and 48 apartment units in Newberg. The property is located north of OR 99W between Vittoria Way and Benjamin Road. The TIA will be reviewed with respect to consistency and compliance with current versions of ODOT's Analysis Procedures Manual (APM). Both versions of the APM were most recently updated in January 2018. Current versions are consistently published online at: http://www.oregon.gov/ODOT/TD/TP/Pages/APM. aspx. As a result, we submit the following comments for the consideration of Region Development Review and the City:

Analysis items to note:

- This study has utilized Highway Capacity Software (HCS) 2010 version 6.9 for roundabout analysis. However, a newer version HCS 7 is available and utilizes the updated Highway Capacity Manual Methodology for roundabouts.
- Region Traffic assumes all land uses and densities offered under the current zones are consistent with the City's code as cited in the report.

Analysis items to be addressed:

1. Page 16, Saturation Flow Rate - The base saturation flow rate was calibrated to 1,800 pcphgl, a saturation flow rate study in compliance with the guidelines within the HCM was not provided to justify the use of a higher saturation rate.
2. Page 19, In-process trips - ODOT received a TIA for Providence Medical Office Building (63,000 square-feet) located just south of the OR 99W/Providence Dr.
intersection and is anticipated to be constructed/occupied by year 2019. Applicant should verify with the City of Newberg that no further developments have been approved at the time of application.
3. Per Figure 5, A two percent annual growth rate was not applied at intersection \#7. This will unlikely have impact on conclusion of the study.
4. Figure 7, intersection \#7- ODOT will not run analyses with zero vehicles making available permitted movements. Rather, if count data does not identify any vehicles within the peak hour making a movement, we recommend assuming a low volume (1 or 2) rather than zero. The algorithms within Synchro utilize different formulas if there are zero conflicting vehicles.
5. Synchro, Benjamin Rd/OR 99W Background condition (year 2020) - The PM peak hour eastbound through movement volume is 1414 rather than 1441.
6. Page 25, Table 4 - per the Institute of Transportation Engineers (ITE), the proposed weekday trip generation for "Multifamily Housing" (ITE land use code 220) is 323 rather than 1,622 .
7. Figure 9, The trip distribution pattern of 15 percent arriving/departing to the east of OR 99W appears to be significantly low when taken into account the reassigned traffic volumes in Figure 6.

According to Figure 6, at Springbrook Rd/Crestview intersection nearly half of traffic (AM peak 204 of 349) was rerouted to Libra St/Crestview Dr., then to Crestview Dr./East-West Connector and finally east from OR 99W/Providence. It appears that there is a greater than 15 percent demand for travel to/from east on OR 99W.
8. Pages 31-32, Table 5-When reporting the queue lengths, the reported values should be conservatively rounded up to the next 25 feet.

Additionally, the reported storage lengths in Table 5 should be consistent with the values modeled in SimTraffic.
9. Per Development Review Guidelines (Chapter 3, Section 3.3), the analysis should evaluate impacts 5 years out from opening year in addition to opening year.
Therefore, the analysis shall evaluate impacts for year 2025.

Application for State Highway Approach comments:

10. Per 2016 SPIS Report, the intersection of OR $99 W$ and Providence Road is no longer a top 5\% SPIS site.

Proposed mitigation comments:

11. ODOT maintains jurisdiction of Pacific West Highway No. 91 (OR 99W) and ODOT approval shall be required for all proposed mitigation measures to this facility.
12. All proposed intersection and/or signal modifications (new installations or changes to existing phasing or timing), changes to lane configuration, and additional turn or
receiving lanes will require ODOT approval. Both the City and the applicant shall be aware no approval for any proposed mitigations have been issued at this time and proposed mitigations shall not be considered approved for installation until formal written approval has been issued. Approval request will need to be submitted to Region 2 Traffic and be accompanied by the appropriate analysis justifying such request. The approval process takes time and any approval could possibly have added features required to obtain such approval.
13. Reconfiguring the northbound Providence Drive approach to include an exclusive left, exclusive thru and exclusive right lanes, will likely not be accomplished by just restriping. Reconstructing the approach might be necessary to accommodate for adequate lane widths.

Thank you for the opportunity to review this traffic impact analysis. As the Synchro files were not provided, Region 2 Traffic has only reviewed the submitted report. The above comments will merit the need for reanalysis, we look forward to a second round of review at which time we will comment on any and all proposed mitigation measures affecting the state highway system. For any questions regarding these comments, please contact me at Fahad.Alhairi@odot.state.or.us or directly at (503) 986-2996.

Attachment 3: Public Comments

Keith Leonard

From:	Kleinmanjl kleinmanjl@aol.com
Sent:	Thursday, August 02, 2018 9:41 AM
To:	Keith Leonard
Subject:	Crestview Crossing, File No. PUD18-0001/CUP18-0004
Attachments:	Six-Party Agreement (signed) 4-10-2006.pdf; Oxberg Source Water Assessment - April
	2004_1of2.pdf; Oxberg Source Water Assessment-Appendices - April 2004_2of2.pdf

Hi Keith,
In order to avoid potential problems with oversized transmissions later, I am submitting the following exhibits for the above case file now. I will send one more large document separately, and will emall my memorandum to the Planning Commission later this morning.

1. Six-Party Agreement dated April 10, 2006.
2. Source Water Assessment Report by the State of Oregon for the Oxberg Water System, April 2004.
3. Appendices to the above report.

Please confirm receipt of this message and the attachments. Thanks very much.
Jeffrey L. Kleinman
Attorney at Law
The Ambassador
1207 SW Sixth Avenue
Portland, OR 97204
Tel (503) 248-0808
Fax (503) 228-4529

NOTICE: This communication and its attachments are confidential and may be protected by the attorney-client privilege and/or work product doctrine. If you have received it in error, please advise the sender by reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.

Tax Advice Notice: IRS Circular 230 requires us to advise you that, it this communication or any attachment contains any tax advice, the advice is not intended to be used, and cannot be used, for the purpose of avoiding federal tax penalties or for promoting, marketing, or recommending to anyone else any tax-related matters addressed herein. A taxpayer may rely on professional advice to avoid federal tax penalties if and only if the advice is reflected in a comprehensive tax opinion that conforms to strict requirements. This office does not issue such opinions.

NOTE: 1) The "Six Party Agreement dated April 10, 2006" can be found in Attachment 6 and is commonly referred to as the " Five Party Agreement.

Keith Leonard

From:	Kleinmanjl kleinmanjl@aol.com
Sent:	Thursday, August 02, 2018 9:47 AM
To:	Keith Leonard
Subject:	Crestview Crossing, File No. PUD18-0001/CUP18-0004
Attachments:	DSL-Wetland Delineation Report 2-4-2008.pdf

Hi Keith,
Attached please find one more exhibit for the above case file, Wetland Delineation Report with DSL letter dated February 4, 2008.

Thanks again.

Jeffrey L. Kleinman
Attorney at Law
The Ambassador
1207 SW Sixth Avenue
Portland, OR 97204
Tel (503) 248-0808
Fax (503) 228-4529
NOTICE: This communication and its attachments are confidential and may be protected by the attorney-client privilege and/or work product doctrine. If you have received it in error, please advise the sender by reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.

Tax Advice Notice: IRS Circular 230 requires us to advise you that, it this communication or any attachment contains any tax advice, the advice is not intended to be used, and cannot be used, for the purpose of avoiding federal tax penalties or for promoting, marketing, or recommending to anyone else any tax-related matters addressed herein. A taxpayer may rely on professional advice to avoid federal tax penalties if and only if the advice is reflected in a comprehensive tax opinion that conforms to strict requirements. This office does not issue such opinions.

Note: The Wetland Delineation Report with DSL letter dated February 4, 2008 was submitted by another commenter and is located in Attachment 3 Public Comments

Jeffrey L. Kleinman
Attorney at Law
The Ambassador
1207 S.W. Sixth Avenue
Portland, Oregon 97204
Telephone (503) 248-0808
Fax (503) 228-4529
Email KleinmanJL@aol.com

MEMORANDUM

To: Newberg Planning Commission
From: Jeffrey L. Kleinman
Date: August 2, 2018
Re: Crestview Crossing, File No. PUD18-0001/CUP18-0004

I. INTRODUCTION

I represent Oxberg Lake Homeowners Association (the "HOA"). The HOA objects to the above application on several grounds, as set out below. For each of the specified reasons, the applicant has failed to meet the requisite burden of proof under the city's approval criteria.

II. THE SIX-PARTY AGREEMENT

On April 10, 2006, the City of Newberg, Yamhill County, Oxberg Lake Homeowners Association, Ken and Joan Austin, JT Smith Companies, and MeadowWood Development, LLC entered into an agreement (the "Agreement"), regarding the Northerly Arterial designated in the city's Transportation System Plan. A
copy of the Agreement is attached for reference. Initially, the Northern Arterial was to be Crestview Drive connecting to Highway 99W. Under the Agreement, the city agreed to amend its TSP to designate Springbrook Road as its Northern Arterial and to designate Crestview Drive as a Major Collector, instead. The general design and alignment of that road is depicted in Exhibit A to the Agreement. It was agreed that the Crestview Drive Major Collector will be posted as "no through trucks" and designed to encourage a 25 mph speed limit. To provide traffic calming for this purpose, it was agreed that a roundabout is to be placed on Crestview Drive directly south of its intersection with Robin Court, as shown on page two of Exhibit A.

The Agreement also includes as Exhibit B an engineering study completed by JRH Transportation Engineering, dated March 27, 2006. This study analyzes and supports the designation of Springbrook as the Northern Arterial and the conversion of Crestview to a Major Collector.

The Agreement is not time-limited. It is not dependent upon any particular development proposal. It remains binding upon all of the parties and their successors and assigns. Nonetheless, the within application appears to move the location of the designated roundabout on Crestview significantly further to the south. There, it may benefit traffic flow for the development itself but will not have the traffic-calming effects within Oxberg Lake for which it was duly negotiated and agreed by the parties.

Thus, approval of this development in its approved form would violate the Agreement and is simply impermissible. Moreover, Oxberg Lake Homeowners Association hereby gives notice that it intends to enforce its rights under the Agreement
moderate overall water system sensitivity.

The report concludes that, "[u]nder a 'worst case' scenario, where it is assumed that nothing is being done to protect groundwater quality at the identified potential contaminant sources, the assessment results indicate that the water system would be highly susceptible to the identified moderate-risk potential contaminant sources." Id. at 12.

In 2008, the Oregon Department of State Lands ("DSL") reviewed a wetland delineation report prepared for an earlier development proposal on the site. A copy of this report has also been provided for reference. The report identifies two unnamed tributaries of Spring Brook Creek on the property and .32 acre of PEM wetland, 1.638 acre of PFO wetland, and .29 acre of PEM/PSS wetland. The larger perennial tributary of Spring Brook Creek enters the northwest corner of Tax Lot 1100 and exits on the south side.

In addition to failing to address impacts upon the Water System, the applicant's materials fail to properly take the above wetlands into account. More fundamentally, though, we understand that given the completely different nature of the development now proposed for the site, DSL will require an entirely new delineation for its review and approval or rejection. Given the prominence of wetlands on the property, we cannot now know what an approvable delineation would look like $v i s$ - a-vis the current proposal, and whether the development as proposed is feasible in the first place. LUBA has held:
" $[A] s$ the initial feasibility of the subdivision must be shown at the preliminary plat stage, the initial feasibility of the PUD project must be shown at the preliminary development plan stage. See Van Volkinburg v Marion County, 2 Or LUBA 112 (1980), and Atwood v Portland, 2 Or LUBA 397 (1981)."

Meyer v. City of Portland, 7 Or LUBA 184, 196, aff'd 67 Or App 274, 678 P2d 741 (1983), rev den, 297 Or 82, 679 P2d 1367 (1984).

On the face of the record before this Commission, no present finding of "initial feasibility" is possible. As a result, this application must be denied.

IV. CONDITIONAL USE CRITERIA

Newberg Development Code (NDC) 15.225.060 sets out the conditional use approval standards which apply to this application:

"15.225.060 General Conditional Use Permit Criteria -Type III.

A conditional use permit may be granted through a Type III procedure only if the proposal conforms to all the following criteria:
A. The location, size, design and operating characteristics of the proposed development are such that it can be made reasonably compatible with and have minimal impact on the livability or appropriate development of abutting properties and the surrounding neighborhood, with consideration to be given to harmony in scale, bulk, coverage and density; to the availability of public facilities and utilities; to the generation of traffic and the capacity of surrounding streets, and to any other relevant impact of the development.
B. The location, design, and site planning of the proposed development will provide a convenient and functional living, working, shopping or civic environment, and will be as attractive as the nature of the use and its location and setting warrants.
C. The proposed development will be consistent with this code."

For the reasons set out above with respect to (1) the elimination of and failure to provide the agreed traffic-calming roundabout on Crestview Drive and (2) failure to show
how or whether the Water System will be protected and remain operable, the applicant has not met its burden of proving compliance with NDC 15.225.060.A. It has not demonstrated that its proposal "can be made reasonably compatible with and have minimal impact on the livability or appropriate development of abutting properties and the surrounding neighborhood, with consideration to be given to ${ }^{* * *}$ the availability of public facilities and utilities; to the generation of traffic and the capacity of surrounding streets, and to any other relevant impact of the development."

V. PLANNED UNIT DEVELOPMENT CRITERIA

The applicant has failed to demonstrate compliance with the city's Planned Unit Development Criteria, set out in NDC Chapter 15.240. Section 15.240.030.C requires in material part that:
"1. The proposed development is consistent with standards, plans, policies and ordinances adopted by the city; and
2. The proposed development's general design and character, including but not limited to anticipated building locations, bulk and height, location and distribution of recreation space, parking, roads, access and other uses, will be reasonably compatible with appropriate development of abutting properties and the surrounding neighborhood $* * * "$

For the reasons explained above, this application does not comply with the city's standards and ordinances. Beyond that, the applicant has failed to demonstrate compliance with the comprehensive plan goals and policies relevant to the development of so much commercially zoned land with residential uses instead.

Further, as we have set out, the proposed distribution of roads will be incompatible with development of the abutting properties and the Oxberg Lake neighborhood.

VI. STREET STANDARDS

NDC 15.505.030.R. governs "Vehicular Access Standards" and provides in material part:
"9. ODOT or Yamhill County Right-of-Way. Where a property abuts an ODOT or Yamhill County right-of-way, the applicant for any development project shall obtain an access permit from ODOT or Yamhill County."

The applicant's proposal would provide ingress and egress via the existing portion of Crestview Drive which now abuts the site on the north. Based upon all information available to us, that portion of Crestview remains Yamhill County right-of-way. The applicant has not obtained an access permit from the county or demonstrated the feasibility of obtaining one. This, too, goes to the question of whether the initial feasibility of the proposal has been proven. One or more preexisting agreements make it unlikely that such a permit could be obtained. For this reason alone, the application must be denied.

VII. CONCLUSION

For all of the reasons set out above, the applicant has not met its burden of proof to show compliance with the relevant city approval standards herein. Accordingly, this application must be denied.

Dated: August 2, 2018.

SOURCE WATER

 ASSESSMENT REPORT
Summary of Analysis

Oxberg Water System
Newberg, Oregon
Yamhill County
PWS \#4105308

April, 2004
Prepared By

Oregon Department of Human Services
Health Services
Drinking Water Program

And

Oregon Department of Environmental Quality
Water Quality Division
Drinking Water Protection

TABLE OF CONTENTS

1. INTRODUCTION 1
2. WATER SYSTEM BACKGROUND 2
2.1 LOCATION OF THE DRINKING WATER SOURCE(S) 2
2.2 Source Construction 2
2.3 NATURE AND CHARACTERISTICS OF THE AQUIFER 3
3. DELINEATION RESULTS 4
4. SENSITIVITY ANALYSIS RESULTS 5
5. POTENTIAL CONTAMINANT SOURCE INVENTORY 8
5.1 Potential Contaminant Sources within the Two-Year Time-of-Travel Zone for the Well 8
5.2 Potential Contaminant Sources within the Five-Year and Fifteen-Year Time-of- Travel Zones for the Well 8
6. SUSCEPTIBILITY OF THE DRINKING WATER SOURCE 9
6.1 AQUIFER Susceptibility to Potential Contaminant Sources Inside the Drinking Water Protection Area. 9
6.2 WATER SYSTEM SUSCEPTIBILITY TO Viral CONTAMINANT SOURCES WITHIN THE TwO- Year Time-of-Travel Zone. 11
7. CONCLUSIONS 12
8. RECOMMENDED USE OF THE SOURCE WATER ASSESSMENT REPORT 13
APPENDICES 16

Oxberg Water System Source Water Assessment Report Summary of Analysis

1. Introduction

The Source Water Assessment Program, mandated by the 1996 Amendments to the Safe Drinking Water Act, requires that states provide the information needed by public water systems to develop drinking water protection plans if they choose. That information includes the identification of the area most critical to maintaining safe drinking water, i.e., the Drinking Water Protection Area, an inventory of potential sources of contamination within the Drinking Water Protection Area, and an assessment of the relative threat that these potential sources pose to the water system.

The intent of this report is to present our conclusions regarding the source water assessment analysis for your water system. It is our hope that this information will be used as a basis for reducing the risk of contamination to your water source through the development of a voluntary Drinking Water Protection Plan (DWPP). Should you decided to proceed with the development of a DWPP, this document can serve as the foundation for the plan. If, however, a more in depth analysis of the local hydrogeology, water system susceptibility, and/or the water system specific assumptions is needed to help promote the development of a DWPP, a more comprehensive assessment analysis can be made available to you by contacting either the DHS Project Manager or the DHS Drinking Water Program Groundwater Coordinator.

The methodology that the Source Water Assessment results are based on is included in Appendix I, "Source Water Assessment Methodology". Appendix I includes a discussion of the source water assessment project; groundwater basics; and the processes involved with conducting the delineation, sensitivity analysis, potential contaminant source inventory, and overall water system susceptibility. Therefore, it is our intention that the assessment results, identified in this portion of the report, be used in conjunction with the methodology and rational presented in Appendix I. For instance, if questions arise regarding our conclusions with respect to a specific element of the assessment (i.e. type of delineation used, aquifer sensitivity, well construction sensitivity, etc...), the methodology that lead to our conclusions can be reviewed in Appendix I for further clarification.

We believe public awareness is a powerful tool for protecting drinking water and that the information provided in this report will help you increase local awareness regarding land use activities and local drinking water quality. We have also included a groundwater fact sheet in Appendix E and a list of Oregon specific drinking water protection information and resources in Appendix H.

2. Water System Background

Oxberg Water System is located in Yamhill County and serves approximately 80 people through 27 connections. Drinking water is supplied by one well, commonly referred to as Well \#2. According to DHS Drinking Water Program records, this well serves as the only permanent water source.

2.1 Location of the Drinking Water Source(s)

We have located your drinking water source(s) using a Trimble GeoExplorer II Global Positioning System (GPS) unit. The data has been differentially corrected to remove some of the common positioning errors. The location of the source(s), with the corresponding Drinking Water Protection Area, has been placed in a Geographic Information System (GIS) layer and projected onto a USGS 7.5 minute topographic map that is included within this report. In order to be consistent with the topographic map, the projection uses the NAD1927 datum. The latitude and longitude values given on the map and below, however, reflect a projection in the more commonly used WGS1984 datum.

Data collection specifics include:

- 150 individual measurements,
- linked to a minimum of four satellites,
- a PDOP of less than 6 (pertains to precision of measurement), and
- a signal to noise ratio of greater than 5 .

The raw data was subjected to differential correction using the PATHFINDER software. The location data for your drinking water source(s) using the WGS84 datum is as follows:

Source	Latitude	Longitude
Well \#2 - Source AA	$45^{\circ} 18^{\prime} 53.679^{\prime \prime} \mathrm{N}$	$122^{\circ} 56^{\prime} 00.350^{\prime \prime} \mathrm{W}$

2.2 Source Construction

The well was constructed in November and December 1986. A 12 -inch diameter hole was drilled to a depth of 30 feet, with an eight-inch diameter hole continuing to 200 feet. Eight-inch diameter casing was installed from one foot above the surface to a depth of 162 feet and six-inch diameter liner was installed from 160 to 200 feet. Cement was placed between the casing and the outer wall of the hole from the surface to a depth of 30 feet to serve as a casing seal. This casing seal is considered adequate. In a sanitary survey conducted on $8 / 4 / 98$, DHS Drinking Water Program staff determined that there are no visible well construction deficiencies pertaining to drinking water protection. A copy of the well report for this well is included in Appendix D.

2.3 Nature and Characteristics of the Aquifer

The aquifer supplying the drinking water to the Oxberg Water System well consists of layered basalt and sedimentary interbeds of the Columbia River Basalt Group. The well \log identifies the first water-bearing zone at a depth of 50 feet.

Based on the well log and regional geologic maps, the aquifer supplying the well consists of interflow zones of layered volcanic rocks associated with the Columbia River Basalt Group. According to the well log, water was found from 50 to 200 feet and the static water level (water level when well is not being pumped) was reported as 29 feet below the surface. The aquifer is directly overlain by 48 feet of basalt and silt. Since the water level in the well has risen approximately 21 feet above the first water-bearing zone water in the aquifer is assumed to be under pressure. Therefore, we consider the aquifer supplying the well to be a confined layered volcanic aquifer with a minimum depth to the first water-bearing zone of 50 feet. Thickness of the water-bearing zone exploited in the aquifer is estimated to be 15 feet.

3. Delineation Results

The purpose of the Drinking Water Protection Area (DWPA) delineation is to identify the area at the surface which overlies the critical portion of the aquifer that's supplying groundwater to the water system's well(s) and/or spring(s). Therefore, DHS Drinking Water Program staff have collected and reviewed data for the purpose of delineating the DWPA for your water system. The area included in the DWPA is designed to approximate the next 10 or 15 years of groundwater supply for the water system, depending on delineation method, and is shown in Figure 1 (Appendix B). We have enhanced the usefulness of the DWPA map by identifying additional five-year, two-year, and one-year "Time-Of-Travel Zones" inside the DWPA.

The scope of work for this portion of the assessment included interviewing the water system operator, researching written reports, reviewing well logs, and establishing a base map of the delineated area. Based on the service population and the fact that only one well supplies the water system, the Calculated Fixed Radius Method was used to delineate the DWPA (See Appendix I for explanation of delineation process). The resulting DWPA for the Oxberg Water System Well is shown in Appendix B, Figure 1. Specific information regarding the parameters used in the delineation process including; the delineation method, estimated pump rate, and aquifer characteristics can be found in Appendix E.

4. Sensitivity Analysis Results

After the Drinking Water Protection Area (DWPA) has been identified, aquifer susceptibility to potential contaminant sources inside the DWPA can be evaluated. Aquifer susceptibility is dependent on two factors, the natural environment's characteristics that permit migration of a contaminant into the aquifer (i.e., aquifer sensitivity) and the presence, distribution, and nature of the potential contaminant sources within the DWPA. It should be understood that the public water system's drinking water source cannot be susceptible to contamination, even if potential contaminant sources are present, unless the aquifer or the constructed source water intake are sensitive to contamination. Therefore, the intent of the sensitivity analysis is to identify those areas within the DWPA where the aquifer is most sensitive to contamination. The analysis is based on data collected or generated during the DWPA delineation process and is designed to meet the needs of other existing or developing programs such as Monitoring Waivers and the Groundwater Rule.

The results of the sensitivity analysis are provided in the tables that follow. Information and sensitivity ratings regarding the aquifer and water quality are provided in Table 4.1 while information and sensitivity ratings regarding the well and its construction is provided in Table 4.2. Clarification of the ratings are provided as comments where appropriate.

Based on this analysis, both the well and the aquifer are not considered highly sensitive contamination. However, the moderate Infiltration Potential score for the aquifer, the close proximity of surface water to the well, and the presence of highly permeable soils within the DWPA contribute to a moderate overall water systems sensitivity. Sensitivity Analysis Tables follow, beginning on the next page.

	Sensitivity			*
Parameter	H	M	L	Comments
Depth to first water-bearing zone below casing seal.				50 feet.
Aquifer characteristics and hydraulic nature.			\checkmark	Confined layered volcanic aquifer.
Overburden thickness and characteristics.			\checkmark	~ 50 feet of silt and basalt
Highest soil sensitivity in Protection Area.	\checkmark			Contributes to moderate aquifer sensitivity.
Traverse potential score ($10=$ High $)$.			\checkmark	Score $=1$
Infiltration potential score ($10=$ High $)$.		\checkmark		Score $=4$
Organic chemical detections.			\checkmark	None detected.
Inorganic chemical detections.			\checkmark	Copper, and barium <50\% MCL; see paragraph following Table 4.1
Source related coliform detections.			\checkmark	None detected.
Nitrate concentrations (Drinking Water Standard = $10 \mathrm{mg} / \mathrm{L}$).			\checkmark	Up to $0.10 \mathrm{mg} / \mathrm{L}$; considered to come from natural sources.
Fractured bedrock near surface in Protection Area.			\checkmark	None present.
Other wells score (Significant Risk $=400$).			\checkmark	Score $=83$
Surface water within 500 feet of wellhead.		\checkmark		Spring Brook ~315 feet from well; Oxberg Lake ~ 280 feet from well.
Other: Sodium Concentration $\mathbf{>} \mathbf{2 0} \mathbf{~ m g / L}$		\checkmark		Sodium concentrations have been as great as $63 \mathrm{mg} / \mathrm{L}$ (7/9/1998); see paragraphs following Table 4.1.

The presence of barium (see "Inorganic Chemical Detections" in Table 4.1) at a concentration less than 50% of the MCL is likely due to natural sources; however, be aware that the possibility of unnatural contributions exists. The detected copper is likely derived from pipes and/or plumbing fixtures.

Sodium was detected up to $63 \mathrm{mg} / \mathrm{L}$ (see "Sodium detection $>20 \mathrm{mg} / \mathrm{L}$ " in the above Table). Water systems having greater than $20 \mathrm{mg} / \mathrm{L}$ of sodium in their drinking water source are encouraged to inform their customers of the presence of this constituent so that those individuals on a physician-prescribed, low-sodium diet can inform their doctors of this source of sodium in their diet.

| Table 4.2. Well Construction Sensitivity Analysis. | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Sensitivity | | | |
| Parameter | H | M | L | Comments |
| Casing depth. | | | 162 feet | |
| Casing seal depth. | | | 30 feet | |
| Well construction/setback deficiencies
 from site visit. | | | \nearrow | None observed. |
| Well report information missing or
 unknown. | | | \checkmark | No |
| Casing seal information missing or
 unknown. | | | \ddots | No |
| Casing seal material. | | | \nearrow | Cement |
| Well open to multiple aquifers
 (commingling suspected). | | | \nearrow | No |
| Casing seal construction. | | | \nearrow | Adequate |
| Age of well. | | \nearrow | Constructed in 1986. | |

5. Potential Contaminant Source Inventory

An inventory of potential contamination sources was performed within the Drinking Water Protection Area and the results are shown in Figure 2, Appendix B. The primary intent of the inventory was to identify and locate significant potential contaminant sources of concern. This inventory was conducted by reviewing applicable state and federal regulatory databases and land use maps, interviewing persons knowledgeable of the area, and conducting a windshield survey by driving through the drinking water protection area to field locate and verify as many of the potential contaminant source activities as possible. It is important to remember the sites and areas identified are only potential sources of contamination to the drinking water. Environmental contamination is not likely to occur when contaminants are used and managed properly.

5.1 Potential Contaminant Sources within the Two-Year Time-ofTravel Zone for the Well

The delineated two-year time of travel zone is primarily dominated by residential land use. Two potential contaminant source locations (Reference Numbers one through two on Figure 2 and Appendix C, Table 2) were identified in the two-year time-of-travel zone and include rural homes and a fire protection well. The potential contaminant sources within the two-year time-of-travel all pose a relatively higher to moderate risk to the drinking water supply. The septic systems associated with the rural homes may have a risk of transmitting micro-organisms to the groundwater.

5.2 Potential Contaminant Sources within the Five-Year and Fifteen-Year Time-of-Travel Zones for the Well

The drinking water protection area within the five-year and fifteen-year time-of-travel zones is primarily occupied by residential and agricultural land uses. One potential contaminant source location was identified in this area which is detailed on Table 2 in Appendix C and includes irrigated crops. The potential contaminant sources within the five-year and fifteen-year time-oftravel all pose relatively higher to moderate risk to the drinking water supply. Area-wide potential sources such as the residential areas extend from the two-year time-of-travel zone into the fifteen-year time-of-travel zone. These land uses occur throughout the drinking water protection area and are shown on Figure 2 in the location nearest to the well.

6. Susceptibility of the Drinking Water Source

In general, Potential Contaminant Sources (PCSs) within the shorter time-of-travel zones pose a greater risk than those in the longer time-of-travel zones. Also of concern is the location and distribution of these sources with respect to high and moderately sensitive areas. Overlaying the PCS location map (Figure 2, Appendix B) on top of the sensitivity map for the water system provides a tool to determine the susceptibility of the community's drinking water supply to contamination from each PCS (see Figure 3, Appendix B).

6.1 Aquifer Susceptibility to Potential Contaminant Sources Inside the Drinking Water Protection Area.

Table 6.1, indicates the relationship between potential contaminant source risk, aquifer sensitivity, and estimated contaminant arrival time at the well, wellfield, and/or spring. The community can use the PCS location numbers on the inventory map in conjunction with the displayed aquifer sensitivity and relative risk rankings for each PCS from Table 2 (Appendix C) to identify the susceptibility of the drinking water source to contamination from each PCS and take steps to reduce the risk accordingly.

We have attempted to quantify the relative susceptibility of the water system with regard to the PCSs present in the Drinking Water Protection Area (DWPA) using Table 6.1. Across the top of the table, each Time-of-Travel (TOT) zone is subdivided to account for areas of high, moderate, and low sensitivity that may exist between each TOT. Potential contaminant source risk categories (high, moderate, and low) are listed down the left hand side of the table. The relative aquifer susceptibility to each PCS is demonstrated by the shading of each cell in the table. Cells that are shaded dark gray indicate a highly-susceptible condition, light gray shaded cells indicate a moderately-susceptible condition, and white cells indicate conditions of low susceptibility. The number in each cell indicates the number of potential contaminant sources that meet the conditions for that cell. Cells that do not contain a number indicate that there are no known potential contaminant sources that meet the conditions for the cell. Potential contaminant sources that meet the specific criteria for a cell in Table 6.1 can be identified by reviewing Table 2 in Appendix C. The number of potential contaminant sources is totaled across the bottom of the table.

Table 6.1. Oxberg Water System Susceptibility as a Function of PCS Risk, TOT Zone, and Aquifer Sensitivity.

	2-Yr TOT			2- to 5-Yr TOT		5- to 15-Yr TOT			
	High	Mod	Low	High	Mod	Low	High	Mod	Low
High Risk PCSs									

The distribution of high, moderate, and low sensitivity areas inside the Drinking Water Protection Area can be determined using either soil sensitivity or the mapped distribution of Traverse Potential (TP) or Infiltration Potential (IP). In the case of the Oxberg Water System, we have decided to rely upon the distribution of soil sensitivity throughout the DWPA. The soils overlying the aquifer represent the first line of natural protection for the aquifer.

During the potential contaminant source inventory, a total of three potential contaminant source locations and eight potential contaminant sources were identified inside the DWPA. If any of these potential contaminant sources have been identified as an area-wide source, they have been evaluated with respect to each time-of-travel zone in which they occur. As a result, the total number of potential contaminant sources evaluated in the above susceptibility table may exceed the number identified on the potential contaminant source inventory map (Figure 2, Appendix B).

As indicated in the above table, three potential contaminant sources occur inside the 2-year TOT, two sources fall between the 2-and 5-year TOTs, and three sources have been identified between the 5- and 15-year TOTs. Of the potential contaminant sources identified inside the 2 -year TOT, two are of moderate-risk, and one is of low-risk. Based on the analysis results shown in the relative susceptibility table, we consider the Oxberg Water System to be highly susceptible to the moderate-risk potential contaminant sources identified inside the 2-year TOT (Potential contaminant Source Reference No. 1 and 2 on Figure 3, Appendix B). Therefore we recommend that these potential contaminant sources not only be addressed in any Drinking Water Protection Plan but also in any Water System Emergency Response Plan.

As a result of this analysis, we recommend that the water system develop a Drinking Water Protection Plan that addresses all high- and moderate-risk potential contaminant sources within the DWPA, beginning with those sources which represent the greatest susceptibility risk. At a minimum, the water system should work with representatives from those PCSs posing a moderate- to high-susceptibility risk within the DWPA to (1) determine the level of environmental protection employed in the day-to-day operations of the facility and (2) identify
any reasonable Best Management Practices that will lead to an overall reduction of contamination risk.

6.2 Water System Susceptibility to Viral Contaminant Sources within the Two-Year Time-of-Travel Zone.

The area within the two-year TOT roughly identifies the next two years of groundwater supply for the water system. The two-year time frame is used as a conservative estimate of the survival time for some viruses. Viral contaminant sources (septic systems and a fire protection pipe connected to Oxberg Lake) were identified inside the two-year TOT. However, based on the assessment results, neither the aquifer nor the well is considered sensitive to viral contamination. Therefore, we do not consider the Oxberg Water System water supply to be susceptible to viral contamination. Regardless of the outcome of this assessment, it is in the water system's best interest to reduce the potential for future viral contamination through compliance with all Oregon Department of Human Services setback standards related to public drinking water supply sources.

7. Conclusions

The Oxberg Water System draws water from a confined layered volcanic aquifer associated with the Columbia River Basalt Group. Assessment results indicate that the water system would be moderately sensitive to a contamination event inside the identified Drinking Water Protection Area. The presence of a few moderate-risk potential contaminant sources within the protection area was confirmed through a potential contaminant source inventory. Under a "worst case" scenario, where it is assumed that nothing is being done to protect groundwater quality at the identified potential contaminant sources, the assessment results indicate that the water system would be highly susceptible to the identified moderate-risk potential contaminant sources. In addition, the assessment results indicate that, at this time, the water system is not considered susceptible to viral contamination.

8. Recommended Use of the Source Water Assessment Report

The costs associated with contaminated drinking water are high. Developing an approach to protect that resource, such as a Drinking Water Protection Plan, can reduce the potential for contamination of the local drinking water supply. This report contains a summary of the local geology and well construction issues as they pertain to the quality of your drinking water source. We have identified the area we believe to be most critical to preserving your water quality (the Drinking Water Protection Area) and have identified potential sources of contamination within that area. In addition, we provide you with recommendations, i.e., Best Management Practices, regarding the proper use and practices associated with some common potential contamination sources (Appendix G). We believe public awareness is a powerful tool for protecting drinking water and that the information provided in this report will help you increase local awareness regarding the relationship between land use activities and drinking water quality. To that end, the process for developing a Drinking Water Protection Plan can be summarized as follows:

Assessment Phase (Source Water Assessment Provided by DHS and DEQ)

- Delineate the area that serves as the source of the public water supply (Drinking Water Protection Area (DWPA))
- Inventory the potential risks or sources of contamination within the DWPA
- Determine the areas most susceptible to contamination

Protection Phase (performed by the water system or community)

- Assemble a local Drinking Water Protection Team
- Enhance the Source Water Assessment if necessary
- Develop a plan to reduce the risk of contamination (protect the resource)
- Develop a contingency plan to address the potential loss of the drinking water supply
- Certify (optional) and implement the Drinking Water Protection Plan

The assessment phase was funded by the federal Safe Drinking Water Act. Its purpose is to supply the water system with the information necessary to develop a Drinking Water Protection Plan. In Oregon, development of a protection plan is voluntary.

Prior to moving into the protection phase, DEQ recommends the inventory presented in this document be reviewed in detail to clarify the presence, location, operational practices, actual risks, etc., of the identified facilities and land use activities. The Source Water Assessment (SWA) inventory should be regarded as a preliminary review of potential sources of contamination within the drinking water protection area. Resources within the community
should be used to do an "enhanced inventory" to refine this preliminary list of potential contaminant sources.

It is also important to remember that not all of the inventoried activities will need to be addressed if you choose to develop a Drinking Water Protection Plan. When developing a protection plan, potential contaminant sources which pose little or no threat to your drinking water supply can be screened out. For example, if any of the land use activities are conducted in a manner that already significantly reduces the risk of a contamination release, the facility would not need to re-evaluate their practices based on drinking water protection "management". One of the goals for developing a plan based on the inventory results is to address those land use activities that do pose high or moderate risks to your public water supply. The system should target these facilities with greater levels of education and technical assistance to minimize the risk of contamination.

Limited technical assistance is available through the DEQ and Drinking Water Program at DHS for water systems that choose to move beyond the assessments and voluntarily develop a Drinking Water Protection Plan. By using the results of the assessment, the water system/community can form a Drinking Water Protection Team comprised of individuals that have a stake in the plan's implementation.

Forming a local team to help with the development of a protection plan is very important. Oregon's drinking water protection approach relies upon the concept of "community based protection", as are many other water quality programs. This simply refers to the concept of allowing local control and decision-making to implement the water quality protection effort. Community-based protection is successful only with significant local citizen stakeholder involvement. Community-based protection can draw on the knowledge and successful adaptive practices within the area. Landowners generally know best how to achieve water resource restoration and protection as long as a thorough explanation of the problem is provided, the objectives to solve the problem are clearly defined, and technical assistance is available.

In community-based protection, citizens have more control and are therefore more likely to participate in the program and be more willing to assist with the educational and outreach effort which will make the plan successful. We recommend that the protection plan be developed so as to minimize any burdens on individual property owners, but maximize the equity in responsibility for reducing the risks of future contamination.

Protecting the drinking water supply in a community can also be a very effective way to encourage all citizens to participate in issues which directly affect everyone in that community. This often leads to more public involvement in other significant local decisions concerning future livability issues, e.g., land use planning. In communities already developing and implementing Drinking Water Protection Plans, the process has served to bring many diverse interests together on a common goal and strengthen the local rural and urban relationships through communication and increased understanding. The risks and sources of water quality problems are not only from industries, farmers, and managed forest, but every individual living, commuting, and working in that area.

Communities/water systems interested in developing Drinking Water Protection Plans may contact the Department of Environmental Quality (503-229-5413) or the DHS Drinking Water Program (541-726-2587) for further information.

Appendices

A. References
B. Figures
C. Inventory of Potential Contaminant Sources
D. Well Reports
E. Parameters Used in Delineation Model
F. Groundwater Fact Sheet
G. BMPs for Activities Commonly found in Drinking Water Protection Areas
H. Drinking Water Protection in Oregon
I. Source Water Assessment Methodology

Additional copies of the appendix materials are available upon written request to the following address:

Groundwater Coordinator
Drinking Water Program
Department of Human Services
442 A Street
Springfield, OR 97477

Appendix A: References

National Oceanic and Atmospheric Administration (NOAA), 1982. Monthly Normals of Temperature, Precipitation, and Heating and Cooling Degree Days 1951-80 Oregon, Climatography of the United States No. 81 (By State).

Stewart, S. and Nelson, D., 1996. Oregon Wellhead Protection Program Guidance Manual. Oregon Department of Envirónmental Quality (available at http://www.deq.state.or.us/wq/dwp/dwphome.htm).

Stewart, S. and Nelson, D., 1999. Oregon Source Water Assessment Plan. Oregon Department of Environmental Quality.

Walker, G.W. and MacLeod, N.S., 1991. Geologic Map of Oregon. U.S. Geological Survey.
Otte, G.E., Setness, D.K., Anderson, W.A., Herbert, F.J., and Knezevich, C.A., 1974. Soil Survey of Yamhill Area, Oregon. U.S. Department of Agriculture, Soil Conservation Service.
U. .UEIY VVdter こ Jsterlı Drinking Water Protection Area

Drinking Water Protection Area (DWPA) $1,2,5$, and 15 year Time-of-Travel (TOT) Calculated Fixed Radius Method

Model Parameters
Effective Porosity: 0.2
Water Use (gal/day): 20,000
Production Interval (ft): 15
Prepared by: KG Date: 4/16/04
Project Manager: AP
Reviewed by: DN RG\#: 1224
File\#: 4105308

Well Location:
WGS 1984 Datum
$45^{\circ} 18^{\prime} 53.679^{\prime \prime} \mathrm{N} 122^{\circ} 56^{\prime} 00.350^{\prime \prime} \mathrm{W}$
USGS Newberg 7.5-Minute
Quadrangle (topographic)
T: 3S R: 2W Sec: 16
Yamhill County

Oxbırg Water Sysiem Potential Contaminant Sources

Scale 1: 10,000

Drinking Water Protection Area (DWPA) 1, 2, 5, and 15 year Time of Travel (TOT) Calculated Fixed Radius Method

Prepared by: KG 4/16/04
Project Manager: AP
Reviewed by: DN RG\# 1224
File\# 4105308

Potential Contaminant Sources
\oplus Higher Relative Risk
回 Moderate Relative Risk \triangle Low Relative Risk

Note: Sites and areas noted in this figure are potential sources of contamination to the drinking water identified by Oregon drinking water protection staff. Environmental contamination is not likely to occur when chemicals are used and managed properly.

Numbers indicate potential contaminant sources which are explained in Appendix C, table 2.

Drinking Water Source Susceptibility

Scale 1: 10,000

Drinking Water Protection Area (DWPA) 1, 2, 5, and 15 Year Time of Travel (TOT) Calculated Fixed Radius Method

Potential Contaminant Sources

\oplus Higher Relative Risk

- Moderate Relative Risk \triangle Low Relative Risk

Sensitivity Analysis
囲 High Soil Sensitivity
\equiv Medium Soil Sensitivity
$\square \square$ Low Soil Sensitivity

Note: Sites and areas noted in this figure are potential sources of contamination to the drinking water as identified by Oregon Drinking Water Protection Staff.
Environmental contamination is not likely to occur when chemicals are used and managed properly.

Features or activities that are identified as high or moderate risk that occur within an area designated as high or moderate sensitivity pose a greater risk to drinking water quality than those in areas of low sensitivity.

Numbers indicate potential contaminant sources indexed to Appendix C, Table 2.

APPENDIX C - INVENTORY OF POTENTIAL CONTAMINANT SOURCES OXBERG WATER SYSTEM - PWS \# 4105308 OREGON SOURCE WATER ASSESSMENT

Inventory Results

Table 1. Summary of Potential Contaminant Sources by Land Use
Table 2. Inventory Results - List of Potential Contaminant Sources

Notes for Tables:

Sites and areas identified in these Tables are only potential sources of contamination to the drinking water. Environmental contamination is not likely to occur when contaminants are used and managed properly.

Total number of sources listed in Table 1 in the DWPA may not add up to the total number of potential contaminants sources in Table 2 because more than one type of potential contaminant source may be present at any given facility.

Data collected by Sue Gries Oregon DEQ on 6/17/2002.

Acronyms:

> AST - Aboveground Storage Tank
> DC - DEQ's Dry Cleaner database
> DEQ - Oregon Department of Environmental Quality
> DWPA - Drinking Water Protection Area
> ECSI - DEQ's Environmental Cleanup Site Information database
> HWIMSY - DEQ's Hazardous Waste Information Management System database
> LUST - DEQ's Leaking Underground Storage Tank database
> NPDES - National Pollution Discharge Elimination System
> PCS - Potential Contaminant Source
> PWS - Public Water System
> SFM - State Fire Marshall's database of hazardous materials
> SIS - DEQ's Source Information System database (includes WPCF \& NPDES permits)
> SWMS - DEQ's Solid Waste Management System database
> UST - DEQ's Underground Storage Tank database or Underground Storage Tank
> WPCF - Water Pollution Control Facility
> WRD - Oregon Water Resources Division database for water rights information

TABLE 1. SUMMARY OF POTENTIAL CONTAMINANT SOURCES BY LAND USE

PWS \# 4105308 OXBERG WATER SYSTEM

Residential/Municipal Land Uses

	Note	Relative Risk Level
Potential Contamination Source	Total in	
Dirport - Maintenance/Fueling Area	Higher	0
Apartments and Condominiums	Lower	0
Campgrounds/RV Parks	(1)	Lower
Cemeteries - Pre-1945	Moderate	0
Drinking Water Treatment Plants	Moderate	0
Fire Station	Lower	0
Fire Training Facilities	Moderate	0
Golf Courses	Moderate	0
Housing - High Density (> 1 House/0.5 acres)	Moderate	0
Landfill/Dumps	Higher	0
Lawn Care - Highly Maintained Areas	Moderate	1
Motor Pools	Moderate	0
Parks	Moderate	0
Railroad Yards/Maintenance/Fueling Areas	Higher	0
Schools	Lower	0
Septic Systems - High Density (>1 system/acre)	Higher	0
Sewer Lines - Close Proximity to PWS	(1)	Higher
Utility Stations - Maintenance Transformer Storage		Higher
Waste Transfer/Recycling Stations	(1)	Moderate
Wastewater Treatment Plants/Collection Stations	Moderate	0
Other		0

NOTES:
Sites and areas identified in this Table are only potential sources of contamination to the drinking water.
Environmental contamination is not likely to occur when contaminants are used and managed properly.
(1) - Potential source of microbial contamination
(2) - Drip irrigated crops, such as vineyards and some vegetables, are considered lower risk than spray irrigation
(3) - For groundwater public water systems, septic systems located within the 2-year time-of-travel (TOT) are considered moderate risks.

TABLE 1. SUMMARY OF POTENTIAL CONTAMINANT SOURCES BY LAND USE

PWS \# 4105308 OXBERG WATER SYSTEM

Commercial/Industrial Land Uses
$\left.\begin{array}{llc}\hline \text { Potential Contamination Source } & \text { Note } & \begin{array}{l}\text { Relative } \\ \text { Risk Level }\end{array}\end{array} \begin{array}{c}\text { Total in } \\ \text { DWPA }\end{array}\right]$

NOTES:
Sites and areas identified in this Table are only potential sources of contamination to the drinking water.
Environmental contamination is not likely to occur when contaminants are used and managed properly.
(1) - Potential source of microbial contamination
(2) - Drip irrigated crops, such as vineyards and some vegetables, are considered lower risk than spray irrigation
(3) - For groundwater public water systems, septic systems located within the 2 -year time-of-travel (TOT) are considered moderate risks.

TABLE 1. SUMMARY OF POTENTIAL CONTAMINANT SOURCES BY LAND USE

PWS \# 4105308 OXBERG WATER SYSTEM

Agricultural/Forest Land Uses

Potential Contamination Source	Note	Relative Risk Level	Total in DWPA
Auction Lots	(1)	Higher	0
Boarding Stables	(1)	Moderate	0
Confined Animal Feeding Operations (CAFOs)	(1)	Higher	0
Crops - Irrigated (inc. orchards, vineyards, nurseries, greenhouses)	(2)	Moderate	1
Crops - Nonirrigated (inc. Christmas trees, grains, grass seed, pasture)	Lower	0	
Farm Machinery Repair	Higher	0	
Grazing Animals (> 5 large animals or equivalent/acre)	(1)	Moderate	0
Lagoons/Liquid Wastes	(1)	Higher	0
Land Application Sites	(1)	Moderate	0
Managed Forest Land - Broadcast Fertilized Areas		Lower	0
Managed Forest Land - Clearcut Harvest (< 35 yrs.)	Moderate	0	
Managed Forest Land - Partial Harvest (<10 yrs.)	Moderate	0	
Managed Forest Land - Road Density (>2 mi./sq. mi.)	Moderate	0	
Pesticide/Fertilizer/Petroleum Storage, Handling, Mixing, \& Cleaning Ar	Higher	0	
Recent Burn Areas (< 10 yrs.)	Lower	0	
Managed Forest Lands - Status Unknown	Moderate	0	
Other		0	

NOTES:
Sites and areas identified in this Table are only potential sources of contamination to the drinking water.
Environmental contamination is not likely to occur when contaminants are used and managed properly.
(1) - Potential source of microbial contamination
(2) - Drip irrigated crops, such as vineyards and some vegetables, are considered lower risk than spray irrigation
(3) - For groundwater public water systems, septic systems located within the 2-year time-of-travel (TOT) are considered moderate risks.

TABLE 1. SUMMARY OF POTENTIAL CONTAMINANT SOURCES BY LAND USE

PWS \# 4105308 OXBERG WATER SYSTEM
 Miscellaneous Land Uses

Potential Contamination Source	Note	Relative Risk Level	Total in DWPA
Above Ground Storage Tanks - Excluding Water		Moderate	0
Channel Alterations - Heavy		Lower	0
Combined Sewer Outfalls	(1)	Lower	0
Stormwater Outfalls	(1)	Lower	0
Composting Facilities	(1)	Moderate	0
Historic Gas Stations		Higher	0
Historic Waste Dumps/Landfills	(1)	Higher	0
Homesteads - Rural - Machine Shops/Equipment Maintenance		Higher	0
Homesteads - Rural - Septic Systems (< 1/acre)	(1)(3)	Lower	1
Injection/Dry Wells, Sumps - Class V UICs	(1)	Higher	0
Kennels (> 20 Pens)	(1)	Lower	0
Military Installations		Higher	0
Random Dump Sites		Moderate	0
River Recreation - Heavy Use (inc. campgrounds)	(1)	Lower	0
Sludge Disposal Areas	(1)	Moderate	0
Stormwater Retention Basins	(1)	Moderate	0
Transmission Lines - Right-of-Ways		Lower	0
Transportation - Freeways/State Highways/Other Heavy Use Roads		Moderate	0
Transportation - Railroads		Moderate	0
Transportation - Right-Of-Ways - Herbicide Use Areas		Moderate	0
Transportation - River Traffic - Heavy		Lower	0
Transportation - Stream Crossing - Perennial		Lower	0
UST - Confirmed Leaking Tanks - DEQ List		Higher	0
UST - Decommissioned/Inactive		Lower	0
UST - Nonregulated Tanks (< 1,100 gals or Large Heating Oil Tanks)		Higher	0
UST - Not Upgraded and/or Registered Tanks		Higher	0
UST - Upgraded/Registered - Active		Lower	0
UST - Status Unknown		Higher	0
Upstream Reservoirs/Dams		Lower	0
Wells/Abandoned Wells		Higher	0
Large Capacity Septic Systems (serves > 20 people) - Class V UICs	(1)	Higher	0
Construction/Demolition Areas		Moderate	0
Other:		Moderate	1

NOTES:
Sites and areas identified in this Table are only potentiai sources of contamination to the drinking water.
Environmental contamination is not likely to occur when contaminants are used and managed properly.
(1) - Potential source of microbial contamination
(2) - Drip irrigated crops, such as vineyards and some vegetables, are considered lower risk than spray irrigation
(3) - For groundwater public water systems, septic systems located within the 2 -year time-of-travel (TOT) are considered moderate risks.

TABLE 2. INVENTORY RESULTS - LIST OF POTENTIAL CONTAMINANT SOURCES

	4105308	OXBERG WATER SYSTEM							
Reference No. (See Figure)	Potential Contaminant Source Type	Name	Approximate Location	City	Method for Listing	Proximity to Sensitive Areas	Relative Risk Level (1)	Potential Impacts	Comments
1	Lawn Care - Highly Maintained Areas	Rural Homes	Throughout DWPA	Newberg	FieldObservation Interview	Within the 2yr TOT.	Moderate	Over-application or improper handling of pesticides or fertilizers may impact drinking water. Excessive irrigation may cause transport of contaminants to groundwater or surface water through runoff.	Homes within the 2 year TOT do not have individual wells. Some of the homes outside the 2 year TOT do have wells. All houses are on septic. PWS contact indicates a 3 lane highway might be developed within 5 and 15 year TOT.
	Homesteads - Rural - Septic Systems (< 1/acre)	\cdots					Lower	If not properly sited; designed, installed, and maintained, septic systems can impact drinking water. Use of drain cleaners and dumping household hazardous wastes can result in groundwater contamination.	Homes within the 2 year TOT do not have individual wells. Some of the homes outside the 2 year TOT do have wells. All houses are on septic. PWS contact indicates a 3 lane highway might be developed within 5 and 15 year TOT.
2	Other	Fire protection well	Next to weil	Newberg	Interview	Within the 2yr TOT.	Moderate	The impacts of this potential contaminant source will be addressed during the enhanced inventory.	PWS contact indicates a pipe from Oxberg Lake connects to a drywell used for fire protection. The pipe might be broken.
3	Crops - Irrigated (inc. orchards, vineyards, nurseries, greenhouses)	Non-irrigated crops	Northeast portion of DWPA	Newberg	FieldObservation	$\begin{aligned} & \text { Between } 5-y r \\ & \text { and } 15-y r \\ & \text { TOT } \end{aligned}$	Moderate	Over-application or improper handling of pesticides/fertilizers may impact drinking water. Excessive irrigation may transport contaminants or sediments to groundwater/surface water through runoff. Drip-irrigated crops are considered to be a low risk.	Nurseries are at intersection of Benjamin and Putnam Road, and north of Putnam Road.

Note: Sites and areas identified in this Table are only potential sources of contamination to the drinking water. Environmental contamination is not likely to occur when contaminants are used and managed properly.
(1) Where multiple potential contaminant sources exist at a site, the highest level of risk is used.
(2) See Table 3 for database listings (if necessary).

Appendix E：Parameters Used in Delineation Model

Delineation Method：\square Analytical $⿴ 囗$ Calculated Fixed Radius \square Enhanced CFRNumerical \square Hydrogeologic Mapping
\qquad Analytic Element

Pump Rate（ Q in gpm）： 13.9 gpm
Source：\square System \square Water Resources Dept \square Comparable Community \square Pump Capacity $ख$ Population Estimate $\square 90 \%$ of Safe Yield

Nature of the Aquifer：\square Unknown \square Unconfined \square Semi－confined 図 Confined

Aquifer name：Layered Basalt （Columbia River Basalt Group）
Confining Unit lithology：basalt／clay

Depth to Confining Unit：$\underline{\underline{2}}$
Confining Unit thickness：$\underline{48}$
Depth to Aquifer：$\underline{50 \text { feet }}$

Aquifer Characteristics：
Lithology：

\square Unknown	\square Sandy Silt	® Layered Volcanic Rocks
\square Sand	\square Sand \＆Gravel	\square Fractured Volcanic Rocks
\square Gravel	\square Cobbles／Gravel	\square Fractured Sedimentary Rocks
\square Other：		

Thickness（b）： 15 feet
Effective Porosity（n）：$\underline{0.20}$

Hydraulic Conductivity（Permeability）：	ft／day	® N／A
\square Estimated from lithology	\square	Specific Capacity（Well Report）

Hydraulic Gradient： \qquad Flow Direction： \qquad目 $/$ A
\square Graphical Solution
\square Model Results

Other High Capacity Wells Accounted for：None

Development Agreement

This Development Agreement ("Development Agreement") is made and executed this 16 th day of June 2008, by and between GC Commercial, an Oregon Limited Liability Company ("GC"), and Terry Coss, Amelia Coss, Charles Alex Miller, Daniel Peek and Rebecca Peek the "Homeowners") GC and the Homeowners are collectively referred to herein as, the "Parties".

RECITALS:

A. GC owns and plans to develop the real property located in the City of Newberg, Yamhill County, Oregon, shown on the attached Exhibit "A" (the "GC Development").
B. GC, with respect to the GC Development, intends to develop the Property into one mixed-use commercial and residential development (collectively, the "Project"). A map of the Project is attached as Exhibit "B."
C. The Homeowners are owners of those certain parcels of residential real property located in the Oxberg Lakes Subdivision, Yamhill County, Oregon, the southern boundaries of which abut and are adjacent to the northern boundary of the GC Development (individually, each a "Homeowner Parcel" and collectively, the "Homeowners' Parcels").
D. The Homeowners anticipate significant negative impacts from the GC Development, including reduced security, increased noise, light pollution, increased traffic, and may experience problems with storm drainage and the Oxberg Lake Estates water system and aquifer.
E. GC desires to help mitigate any potential negative impacts to which the Project and the GC Development might subject the Homeowners.

AGREEMENT:

In consideration of the foregoing and of the mutual agreements, promises, covenants and restrictions set forth herein, GC and the Homeowners agree as follows:

1. Incorporation of Recitals. The parties agree that the foregoing Recitals are true and correct and that the Recitals are incorporated herein as if set forth in full.

2. Construction of the Sound Wall.

a. GC shall construct or cause to be constructed, at its sole cost and expense, a pre-cast concrete wall approximately six (6) feet in height along the boundary shared by the GC Development and the Homeowners' Parcels (the "Sound Wall). The approximate location and length of the Sound Wall are more particularly illustrated on the attached Exhibit "B." However, the exact location and length of the Sound Wall shall be determined by GC in compliance with applicable plans approved by the City of Newberg, or
any other governmental agency having jurisdiction. The design style of the Sound Wall and its construction type shall be consistent with Exhibit " C " attached hereto.
b. GC shall construct and install the Sound Wall in such a manner as to preserve, to the best of GC's ability, those trees with trunks greater than twelve (12) inches in diameter that are located along the boundary shared by the GC Development and the Homeowners' Parcels.
c. GC shall provide the Homeowners with copies of any proposed designs and drawings of the Sound Wall, and consider, in good faith, all timely comments GC receives from the Homeowners with respect to the Sound Wall. However, the final design and specifications of the Sound Wall shall be in accordance with plans approved by the City of Newberg, or any other governmental agency having jurisdiction.
d. GC shall include a ten-foot (10^{\prime}) wide landscape buffer zone along the boundary shared by the GC Development and the Homeowners' Parcels (the "Landscape Buffer Zone"), and a 30-foot (30') setback (the "Setback Zone") between the Sound Wall and any buildings in any subdivision plat maps for its respective parcels submitted for approval to any governmental entity with jurisdiction over the GC Development. The Landscape Buffer Zone and Setback Zone shall be negative easements, binding GC and its successors in interest by encumbering the lots along the boundary shared by the GC Development and the Homeowners' Parcels.
e. GC shall complete the construction and installation of the Sound Wall on or before the date of final lift of asphalt concrete within the GC Development.

3. Construction of the Storm Water Drainage System

a. GC shall construct and install, at its sole cost and expense a storm water and surface water drainage system on a portion of the Homeowners' Parcels adjacent to the GC Development (the "Storm Water Drainage System").
b. GC shall provide the Homeowners with copies of any proposed designs and drawings of the Storm Water Drainage System and consider, in good faith, all timely comments GC receives from the Homeowners with respect to the Storm Water Drainage System. However, the final design and specifications of the Storm Water Drainage System shall be in accordance with plans approved by the City of Newberg, or any other governmental agency having jurisdiction.
c. GC shall complete the construction and installation of the Storm Water Drainage System on or before the date installation of the Sound Wall begins.

5. Easements.

a. The Homeowners shall grant to GC temporary easements across their respective Homeowner Parcels for the construction of the Storm Water Drainage System and the Sound Wall, and;
b. The Homeowners shall grant permanent easements to GC and its successors and assigns, where necessary pursuant to the approved design specifications, to permit encroachments of the Sound Wall onto the Homeowners' Parcels and placement of the Storm Water Drainage system and any catch basins or drain lines appurtenant thereto;
6. Permitting. GC shall begin construction of the Sound Wall and the Storm Water Drainage System after it has received all site design approvals, land use permits, entitlements and other permits required for the development of the Project, and has begun construction of the Project. If GC does not receive the aforementioned permits and entitlements it shall not be obligated to build either the Sound Wall or the Storm Water Drainage System.
7. Maintenance. The parties shall share in all costs and expenses related to the maintenance and general upkeep of the Sound Wall and Storm Water Drainage System after their respective completion. This maintenance obligation shall bind the Parties and their respective successors in interest and shall be made a part of any permanent easement granted by the Homeowners pursuant to paragraph 5.b., above. In addition to the encumbrances referenced in paragraph 2.d., above, GC shall encumber the lots along the boundary shared by the GC Development and the Homeowners' Parcels to the extent of the maintenance obligation contained herein.
8. Assignability. This Development Agreement is assignable and/or delegable with respect to the rights and duties of GC and the Homeowners, both jointly and severally, to any transferee or other successor in interest to the GC Development or the Project.
9. Severability. Should any provision of this Development Agreement be declared or determined by any forum of competent jurisdiction to be illegal, invalid, or unenforceable, the legality, validity and enforceability of the remaining parts, terms, or provisions shall not be affected thereby, and said illegal, unenforceable or invalid part, term or provision shall be deemed not to be part of this Development Agreement.
10. Counterparts. This Development Agreement may be executed in any number of counterparts and by each party on a separate counterpart page, each of which when so executed shall be deemed an original.
11. Waiver. No waiver of any provision of this Development Agreement shall be deemed, or shall constitute, a waiver of any other provisions, whether or not similar, not shall any waiver constitute a continuing waiver. No waiver shall be binding unless executed in writing by the party making the waiver.
12. Binding Effect. All rights, remedies and liabilities herein given to or imposed upon the parties shall extend to, inure to the benefit of and bind, as the circumstances may
require, the parties and their respective heirs, personal representatives, administrators, successors and permitted assigns and designees.
13. Notices. Any notice or other communication required or permitted under this Development Agreement shall be in writing and shall be deemed given on the date of transmission when sent by telex or facsimile transmission, or on the third business date after the date of mailing when mailed by certified mail, postage prepaid, return receipt requested, from within the United States, or on the date of actual delivery, whichever is the earliest, and shall be sent to the parties at the addresses shown provided below, or at such other address as either party may hereafter designate by written notice to the other.

To GC:	Jeffrey D. Smith 4386 SW Macadam Avenue Suite 305 Portland, OR 97239
With a copy to:	Jessica S. Cain Gunn \& Cain, LLP P.O. Box 1046 Newberg, Oregon 97132
To Terry Coss and Amelia Coss:	Terry Coss and Amelia Coss 4304 Robin Court Newberg, OR 97132
To Alex Miller:	Alex-Mitter NitKula + Wavren Stone 4308 E. Robin Court Newberg, OR 97132
To Dan Peek and Rebecca Peek:	Dan Peek and Rebecca Peek 4402 Birdhaven Loop Newberg, OR 97132

14. Amendment. No supplement, modification or amendment of this DEVELOPMENT Agreement shall be valid unless the same if in writing and signed by all of the Parties.
15. Attorney's Fees. In the event any suit, action or other legal proceeding shall be instituted to declare or enforce any right created by this DEVELOPMENT AGREEMENT, or by reason on any breach of this DEVELOPMENT AGREEMENT, both parties shall be individually responsible for their respective legal fees.
16. Governing Law and Venue. This Development Agreement and the rights of the parties hereunder shall be governed, construed and enforced in accordance with the law of the State of Oregon, without regard to its conflict of law principles. Venue for any such suit, action or other legal proceeding regarding this Development Agreement or the Real Property shall be brought in Yamhill County Circuit Court.
17. Interpretation. This Development Agreement shall be deemed to have been drafted jointly by the parties and shall be interpreted in accordance with the plain meaning of its terms and not strictly for or against any of the parties hereto.
18. Indemnification. GC hereby agrees to indemnify the Homeowners and hold them harmless from and against any and all claims, demands, liabilities, costs, expenses, penalties, damages and losses, including, without limitation, reasonable attorneys' fees before or at trial, on appeal, and on any petition for review, resulting from any injuries made by contractors performing work to satisfy this Development Agreement.
19. Third-Party Beneficiaries. Nothing in this Development Agreement, express or implied, is intended to confer on any person, other than the parties to this Development AGREEMENT, any right or remedy of any nature whatsoever.
20. Advice of Counsel. Each of the parties also represent that they have read this Development Agreement and discussed it with an attorney of their choosing, that they understand each of the terms of this Agreement, and that they enter into and execute this Development Agreement voluntarily and willingly.
21. Preparation by Gunn \& Cain. The Homeowners acknowledge that this Development Agreement has been prepared by Gunn \& Cain LLP, attorneys for GC, and that the Homeowners have been advised to consult with their own respective legal counsel should they have any questions regarding the matter.

DEVELOPERS:

On this dst
named Charles Alex Miller who acknowledged the execution of the foregoing instrument to be his voluntary act and deed.

Notary Public for Oregon
My commission expires: \qquad

State Of Oregon
County of Yamhill
On this \qquad day of June, 2008, personally appeared before me the abovenamed Daniel Peek who acknowledged the execution of the foregoing instrument to be his voluntary act and deed.

Notary Public for Oregon
My commission expires: \qquad

State Of Oregon)
) ss.
County of Yamhill
)
On this \qquad day of June, 2008, personally appeared before me the abovenamed Rebecca Peek who acknowledged the execution of the foregoing instrument to be her voluntary act and deed.
\qquad

THE HOMEOWNERS:

TERRY COSS

AMELIA COSS

Date: \qquad

Property Address:
4304 Robin Court
Newberg, OR 97132

CHARLES ALEX MILLER, a single man
Date: $\sqrt{V} l y, 2608$

Property Address:
4308 E. Robin Court
Newberg, OR 97132

DANIEL PEEK

REBECCA PEEK

Date:

Property Address:
4402 Birdhaven Loop
Newberg, OR 97132

Keith Leonard

From:	Doug Rux
Sent:	Monday, July 23, 2018 8:25 AM
To:	Keith Leonard
Subject:	RE: Saving Healthy Trees

I already sent them on to Mike and Andrew over the weekend.

Doug Rux, AICP
Community Development Director
City of Newberg
503.537.1212

Doug.Rux@newbergoregon.gov

From: Keith Leonard
Sent: Monday, July 23, 2018 6:33 AM
To: Doug Rux
Subject: Re: Saving Healthy Trees

I'll get these out to Andrew.

From: Doug Rux
Sent: Saturday, July 21, 2018 5:17:48 PM
To: Keith Leonard
Cc: Andrew Tull; Michael Robinson
Subject: Fwd: Saving Healthy Trees
Here is another comment.
Doug Rux
Community Development Director
City of Newberg
503.537.1212

Doug.rux@newbergoregon.gov
Sent from my iPhone
Begin forwarded message:
From: jessica poetzman jepoet23@gmail.com
Date: July 21, 2018 at 4:28:13 PM PDT
To: Doug Rux Doug.Rux@newbergoregon.gov
Subject: Saving Healthy Trees
Hello, I go to Newberg High School. I was looking at the planned houses after someone mentioned it and I felt the need to write with a few complaints. Recently a lot of trees have been taken down in town due to growth but I don't
think that should be the case anymore. We are lucky to live in an area with so much natural beauty and it should all be preserved.

CRESTVIEW CRDSSIMG PLABHED DEVELOPMENT

This specific part is what I'm talking about. It looks to be only 18 homes which doesn't seem justifiable for a mini forest to be cut. Just wanted to put that out there!

Sent from my iPhone

Keith Leonard

From:	Doug Rux
Sent:	Saturday, July 21, 2018 3:49 PM
To:	Keith Leonard
Cc:	Andrew Tull; Michael Robinson
Subject:	Fwd: Crestview Planned Housing

I revived this email Saturday on Crestview Crossing.
Doug Rux
Community Development Director
City of Newberg
503.537.1212

Doug.rux@newbergoregon.gov
Sent from my iPhone
Begin forwarded message:
From: Cooper Foushee cooperfoushee123@gmail.com
Date: July 21, 2018 at 1:41:09 PM PDT
To: doug.rux@newbergoregon.gov
Subject: Crestview Planned Housing
Hi I just had a few ideas for the planned neighborhood because it's still in planning. I think the houses on the backend of the lot shouldn't be built and the natural trees should be kept and used for a walking trail possibly. The natural forest we still have left in town should be completely preserved because once it's gone it's gone. Houses can always be built somewhere else too. Hopefully this is taken into consideration because other people my age at the high school don't like the idea of more trees being torn down for houses. Thank you!

Sent from Coopers iPhone

Community Development Department
P.O. Box 970

414 E. First Street
Newberg, Oregon 97132
To Whom It May Concern:
As long time residents of Oxberg Lake Estates we have several concerns about the proposed development to be located behind our property.

Our first concern is maintaining the wonderful livability of our neighborhood. We are isolated from transient vehicle and pedestrian traffic. Our neighborhood is a relaxing place to walk without concern for safety from cars. We know our neighbors and the many other people who use our streets from adjacent neighborhoods. We have a strong neighborhood watch program, but without a barrier and sound wall between our neighborhood and the new development our livability will be lowered by uncontrolled access through our properties. Trespassing and other crimes will increase without some form of restriction.

Our second, and most important concern, is protecting and maintaining our level and quality of water in our aquifer. The new development would eliminate wetlands and redirect water that normally filters into the aquifer that we use to supply our 30 homes through one well. The current wetlands and other water run-off from adjacent fields provide a critical source of water to our aquifer and must not be eliminated. This water issue must be addressed to the satisfaction of the Oxberg Water Company and the Oxberg Lake Estates Homeowner's Association.

We recognize Crestview Drive will be completed through to Highway 99, but the livability, safety, and water are critical components to our neighborhood.

Thank you,
Blake and Diane Williams
4500 NE Blue Heron Ct.
Newberg, Oregon 97132

RECEIVED

JUL 262018
Initial: \qquad 1

July 282018
Attention Newberg City Planners Re: Development @ 4504 E Portland Rd.
We are writing this in hopes you will consider the following items that are of considerable concern to us as we are directly abutting this development.
!. How this project will affect our water supply to the homes in Oxberg Lakes Estates if the wet lands are destroyed.
2. That the developer abide by the same standards set by the Springbrook Master Plan.
3. A roundabout be on Crestview at Northern part of the project.
4. The plan of the previous developer included a Wall on the Northern boundrary of the project.

Sincerely;
 4408 Birdhaven Loop

CEIVED

JUL 312018

Initial:

City of Newberg
Community Development Department PO Box 970
Newberg, OR 97132

7/28/2018

To the City Council:

Some ten years ago an exceptional City Manager, Jim Bennett, touched greatness. Under his leadership problems that had plagued Newberg for decades were resolved because all the involved parties agreed to work together to solve them. Thanks to mutual good faith and hard work, the result is what is now known as "The Five Party Team" agreement.

The Team had six official members, The City, The County, Oxberg Lakes Homeowners (OLHA), and three property developers. The State was not a member, but it made inputs and provided expertise that helped with road infrastructure and traffic issues. Experts and Attorneys helped.

At the time I was President of OLHA. I testified at some 35 hearings, some of which ran until 2 AM, each time speaking in favor of developing the high value properties adjacent to us and the infrastructure needed to support Newberg's future growth.

The result was a miracle, one that was precedent-setting for Newberg, the County, and the State. Rather than the typical staff-driven piecemeal approach to cram in some development, this time all the people involved and effected got involved and drove the plan (with assistance from city and county planners) to assure the best possible outcomes.

No one got everything they wanted, but we got a plan that we could live with. It was signed by all parties. The resultant plan was published in the Newberg Graphic. One good part was a transfer of Crestview from the County to the City that did not destroy our community and met or exceeded design standards.

Newberg got the road access it wanted and the right to run a waterline down our street. We got a road we could live with AND THE BEST PRACTICES AGREEMENT to protect the aquifer for our water system. The latter was a proud day for everyone. It was meaningful environmental protection and very much in the spirit of the old Oregon.

There is a lot of misunderstanding about our water system. Development in Newberg has, over the years, destroyed many private wells. That's irrelevant. Our system is a State Licensed
commercial water system, one of three in the County. As such, we are required by law to protect our aquifer. In water law first is everything and our system predates the State of Oregon.

Perhaps best of all for Newberg, the Five Party Team plan was affordable. Having an integrated plan paid for infrastructure that allowed many developments, with many more to follow. The first phase paid for itself. Barely. The numbers were thin but workable.

Alas, what was planned never got built. Administrations changed, the economy collapsed, and except for some "shovel ready" money that built out a short section of road through OLHA, everything stopped.

It seems that now we are back to square one. I am concerned. It seems betrayal is afoot. OLHA has been forced to retain legal counsel. Several things were alarming.

Apparently, the current developer's interpretation of "Best Practices" (it was a signatory) is to fill the recharge zone for our aquifer with dirt (5 acres of fill, for 7 acres of wetlands!) and to divert as much of our water away as possible so they can cram in more development.

A strange off-the-record public (but not official) meeting was held by the developer in our local fire house on May 14th. This was not recorded, but the room was full, I was there, and names were taken.

You should invite all who attended to testify at length to the City Council. Suffice it to say that many issues were raised, credible answers were lacking, and the developer seems to be depending on grants of taxpayer money to generate profit and make their numbers work.

Most in the room expressed skepticism or opposition. The developer's response was that they were doing the pubic a favor by even having the meeting, and they were not required to tell us anything. In short, "We're going to do it anyway."

My comment at the meeting was that a piecemeal approach, like the one being pursued, would likely create more problems than it solved, and that the Five Party Team agreement and plan should be revisited. I also said that if the Best Practices Agreement was violated and our water system was threatened, my guess [as a private citizen and homeowner] was that OLHA would have to assert our legal rights.

Even more alarming is that when our board called our land use lawyer from a decade ago they didn't respond for a time. When they did, it was to report that a conflict existed. It seems that

OUR LAW. FIRM HAS BEEN RETAINED BY THIS DEVELOPER TO REPRESENT THEM FOR THE SAME PARCEL.

What a remarkable coincidence. Such a conflict raises all sorts of legal red flags and demonstrates either monumental incompetence or bad intent.

In summary:

- The plan we heard on May $14^{\text {th }}$ was not appealing. It raised concerns.
- The developer is desperate to get this plan approved. All the other developers have distanced themselves. Follow the money and look at the numbers.
- I strongly suggest the City Council and the County should get involved, become familiar with the Five Party Team agreement, and consider other options.
- Please do not leave this to staff. Getting the infrastructure right has been a major issue for Newberg for some 40 years. This issue should not be driven by one developer and one small parcel. Get broader opinions and plans. As before, this development could be one piece of a plan, given the use of BEST PRACTICES to protect our aquifer.
- Traffic calming on the border of OLHA was also part of the Five Party Team agreement. This was implemented on our section of the road, but it still needs to be put in place on the adjacent parcel.
- Whatever you do, please do not destroy our water system.

Thank you for your interest and attention.

City of Newberg
Community Development Department PO Box 970
Newberg, OR 97132

7/28/2018

To the City Council:

Some ten years ago an exceptional City Manager, Jim Bennett, touched greatness. Under his leadership problems that had plagued Newberg for decades were resolved because all the involved parties agreed to work together to solve them. Thanks to mutual good faith and hard work, the result is what is now known as "The Five Party Team" agreement.

The Team had six official members, The City, The County, Oxberg Lakes Homeowners (OLHA), and three property developers. The State was not a member, but it made inputs and provided expertise that helped with road infrastructure and traffic issues. Experts and Attorneys helped.

At the time I was President of OLHA. I testified at some 35 hearings, some of which ran until 2 AM, each time speaking in favor of developing the high value properties adjacent to us and the infrastructure needed to support Newberg's future growth.

The result was a miracle, one that was precedent-setting for Newberg, the County, and the State. Rather than the typical staff-driven piecemeal approach to cram in some development, this time all the people involved and effected got involved and drove the plan (with assistance from city and county planners) to assure the best possible outcomes.

No one got everything they wanted, but we got a plan that we could live with. It was signed by all parties. The resultant plan was published in the Newberg Graphic. One good part was a transfer of Crestview from the County to the City that did not destroy our community and met or exceeded design standards.

Newberg got the road access it wanted and the right to run a waterline down our street. We got a road we could live with AND THE BEST PRACTICES AGREEMENT to protect the aquifer for our water system. The latter was a proud day for everyone. It was meaningful environmental protection and very much in the spirit of the old Oregon.

There is a lot of misunderstanding about our water system. Development in Newberg has, over the years, destroyed many private wells. That's irrelevant. Our system is a State Licensed
commercial water system, one of three in the County. As such, we are required by law to protect our aquifer. In water law first is everything and our system predates the State of Oregon.

Perhaps best of all for Newberg, the Five Party Team plan was affordable. Having an integrated plan paid for infrastructure that allowed many developments, with many more to follow. The first phase paid for itself. Barely. The numbers were thin but workable.

Alas, what was planned never got built. Administrations changed, the economy collapsed, and except for some "shovel ready" money that built out a short section of road through OLHA, everything stopped.

It seems that now we are back to square one. I am concerned. It seems betrayal is afoot. OLHA has been forced to retain legal counsel. Several things were alarming.

Apparently, the current developer's interpretation of "Best Practices" (it was a signatory) is to fill the recharge zone for our aquifer with dirt (5 acres of fill, for 7 acres of wetlands!) and to divert as much of our water away as possible so they can cram in more development.

A strange off-the-record public (but not official) meeting was held by the developer in our local fire house on May 14th. This was not recorded, but the room was full, I was there, and names were taken.

You should invite all who attended to testify at length to the City Council. Suffice it to say that many issues were raised, credible answers were lacking, and the developer seems to be depending on grants of taxpayer money to generate profit and make their numbers work.

Most in the room expressed skepticism or opposition. The developer's response was that they were doing the pubic a favor by even having the meeting, and they were not required to tell us anything. In short, "We're going to do it anyway."

My comment at the meeting was that a piecemeal approach, like the one being pursued, would likely create more problems than it solved, and that the Five Party Team agreement and plan should be revisited. I also said that if the Best Practices Agreement was violated and our water system was threatened, my guess [as a private citizen and homeowner] was that OLHA would have to assert our legal rights.

Even more alarming is that when our board called our land use lawyer from a decade ago they didn't respond for a time. When they did, it was to report that a conflict existed. It seems that

OUR LAW. FIRM HAS BEEN RETAINED BY THIS DEVELOPER TO REPRESENT THEM FOR THE SAME PARCEL.

What a remarkable coincidence. Such a conflict raises all sorts of legal red flags and demonstrates either monumental incompetence or bad intent.

In summary:

- The plan we heard on May $14^{\text {th }}$ was not appealing. It raised concerns.
- The developer is desperate to get this plan approved. All the other developers have distanced themselves. Follow the money and look at the numbers.
- I strongly suggest the City Council and the County should get involved, become familiar with the Five Party Team agreement, and consider other options.
- Please do not leave this to staff. Getting the infrastructure right has been a major issue for Newberg for some 40 years. This issue should not be driven by one developer and one small parcel. Get broader opinions and plans. As before, this development could be one piece of a plan, given the use of BEST PRACTICES to protect our aquifer.
- Traffic calming on the border of OLHA was also part of the Five Party Team agreement. This was implemented on our section of the road, but it still needs to be put in place on the adjacent parcel.
- Whatever you do, please do not destroy our water system.

Thank you for your interest and attention.

RECEIVED

JUL 312018

To Whom It May Concern,
I am a resident of Oxberg Lake Estates located just north of the planned development referenced above. I would like to state for the record my concerns regarding the development as it is currently proposed.

The most pressing issue as I see it is the planned fill of the existing wetland and rerouting of the water away from the recharge zone for our well system and the eventual drainage into the city's storm water system. The HOA for this community actually operates a state licensed water company and provides safe clean drinking water for residents both within the association as well as residences located nearby. It is my belief, based on previous testimony when a development was first planned for this property, that the activity currently proposed would significantly harm our water system and jeopardize our water company.

When looking at the 5 party agreement that was signed over a decade ago and which included city, current developers and this association - it was agreed to that "best practices" would be employed when deciding how to proceed with regards to the wetland and our water supply. Just recently, I spoke on behalf of the HOA at the Springbrook Master Plan meeting in front of the planning board and stated clearly that the developers for SMP had set the gold standard for what "best practices" meant - setting aside a full $1 / 3$ rd (150 acres) of the property for water resource preservation and as such, will be left undeveloped. I implored then as I do now that the planning board accept nothing less than that standard as it pertains to the Crestview Crossing project as well.

Furthermore, the other issues with this development as I see it pertains to the issue of "traffic calming measures". Again, everyone acknowledged in the 5 party agreement that roundabouts were needed to limit both size (large tractor trailers) and speed through our community as well as neighboring communities and the placement of the roundabouts was key to achieving this. In the current proposal, the planned roundabout to the northwest is not addressed (as I
understand it, that is part of the SMP) but also in the current proposal, the roundabout which was supposed to be located "immediately to the south" of our community has been moved further south than what was previously agreed to - reducing or negating any benefit of traffic calming measures previously agreed to.

There is no question this as a direct violation of the 5 party agreement. It should be noted that the developers were made aware of the issues to both of my concerns when they unveiled the new improved proposal at a community meeting in May - and it's a shame to see neither were addressed in any meaningful manner. It's up to the planning board to seek the answers and remedies to both these issues.

Finally, the concern of a physical separation between the existing development (Oxberg) and the proposed development is still undefined. While this doesn't concern me directly, it does affect my neighbors and there needs to be specifics laid out in how the properties adjacent to the development will be separated - whether it be a wall, natural barrier or what have you.

I appreciate and applaud all the efforts by the planning board of Newberg. This is not an easy task- and while I'm sad to see we wont be getting the commercial development of prime commercial property as once was proposed - I do ask that they strongly consider rejecting the proposal as submitted. Newberg has a rich history of protecting the environment and putting the residents first and foremost ahead of any new developments.

As you look at this proposal, it doesn't meet the needs of Newberg's existing residents - some of which have called Newberg home for more than 60 years. Crestview Crossing is the gateway to the Allison and as such should be planned with the understanding that what we choose to do now will forever have an impact on the city and its long time residents. The decision to fill in wetlands with little consideration as to the impact on surrounding communities should not be taken lightly.

I ask that impartial experts review the wetland with an updated survey of the area and come to a clear understanding of the expected
impact on our aquifer, positive consent from all adjacent homeowners and traffic calming measures as agreed to installed. I would also ask that should you proceed with the development as proposed, and should there be negative impact on our aquifer to the extent that it becomes no longer viable - there needs to be a compensation package or bond agreed to by both parties.

Again, thank you for your consideration in this matter and I ask that you do what's right for Newberg in the long run and not look at the short term gain exclusively.

Mark Wagner
4403 NE Birdhaven Loop
Newberg, OR 97132

RECEIVED

AUG 12018

Initial:

\qquad
City of Newberg
Community Development Department
PO Box 970
Newberg,OR 97132

To whom it may concern,
The people of Newberg need to decide what is to be built across the street from our hospital not a for profit developer from Lake Oswego. The new Springbrook road will be the gateway to the Allison Hotel \& Spa and future businesses on North Springbrook. So it is important that the Crestview crossing be as aesthetically appealing as possible.

The highest and best use for a property located across the street from a hospital, would be a condominium type retirement village with common lawns to grace our new entry into the city of Newberg. The proposed high density housing project for the Crestview crossing seems to be one that could be located elsewhere in the city, not at the gateway, perhaps along the new bypass.

In the case of an economic downturn, which is always a possibility, some of the new owners of the proposed high density housing project may default on their loans which would in turn create an absentee landlord neighborhood thus sending the gateway to Newberg into a decline and setting the tone for future developments and the economic status of Newberg.

The Lake Oswego developer proposes filling in and paving over our Newberg wetlands to make the development more profitable. A viable option would be for the city to trade a portion of the park on Vittoria for the wetlands and in turn create a park on the wetlands. Given the nature of wetlands the park need not be a conventional park with little more than grass and a basketball half court. The alternative wetland park could be a Japanese style garden with paths, bridges, benches, rock gardens, sculptured trees, tall grasses, and, of course water. This style park would be a source of beauty for the community at large.

In summary, the Lake Oswego developers should not determine the future composition of our Newberg community. The highest and best use would be a retirement community accented by an adjoining Japanese garden with the high density housing to be located along the bypass.

Sincereiy,

City of Newberg
Community Development Department
File NO: PUD 18-0001/cup 18-0004
August 1, 2018

Newberg Planning Commissioners,

I have concerns with the filling in of wetlands on the proposed development. There are 7 acres of wetlands on this property I understand that 5 of those acres will be filled in as the land is developed.

I have enclosed for the records a wetlands study of tax lot number 1100. This study was in the hands of the Department of State Lands for many years. Janet Morlan, Wetlands Program Manager for the State of Oregon had questions regarding this application, it is as important today as it ever was. This file is one of the reasons this land has been on hold for development for many years. Unfortunately for the developer the previous land owner had denied there were 7 acres of wetlands in public testimony.

This wetland is a tributary to Springbrook Creek. Springbrook Creek flows the entire length of our property at 30230 NE Benjamin Road, it flows under our driveway into the 1 acre pond that is part of the National Historic Wetlands. It then flows under 99W into the ponds located on the South side of 99W continuing to flow into the Willamette River. Any disturbance to the wetlands on this developed property could impact the surrounding tributary, creeks and properties. The filling in should not be allowed for this development, the wetlands should be preserved.

Also the filling of the wetlands will affect the aquifer that provides water to the Oxberg Water Company and the 39 residents that rely on the well. The cost if damaged will ultimately need to be borne by the City of Newberg and the developer.

The water impact to Oxberg's water rights, neighbors, streams corridors and creeks must be protected. Any damage could be very costly to the city.

Respectfully submitted,
Vicki Shepherd
30230 NE Benjamin Rd
Newberg, OR 97132
RECEIVED.
Enclosed: 52 page report
JUL 312018
Initial:

\qquad

Theodore R. Kulongoski
Governor

Bill Bradbury Secretary of State

Randall Edwards State Treasurer

Dear Mr. Speakman:
The Department of State Lands has reviewed the wetland delineation report prepared by Schott and Associates for the site referenced above. Based upon the information presented in the report, we concur with the wetland and waterway boundaries as mapped in Wetland Map Pages 1 of 3 and 3 of 3 of the report. Within the study area, three wetlands (totaling approximately 2.24 acres) and two waterways within the mapped wetlands were identified. The wetlands and waterways are subject to the permit requirements of the state Removal-Fill Law. A state permit is required for cumulative fill or annual excavation of 50 cubic yards or more in the wetlands or below the ordinary high water line (OHWL) of a waterway (or the 2 year recurrence interval flood elevation if OHWL cannot be determined).

This concurrence is for purposes of the state Removal-Fill Law only. Federal or local permit requirements may apply as well. The Army Corps of Engineers will review the report and make a determination of jurisdiction for purposes of the Clean Water Act at the time that a permit application is submitted. We recommend that you attach a copy of this concurrence letter to both copies of any subsequent joint permit application to speed application review.

Please be advised that state law establishes a preference for avoidance of wetland impacts. Because measures to avoid and minimize wetland impacts may include reconfiguring parcel layout and size or development design, we recommend that you work with Department staff on appropriate site design before completing the city or county land use approval process.

This concurrence is based on information provided to the agency. The jurisdictional determination is valid for five years from the date of this letter, unless new information necessitates a revision. Circumstances under which the Department may change a determination and procedures for renewal of an expired determination are found in OAR 141-090-0045 (available on our web site or upon request). The applicant, landowner, or agent may submit a request for reconsideration of this determination in writing within 60 calendar days of the date of this letter.

Thank you for having the site evaluated. Please phone me at 503-986-5236 if you have any questions.

Sincerely,
Ganet C. Morlan
Janet C. Morlan, PWS
Wetlands Program Manager

Enclosures

cc: Claudia Steinkoenig, Schott and Associates City of Newberg, Planning Department Tina Teed, Corps of Engineers Carrie Landrum, DSL

Site Data Sheet

Project Name:	New B.
Project Number:	1985
Date of Site Visit:	February 21 \& 28, 2007
Applicant:	Tim Speakman
Applicant's Address:	3401 SW Huber Street
	Portland, Oregon 97219

TABLE OF CONTENTS
WETLAND DELINEATION INFORMATION..I
DELINEATION PURPOSE:... 1
(A) SITE DESCRIPTION ... 1

PROJECT PURPOSE ... 2
(B) WetLand Description .. 2
(C) Site Analysis.. 4
(D) Site Specific Methods .. 4
(E) DEVIATION.. 5
(F) Methods of Determining Other Waters of the State..................................... 5
(G) AddItional Info .. 6
(H) Statement of Mapping Accuracy .. 6
(l) Date of Investigation ... 6
(J) Weather ... 6
(K) Results and Conclusions ... 6
(L) REQUIRED DISCLAIMER.. 7

DATA FORMS ... 13
APPENDICES .. 14
Boller Plate Information .. 15
Wetland Definition and Authority ... 15
REGULATORY CONTEXT... 15
VEGETATION... 15
Soms ... 17
HYDROLOGY .. 17
WETLAND DETERMINATION.. 18
REFERENCES .. 19
AERIAL MAP ... 20

LIST OF FIGURES
FIGURE 1. SITE VICINITY MAP .. 8
FIGURE 2. TAX LOT MAP.. 9
FIGURE 3. LWI MAP .. 10
FIGURE 4. SOIL SURVEY MAP.. 11
FIGURE 5. WETLAND MAP.. 12

LIST OF TABLES
TABLE 1: DEFINITIONS OF INDICATOR STATUS ... 16

Schott \& Associates
Ecologists and Wetland Specialists
PO Box 589, Aurora, OR. 97002 © (503) 678-6007 • • Fax (503) 678-6011

(A) Site Description

The 30 -acre project area is located on the eastern edge of Newberg in Yamhill County, Oregon (SW1/4,NE1/4 Sec. 16, T3S, R2W TL\#900,1000, 1100)(Figure 1) just outside of the city limits. The southern boundary abuts city limits. The study area is west of Benjamin Road and east of Victoria Way. Hwy 99W forms the southern property boundary. The new Providence Hospital (zoned I- Institutional) is to the southwest. The three tax lots that comprise the study area are designated as Agricultural/Forestry Small Holdings (AF-10).

For the purposes of this report, the project area will be described by tax lot. Tax lot 900 is located west of Benjamin Road and north of Highway 99 West. The lot is approximately 5.7 acres and has two homes and two large barns on it. The topography has gentle to moderate slopes to the east. The majority of the property consists of horse pasture comprised of grasses and forbs that include colonial bentgrass (Agrostis stolonifera), Kentucky bluegrass (Poa pratensis), tall fescue (Festuca arundinacea) and white clover (Trifolium repens) as dominants: Ornamental species were observed around the homes.

Tax Lot 1000 is located west of tax lot 900 . It is 5.8 acres and has a vet clinic and associated buildings in the center of it. The topography slopes gently to the south, southeast. Fenced pastures are located on the south and north end of the property. Dominant vegetation includes bentgrass, Kentucky bluegrass, tall fescue and orchard grass (Dactylis glomerata). Groupings of Oregon Oak (Quercus garryana) and Douglas fir (Pseudotsuga menziesii) were scattered along the northern and western property perimeter.

Tax lot 1100 is 18.5 acres and located on the west end of the study area. Topography on the west end slopes gently east to two unnamed tributaries. The mid and east section of the tax lot slopes predominantly south. There is an existing residential home on the southwest end of the property and some outbuilding north of the home. A small drainage located behind the home flows to the east and joins a larger tributary of Spring Brook Creek which flows south to the Willamette River. Three meadow communities were identified on site. The first is along the western property boundary. The second is located southeast of the residence and the third is on the south end of the tax lot. The vegetation in the meadow communities consisted of grasses and forbs that included tall fescue, Kentucky bluegrass, bentgrass, orchard grass (Dactylis glomerata), and white clover, queen Anne's lace (Daucus carota) and cat's ear (Hypochoeris radicata) as subdominants. An upland forest community was located on the northern property boundary and included Oregon oak, Douglas fir, and bigleaf maple (Acer macrophyllum).

Schott \& Associates
 Ecologists and Welland Specialists

POBOx 589 , Aurora, OR. 97002 - (503)678-6007. $\operatorname{Cax}(503) 678-6011$
Page 1

The dominant species found in the shrub layer included Service berry (Amelanchier alnifolia), Indian plum (Oemleria cerasiformis), beaked hazelnut (Corylus cornuta) and common snowberry (Symphoricarpos albus). Sword fern (Polystichum munitum) and English ivy (Hedera helix) were the dominants in the herbaceous layer.

A forested riparian area was located adjacent to the largest tributary. The tree species in the riparian forest include Oregon ash (Fraxinus latifolia) and willow (Salix sp.) Shrub communities varied from area to area along the drainage. Portions of the shrub layer consisted of a dense layer of Himalayan blackberry interspersed with dense patches of Nookta rose (Rosa nutkana) and Douglas spiraea (Spiraea douglasii). Species identified in the herbaceous layer included slough sedge (Carex obnupta), water parsley (Oenanthe sarmentosa) and bentgrass.

The National Wetland Inventory (NWI) map for Newberg shows a tributary of Spring Brook Creek on the west end of the study area. There is no Local Wetland Inventory (LWI) for the area. The Yamhill County Soil Survey indicated two mapping units on the property that include Woodburn silt loam and Amity silt loam. The topographic map shows a site gently sloping north, northeast.

Project purpose

The site is proposed for commercial development to service the new hospital across the street and the adjacent residential areas. The developer of the site is currently applying for annexation into the city of Newberg and rezoning designation to Community Commercial.

(B) Wetland Description

Based on soil, hydrology and vegetation data taken on site two unnamed tributaries of Spring Brook Creek, and four wetlands were delineated. Two of the wetlands are adjacent to the tributaries. A 0.31 acres palustrine emergent/RFT wetland is locatedalong a short portion of the smaller tributary on the west end of the property. The second wetland is 1.63 acres palustrine forested/RFT wetland adjacent to the remaining portion of the smaller tributary and the entire length of the larger tributary. The other two wetlands are isolated and located in the north mid-section of the property. The larger wetland is 0.29 acre and classified as palustrine emergent/scrub-shrub/slope wetland. The smaller one is 0.011 acres classified as a palustrine emergent/slope wetland.

A small seasonal drainage channel enters on the southwest end of tax lot 1100 . It is the extension of a drainage located on the adjoining property to the west. The hydrology of the channel is associated with stormwater runoff from the neighborhood to the west. The drainage channel is u-shaped with a varying width of 2 to 3 feet and depth of approximately 3.5 feet. It has a mud and small cobble substrate bottom. The drainage flows east and drains into a larger tributary of Spring Brook Creek. Duckweed (Lemna

Schott \& Associates	
Ecologis	Wethnd Specialists
PO Box 589, Aurora, OR .9700?	(503)678-6007 - Fax [50]) 678-6011
Page 2	S8A ${ }^{\text {\# }}$: 1985

minor) was observed growing in portions of the drainage. The drainage has a defined channel for approximately 250 feet and then flattens out, draining as surface and subsurface lateral flow into the tributary of Spring Brook Creek.

A larger, unnamed perennial tributary of Spring Brook Creek enters the northwest corner of tax lot 1100 and exits the property on the south side. It flows to the south joining Spring Brook Creek on the south side of Hwy 99W. Portions of the creek are confined to a single channel while other portions of the channel are braided.

Two wetlands were identified adjacent to the two tributaries. The first is a 0.31 acre palustrine emergent (PEM/RFT) wetland. It was located on the west end of the study site where the smaller drainage entered the site. The plant community in this area is a meadow comprised of grasses and forbs. The dominant species are tall fescue and bentgrass. Hydrology for the wetland on the north and south side of the drainage is associated with precipitation, a seasonal high water table and overflow from the drainage during winter high water.

The second wetland is 1.63 acres and forested (PFO/RFT). The dominant tree in the canopy is Oregon ash (Fraxinus latifolia). The shrub layer consists of large dense patches of Douglas spirea (Spiraea douglasii) and nootka rose (Rosa nutkana). The herbaceous layer includes large patches of slough sedge (Carex obnupta) and water parsley (Oenanthe sarmentosa). Hydrology of the wetland is associated with precipitation, a seasonal high water table and overflow from the drainage during winter high water. The southern end of the drainage is fed by a perennial spring.

The other two wetlands are isolated and located in the north mid-section of the property. The larger wetland is 0.29 acres and classified as palustrine emergent/scrub-shrub/slope wetland. The dominant vegetation in the emergent portion is meadow foxtail (Alopecurus pratensis) and bentgrass (Agrostis stolonifera). The shrubs in the scrub shrub communities were nootka rose (Rosa nutkana) with scattered patches of hawthorn (Crataegus sp). The second isolated wetland is immediately below the first. It consists of a small depressional area with colonial bentgrass and meadow foxtail as the dominants.

The analysis of wetlands conducted on this site was based on published methods for implementing Section 404 of the Clean Water Act. The 1987 manual was used to satisfy the requirements of the COE on non-agricultural land. The manual requires three parameters to be examined: vegetation, soils, and hydrology. According to the 1987 manual, independent evidence of hydrophytic vegetation, hydric soils, and wetland hydrology must be present for an area to be declared a wetland. The analysis of wetlands on the project site was conducted by reviewing and analyzing existing site-specific literature and by field investigation.

Schott \& Associates Ecologists and Weland Specialists	
POBOx 589 , Aurora OR 97002 - (503) 678-6007 .	Cax (503) 678-6011
Page 3	S\&A\#:1985

(C) Site Analysis

The three tax lots that comprise the study area are designated as Agricultural/Forestry Small Holdings (AF-10). There was no evidence of alterations to the drainages observed onsite. The hydrology associated with the smaller drainage is stormwater runoff from the neighborhood to the west.

(D) Site_Specific Methods

The Routine Onsite Determination Method (1987 manual, pp: 52-69) was used to determine the State of Oregon wetland boundaries and the Federal jurisdictional wetlands. The entire study area was walked and observed for wetland characteristics. Sample plots were dug and placed in areas determined to meet all wetland criteria. Adjacent plots were placed in the upland.

The first area investigated was located on the west end of the study site. A drainage swale located on the adjacent property to the west extended east into the study area. A delineation for the property to the west was conducted a year ago and is pending review .by DSL. The area consists of a grazed meadow community with dominant grasses of bentgrass and fescue. Areas with wetland characteristics extend north and south of the drainage by approximately 30-40 feet. The source of hydrology for the wetland on the north and south side of the drainage is associated with precipitation, a seasonal high water table and overflow from the drainage during winter high water. The area had recently received days of heavy rain so that the ground water table was exceptionally high.

Along the north side of the swale the wetland boundary was determined predominantly by soil and hydrology since the vegetation in both wetland and upland were the same. On the south side of the swale the vegetation was the determining factor. The soil matrix color in the wetland varied between 10YR3/1 with redox concentrations of $10 \mathrm{YR} 3 / 4$ in sample plot 2 and $10 \mathrm{YR} 3 / 2$ with redox concentrations of $10 \mathrm{YR} 3 / 6$ in sample plot 4 . Both sample plots had a depth to free water between 6 and 8 inches.

The upland area on the south side of the swale was determined by the vegetation. The topography was slightly higher and Himalayan blackberry formed a dense hedge. Some Douglas fir trees were planted in this area as well. On the north side of the swale the upland area did not have hydric soil or wetland hydrology.

Approximately 130 feet east of the property line a small berm built for vehicle access to the back barn area crosses the drainage and wetland area. The berm has been in place on the property well over fifty years. The drainage crosses the berm via a small culvert. It flows an additional 120 feet before it becomes an undefined channel and flows as broad sheet flow into the other tributary.

The wetland continues past the berm and is located adjacent to the tributaries. The plant community on the east side of the berm slowly transitions from a meadow into a forested community that joins the riparian community along the main tributary. Soils in this portion of the wetland (Sample plot, $8,9 \& 11$) predominantly have a matrix value of $10 \mathrm{YR} 3 / 2$ with redox concentrations of $10 \mathrm{YR} 3 / 6$.

The upland edge was obvious by topography as well as vegetation and hydrology. The overstory transitioned from Oregon ash into Oregon oak and Douglas fir on the north end. Further south the vegetation in the upland riparian area had Oregon ash mixed with common snowberry (Symphoricarpos alba), beaked hazelnut (Corylus cornuta) and Himalayan blackberry. Upland soils observed along the tributaries included matrix colors of $10 \mathrm{YR} 3 / 3$ (sample plot 5), from 0 to 12 inches, $10 \mathrm{YR} 4 / 2$ (sample plot 7) and (10YR3/2) (sample plot 10). No redox concentration were observed within 10 inches and no evidence of wetland hydrology was observed.

The wetland identified in the middle of tax lot 1100 consists of an emergent and scrub shrub wetland. The majority of it is located in a clearing surrounded by dense thickets of English hawthorn, Himalayan blackberry and various overgrown fruit trees. The vegetation in the northern portion of the wetland consisted of scattered dense thickets of nootka rose (Rosa nutkana). Meadow foxtail was the dominant grass. The soil matrix color varied between $10 \mathrm{YR} 3 / 2$ and $10 \mathrm{YR} 4 / 2$ with redox concentrations that varied in color. The hydrology of the wetland was associated with overland sheet flow and a seasonal high water table. The wetland was hummocky with slight shift in topography along the upland edge.

The vegetation in the upland area was similar to the wetland vegetation. The upland area had a predominant soil color of $10 \mathrm{YR} 3 / 2$ with no redox concentrations (sample plot 13, $16,18,19,23,26)$ and no wetland hydrology.

(E) Deviation

No deviations were observed. The National Wetland Inventory (NWI) map for Newberg did not show any wetlands in the project area. It did show the tributary of Spring Brook Creek on the western portion of the study area. There is no Local Wetland Inventory (LWI) for the area.

(F) Methods of Determining Other Waters of the State

No other waters of the state were observed onsite. The top of bank was defined for the smaller tributary that flow west to east. The larger tributary had the center line mapped for the main branch of the creek, because the mid section is braided.

None.

(H) Statement of Mapping Accuracy

The wetland boundaries were flagged and the flags were surveyed by Alpha Community Development, PLS.

(I) Date of Investigation

The site was visited on February 21 and $28,2007$.

(J) Weather

The weather on the day of the February 21 site visit was cold and rainy. The day before 0.67 inches of rain were recorded at the Forest Grove weather station. 2.48 inches of rain were recorded for the past two weeks.

The weather on the day of the February 28 site visit was cold interspersed with periods of hail, rain and sun. There was 0.26 inches of rain the day prior to the site visit. 3.21 inches of rain were recorded for the past two weeks. This is 52 percent of the average for the entire month. A total of 36.56 inches were recorded since October 1, 2006. This is 115 percent of the water year average.

(K) Results and Conclusions

The National Wetland Inventory (NW) map did not show any onsite wetlands however it did show a tributary of Spring Brook Creek on the west end of the site. There is no Local Wetland Inventory for the Newberg area. The Yamhill County Soil Survey mapped two soil series on the subject property: Amity silt loam and Woodburn silt loam 0 to 7 percent slopes and 7 to 12 percent slopes. The Amity series is somewhat poorly drained. This soil series is not listed as hydric however it does have hydric inclusions. Some of the soil observed on site matched the Amity series.

Based on soil, hydrology and vegetation data taken on site two unnamed tributaries of Spring Brook Creek, and four wetlands were delineated. The smaller drainage is seasonal, the larger has recently developed a perennial flow. Two of the wetlands are adjacent to the tributaries: A 0.31 acres palustrine emergent/RFT wetland is located along a short portion of the smaller tributary on the west end of the property. The second wetland is 1.63 acres palustrine forested/RFT wetland adjacent to the tributaries. The other two wetlands are isolated and located in the north mid-section of the property. The larger wetland is 0.29 acre and classified as palustrine emergent/scrub-shrub/slope wetland. The smaller one is 0.011 acres classified as a palustrine emergent/slope wetland.

(I) Required Disclaimer

This report documents the investigation, best professional judgment and the conclusions of the investigator. It is correct and complete to the best of my knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters and used at your own risk unless it has been reviewed and approved in writing by the Oregon Department of State lands in accordance with OAR 141-090-0005 through 141-090-0055.

FIGURE 1. SITE VICINITY MAP
Schott \& Associates
P.O. Box 589

Aurora, OR. 97002
503.678.6007

FIGURE 2. TAX MAP
Schott \& Associates
S\&A \#1985

Data Forms

Schott \& Associates
Ecologists and Wetland Specialists PO Box 589 , Aurora, 0 O 970022 - (5031678 -60017 Page 12 S8.4\#:1985

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method County：Yamhill

Date： $2 / 21$

| City：Newberg |
| :--- | :--- | City．Newberg \quad File \＃：1985

Project／Contact：NewB．／CS
Det．By：C．Steinkoenig
Plot \＃： 1
Plot Location：south side of swale
Recent Weather：rainy and cold Do normal environmental conditions exist？Y区
Has Vegetation $\square \quad$ Soil $\square \quad N \quad$ Hydrol \square If no，explain：
Explain：
ydrology \square
been significantly disturbed？

$\square>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：50
Other hydrophytic vegetation indicators：
Criteria Met？\square Yes \boxtimes No Comments：Hydrophytic veg，not exceeding 50 percent．

Map	SOMS
On Hydric Soill List？\square Yes	Somewh

On Hydric Soil List？
\square Yes \triangle No
Drainage Class：Somewhat poorly drained Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture		
$0-8$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{Y} 3 / 4 \mathrm{FFD}$		S CL		
$8-16$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{R} 3 / 4 \mathrm{CMP}$		CL		
						Hydric Soil Indicators：
:---						
\square Histosol						

\square Histosol
 \square Histic Epipedon

\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\square Redox features within 10 ＂（e．g．，concentrations）

Criteria Met？ \mathbb{Z} Yes \square No

\square Concretions／Nodules（w／in 3＂，$>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）

HYDROLOGY

Recorded Data：

\square Recorded Data Available

Field Data

Depth of inundation：
Primary Hydrology Indicators：
\square Aerial Photos
Depth to Saturation：10＂
\square Other
区 No Recorded Data Available

IInundated
区Saturated in upper 12 inches
Secondary Hydrology Indicators（2 or more required）：
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？ \mathbb{Z} Yes \square No
\square Oxidized Root Channels
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
DOther：
Comments：Recent heavy rains and high water table．
WETLAND？\square YES 区NO Comments：Area adjacent blackberry thicket and higher topography．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:

X $>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:
Criteria Met? XYes \square No Comments: Hydrophytic veg. exceeds 50 percent.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-7$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{YR} 3 / 4 \mathrm{FFF}$		Si CL
$7-16$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{YR} / 4 \mathrm{CFD}$		CL

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

County: Yamhill
Date: $2 / 21$
City: Newberg
Det. By: C. Steinkoenig
Plot \#:3
Plant Community: meadow
Plot Location: North side of swale
Recent Weather: rainy and cold
Do normal environmental conditions exist? $Y \boxtimes \quad N \square \quad$ If no, explain:
Has Vegetation \square Soil \square
Explain:

VEGETATION

Hydrophytic Vegetation Indicators:
Other hydrophytic vegetation OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100
Other hydrophytic vegetation indicators:
Criteria Met? XYes \square No Comments: Hydrophytic veg. exceeds 50 percent.
SOILS
Map Unit Name: Amity silt loam On Hydric Soil List? \square Yes \boxtimes No

Drainage Class: Somewhat poorly drained
Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
0 -12	$10 \mathrm{YR} 3 / 2$	None		CL L
$12-16$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 4 \mathrm{CCP}$		SICl

Hydric Soil Indicators:

 \square Sulfidic Odor
 \square Reducing Conditions (tests positive)
 \square Gleyed or low chroma colors
 \square Redox features within 10" (e.g., concentrations)
 Criteria Met? \square Yes \triangle No

Recorded Data:

\square Recorded Data Available Field Data	\square Aerial Photos	os \square Stream Gauge	\square Other	区N
Depth of inundation:		Depth to Saturation:	Depth to	Water:
Primary Hydrology Indicators:				
\square Inundated		\square Oxidized Root Channels	$\text { r } 12^{\prime \prime} \text {) }$	
\square Saturated in upper 12 inches		\square Water-stained leaves		
\square Water Marks		\square Local Soil Survey Data		
\square Drift Lines		\square FAC - Neutral Test		
\square Sediment Deposits		\square Other:		
Criteria Met? \square Yes \boxtimes No		Comments:		
W		DETERMINA		

\square Concretions/Nodules (w/in 3", > 2mm)
\square High organic content in surface (in Sandy Soils)
\square Organic streaking (in Sandy Soils)
\square Organic pan (in Sandy Soils)
\square Listed on Hydric Soils List (and soil profile matches)
\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
\square Supplemental indicator (e.g., NRCS field indicator)

HXDROLOGY

\square Stream Gauge \square Other \boxtimes No Recorded Data Available
Depth to Saturation: Depth to Free Water:
—oxidized Root Channels (upper 12")
\square Water-stained leaves
\square Local Soil Survey Data
\square FAC - Neutral Test
Other:
Comments: .

DETERMINATION
ZYES XNO Comments: No wetland soils or hydrology.

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yambill
Date：2／21
City：Newberg
File \＃：1985
Project／Contact：NewB．／CS
Det．By：C．Steinkoenig
Plant Community：meadow
Plot Location：Paired with sample plot 3
Plot \＃：4
Recent Weather：rainy and cold
Do normal environmental conditions exist？Y区
Has Vegetation \square Soil \square
Explain：
$\mathrm{N} \square \quad$ If no，explain：
Hydrology \square been significantly disturbed？
VEGETATION

Hydrophytic Vegetation Indicators：

Q＞ 50% of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 100 Other hydrophytic vegetation indicators：
Criteria Met？\triangle Yes \square No Comments：Hydrophytic veg．exceeds 50 percent．

SOMS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{FFF}$		CLL
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{CMD}$		SI Cl

Hydric Soil Indicators：

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\triangle Redox features within 10 ＂（e．g．，concentrations）

Criteria Met？\triangle Yes \square No

Recorded Data：

\square Recorded Data Available
\square Aerial Photos
\square Stream Gauge
\square Other
区 No Recorded Data Available

Field Data

Depth of inundation：

Primary Hydrology Indicators：
\square Inundated
区Saturated in upper 12 inches
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？XYes \square No
\square Concretions／Nodules（w／in 3＂，$>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Depth to Saturation： $5^{\prime \prime} \quad$ Depth to Free Water： $8^{\prime \prime}$
Secondary Hydrology Indicators（2 or more required）：
\square Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:
$\square>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):40
Other hydrophytic vegetation indicators:
Criteria Met? \square Yes \boxtimes No Comments: Hydrophytic veg does not exceed 50%. FEAR used as FAC veg.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 3$	None		CL L
$12-16$	$10 \mathrm{YR} 3 / 4$			Sl Cl

Hydric Soil Indicators:

\square Histosol

\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within 10 " (e.g., concentrations)

Criteria Met? \square Yes \boxtimes No

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

Tree Stratum VEGETATION								
Tree Stratum				Herb Stratum				
Total Plot Cover：0	$=50 \%$	＝20\％		Total Plot Cover： 100				
		Status／Raw \％Cover				$50=50 \%$ $20=20 \%$		
$\frac{1}{2 .}$					1．Agrostis stolonifera		us／Raw \％C	
3.							FAC 25^{*}	
4.					3．Dactylis glomerata		FAC－50＊	
5.							FACU 25＊	
Sapling／Shrub Stratum					5.			
Total Plot Cover：	$=50 \%$				6.			
1．			Status／Raw \％Cover		7.			
2.					8.			
3.					9.			
4.					10.			
5.					11.			
					12.			
Hydrophytic Vegetation	ators：							

Hydrophytic Vegetation Indicators：
Other hydrophytic vegetation indicators：
Criteria Met？区Yes \square No Comments：Hydrophytic veg exceeds 50\％．FEAR used as FAC veg． SOILS
$\begin{array}{ll}\text { Map Unit Name：Amity silt loam } & \text { SOILS } \\ \text { On Hydric Soil List？} \square \text { Yes } \boxtimes \text { No } & \text { Drainage Class：Somewhat poorly drained }\end{array}$ Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-11$	$10 \mathrm{YR} 4 / 1$	$10 \mathrm{YR4/4} \mathrm{FFD}$		Si CL
$11-15$	$10 \mathrm{YR} 3 / 4$			SICl

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
ØGleyed or low chroma colors
ХRedox features within $10^{\prime \prime}$（e．g．，concentrations）

Criteria Met？\triangle Yes \square No

Recorded Data：
\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \square No Recorded Data Available
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Depth of inundation：
Primary Hydrology Indicators：
Depth to Saturation：
Secondary Hydrology Indicators（2 or more required）：
区Saturated in upper 12 inches
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？$\triangle Y e s ~ \square N o$
\square Oxidized Root Channels（upper $12^{\prime \prime}$ ）
\square Water－stained leaves
\square Local Soil Survey Data
$\square \mathrm{FAC}$－Neutral Test
\square Other：
Comments：Wetland hydrology observed．

WETLAND？区YES \square NO Comments：Wetland criteria is met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100
Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: FEAR (FAC-) used as FAC veg.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No . Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	10 YR4/2	None		Si CL
$12-17$	10 YR4/2	10 YR4/6 FFP		CL

Hydric Soil Indicators:

\square Histosol
\square Histic Epipedon
\square Concretions/Nodules (w/in 3", > 2mm)
\square High organic content in surface (in Sandy Soils)
\square Sulfidic Odor
\square Organic streaking (in Sandy Soils)
Reducing Conditions (tests positive)
\square Organic pan (in Sandy Soils)
\square Gleyed or low chroma colors
\square Listed on Hydric Soils List (and soil profile matches)
\square Redox features within 10 " (e.g., concentrations)Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
\square Supplemental indicator (e.g., NRCS field indicator)

HYDROLOGY

Recorded Data:

WETLAND? \square YES 区NO Comments: Wetland soil criterion is not met. Subdominant veg. is upland and higher topgraphy.

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:

Criteria Met? \boxtimes Yes \square No Comments: .

SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No

Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MFD}$		Si CL
$12-17$	$10 \mathrm{YR4} 42$	$10 \mathrm{YR4/4FFD}$		CL

Hydric Soil Indicators:

\square Histosol
\square Concretions/Nodules (w/in $3^{\prime \prime},>2 \mathrm{~mm}$)
\square High organic content in surface (in Sandy Soils)
\square Sulfidic Odor
\square Organic streaking (in Sandy Soils)
\square Reducing Conditions (tests positive)
\square Organic pan (in Sandy Soils)
\square Gleyed or low chroma colors
区Redox features within 10 " (e.g., concentrations)

Criteria Met? 区 Yes \square No

HYDROLOGY

Recorded Data:

 DETERMINATION

\square Listed on Hydric Soils List (and soil profile matches)
\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
\square Supplemental indicator (e.g., NRCS field indicator)

Comments: Recent heavy rainfall and high water table.

Project／Contact：NewB．／CS Plant Community：forested Plot Location：SW side of stream Recent Weather：rainy and cold Do normal environmental conditions exist？Y区 Has Vegetation \square Explain：

Tree Stratum

Hydrophytic Vegetation Indicators：

$$
\begin{aligned}
& \boxtimes>50 \% \text { of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100 } \\
& \text { Other hydrophytic vegetation indicators: }
\end{aligned}
$$

Criteria Met？\boxtimes Yes \square No Comments：．
SOILS
Map Unit Name：Amity silt loam On Hydric Soil List？\square Yes \boxtimes No

Drainage Class：Somewhat poorly drained Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MFD}$		Si CL
$12-17$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 4 \mathrm{FFD}$		CL

Hydric Soil Indicators：

\square Histosol
\square Histic Epipedon
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square Sulfidic Odor
\square High organic content in surface（in Sandy Soils）
\square Reducing Conditions（tests positive）
\square Organic streaking（in Sandy Soils）
\square Gleyed or low chroma colors
$\triangle R e d o x$ features within 10 ＂（e．g．，concentrations）

Criteria Met？ \mathbb{Z} Yes \square No

Recorded Data：
\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \boxtimes No Recorded Data Available

Field Data

Depth of inundation：
Primary Hydrology Indicators：
\square Inundated
\boxtimes Saturated in upper 12 inches
■Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？区Yes \square No

DETERMINATION

WETLAND？\triangle YES \square NO Comments：Wetland criteia met．

Depth to Saturation：to Surface
Depth to Free Water： 11
Secondary Hydrology Indicators（2 or more required）：
【Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：Recent heavy rainfall and high water table．
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:

$\square>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):50
Other hydrophytic vegetation indicators:
Criteria Met? \square Yes \boxtimes No Comments: Does not exceed fifty percent.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-11$	l0YR3/2	None		Si CL
$11-17$	10YR3/3			CL

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:

Criteria Met? \triangle Yes \square No Comments: .

SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No
Has Hydric Inclusions? \mathbb{Y} Yes \square No

VEGETATION

Hydrophytic Vegetation Indicators:
$\square>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):50 Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: BPJ. Blackberry not rooted in sample plot. Dominant cover is ash
SOMS
Map Unit Name: Amity silt loam
On Hydric Soil List? \square Yes \boxtimes No
Drainage Class: Somewhat poorly drained Has Hydric Inclusions? \boxtimes Yes \square No

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

Hydrophytic Vegetation Indicators：

$\triangle>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：75
Other hydrophytic vegetation indicators：
Criteria Met？区Yes \square No Comments：Exceeds fifty percent．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		Si CL
$13-18$	$10 \mathrm{YR} 3 / 2$			CL

Hydric Soil Indicators：
ПHistosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\square Redox features within $10^{\prime \prime}$（e．g．，concentrations）
\square Concretions／Nodules（w／in 3＂，＞2mm）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Redox features within 10 ＂（e．g．，concentrations）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
Criteria Met？\square Yes 【 No

HYDROLOGY

Recorded Data：

\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \boxtimes No Recorded Data Available

Field Data

Depth of inundation：
Primary Hydrology Indicators：
Depth to Saturation：3＂Depth to Free Water： $6^{\prime \prime}$
Secondary Hydrology Indicators（2 or more required）：
—Inundated
\square Oxidized Root Channels（upper 12＂）
\square Water Marks
\square Water－stained leaves
\square Local Soil Survey Data
\square Drift Lines
\square FAC－Neutral Test
\square Sediment Deposits
\square Other：
Criteria Met？XYes \square No
Comments：Very high water table．
DETERMINATION
WETLAND？\square YES 区NO Comments：No hydric soil，rise in topogrpahy．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill	Date： $2 / 28 / 07$	City：Newberg	File \＃：1985	
Project／Contact：NewB．／CS		Det．By：C．Steinkoenig		
Plant Community：scrub－shrub／meadow		Plot \＃：14	．	
Plot Location：paired w／sample plot 13				
Recent Weather：cold and wet／hail				
Do normal environmental conditions exist？	$Y 区 \quad N \square$		If no，explain：	
Has Vegetation \square Soil \square	Hydrology \square	been significantly disturbed？		
Explain：				

VEGETATION

Tree Stratum					Herb Stratum			
Total Plot Cover：0		＝ 50%		20\％	Total Plo	Cover：100	$50=50 \%$	20 $=20 \%$
Status／Raw \％Cover								Status／Raw \％Cover
1.						1 Alopecurus pratensis		FACW 60＊
2.						2．Agrostis stolonifera		FAC 40＊
3.						3.		
4.						4.		
5.						5.		
Sapling／Shrub S						6.		
Total Plot Cover： 10	5＝50\％		2．5 $=20 \%$	Statu	\％Cover	7.		
1．Rubus discolor				FAC		8.		
2．Rosa nutkana				FAC		9.		
3.						10.		
4.						11.		
5.						12.		

Hydrophytic Vegetation Indicators：
$\boxtimes>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：75
Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Exceeds fifty percent．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR4/6CFD}$		Si CL
$12-18$	$10 \mathrm{YR4/2}$	$10 \mathrm{YR4/4FFF}$		CL

Hydric Soil Indicators：

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
区Redox features within $10^{\prime \prime}$（e．g．，concentrations）

Criteria Met？\triangle Yes \square No

Recorded Data：
\square Recorded Data Available \square Aerial Photos

Field Data

Depth of inundation：
Primary Hydrology Indicators：
Depth to Saturation：to surface

Other
区 No Recorded Data Available

TInundated
Secondary Hydrology Indicators（2 or more required）：
XSaturated in upper 12 inches
XOxidized Root Channels（upper 12＂）
\square Water Marks
\square Water－stained leaves
\square Local Soil Survey Data
\square Drift Lines
\square FAC－Neutral Test
\square Other：
Comments：．
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
DOrganic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

\square Sediment Deposits
Criteria Met？【Yes \square No

DETERMINATION

WETLAND？\triangle YES \square NO Comments：All wetland criteria met

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill	Date：2／28／07	City：Newberg	File \＃：1985
Project／Contact：NewB．／CS		Det．By：C．Steinkoenig	
Plant Community：meadow		Plot \＃：15	
Plot Location：Northwest end of wetland			
Recent Weather：cold and wethail			
Do normal environmental conditions exist？Y			
Has Vegetation \square S	il \square Hydrology \square	been significantly disturbed？	
Explain：			

VEGETATION

Hydrophytic Vegetation Indicators：

区＞ 50% of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 75
Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Exceeds fifty percent．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 4 / 2$	10YR4／6 CFD		Si CL
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR4/4} \mathrm{FFF}$		CL

Hydric Soil Indicators：
\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
ØRedox features within $10^{\prime \prime}$（e．g．，co
Criteria Met？\boxtimes Yes \square No
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
DOrganic streaking（in Sandy Soils）
—Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Recorded Data：
 \square Recorded Data Available \square Aerial Photos $\quad \square$ Stream Gauge $\quad \square$ other \quad No Recorded Data Available
 Field Data
 Depth of inundation：
 Primary Hydrology Indicators：
 \square Inundated
 \triangle Saturated in upper 12 inches
 \square Water Marks
 \square Drift Lines
 \square Sediment Deposits
 Criteria Met？区Yes \square No
 Depth to Saturation：to surface Depth to Free Water：0．5＂
 Secondary Hydrology Indicators（2 or more required）：
 区Oxidized Root Channels（upper 12＂）
 \square Water－stained leaves
 \square Local Soil Survey Data
 $\square \mathrm{FAC}$－Neutral Test
 \square Other：
 Comments：．
 WETLAND？ $\mathbb{Y} E S \quad \square$ NO Comments：All wetland criteria met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill		Date：2／28／07		City：Newberg		File \＃：1985	
Project／Contact：NewB．／CS				Det．By：C．Steinkoenig			
Plant Community：meadow／scrub－shrub				Plot \＃：16			
Plot Location：Paired with sample plot 15							
Recent Weather：cold and wet／hail							
Do normal environmental conditions exist？				f no，explain：			
Has Vegetation \square	Soil \square			en significantly disturbed？			
Explain：							
VEGETATION							
Tree Stratum				Herb Stratum			
Total Plot Cover：15	$7.5=50 \%$			Total Plo	Cover：	$50=50 \%$	$20=20 \%$
Status／Raw \％Cover							Status／Raw \％Cover
1．Quercus garryana		UPL 5＊			1．Alopecurus pratensis		FACW 40＊
2．Malus sp．		NOL 5＊			2．Agrostis stolonifera		FAC 40＊
3.					3．Dactylis glomerata		FACU 15
4.					4．Chrysanthemum I．		NOL 5
5.					5．Hypocheris radicata		FACU trace
Sapling／Shrub Stratum					6.		
Total Plot Cover：15	7．5＝50\％	3＝20\％	Status／Raw \％Cover		7.		
1．Rubus discolor			FACU 10＊		8.		
2．Crataegus sp．			FAC／FACU ${ }^{*}$		9.		
3.					10.		
4.					11.		
5.					12.		

Hydrophytic Vegetation Indicators：

$\triangle>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 66
Other hydrophytic vegetation indicators：
Criteria Met？\triangle Yes \square No Comments：Exceeds fifty percent．Sundominants are upland
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\triangle Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	None		Si CL
$12-18$	$10 \mathrm{YR} 4 / 2$	None		CL

Hydric Soil Indicators：

DHistosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\square Redox features within 10＂（e．g．，concentrations）
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Criteria Met？\square Yes \triangle No

Recorded Data：
\square Recorded Data Available \square Aerial Photos
Depth to Saturation： $6^{\prime \prime}$
Depth to Free Water：9＂
Depth of inundation：
Primary Hydrology Indicators：
Secondary Hydrology Indicators（2 or more required）：
\square lnundated
\square Oxidized Root Channels（upper 12＂）
区Saturated in upper 12 inches
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Drift Lines
\square Sediment Deposits
\square Other：
Criteria Met？XYes \square No Comments：．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

VEGETATION

Hydrophytic Vegetation Indicators：

$\triangle>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 100
Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Mets wetland vegetation criteria．
SOILS
Map Unit Name：Amity silt loam
Drainage Class：Somewhat poorly drained Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-11$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{FFF}$		CLL
$11-16$	$10 \mathrm{YR} 4 / 1$	10 YR4／6 CFD		Si CL

Hydric Soil Indicators：

\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
区Redox features within $10^{\prime \prime}$（e．g．，concentrations）
\square Concretions／Nodules（w／in 3 ＂，$>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
ПOrganic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Recorded Data： \square Recorded Data Available	\square Aerial Photos \square Stream Gauge	\square Other	区 N
Field Data			
Depth of inundation：	Depth to Saturation：1．5＂	Depth to	ater：1．
Primary Hydrology Indicators：	Secondary Hydrology Ind	（2 or mor	
\square Iriundated	\square Oxidized Root Channels		
区Saturated in upper 12 inches	\square Water－stained leaves		
\square Water Marks	\square Local Soil Survey Data		
\square Dritt Lines	$\square \mathrm{FAC}$－Neutral Test		
\square Sediment Deposits	\square Other：		
Criteria Met？\triangle Yes \square No	0 Comments：．		

DETERMINATION
WETLAND？区YES \square NO Comments：Wetland criteria met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:

X $>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: Mets wetland vegetation criteria.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		Sl L
$13-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{CFD}$		Si CL

Hydric Soil Indicators:

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within 10 " (e.g., concentrations)
\square Concretions/Nodules (w/in 3", > 2mm)
\square High organic content in surface (in Sandy Soils)
\square Organic streaking (in Sandy Soils)
\square Organic pan (in Sandy Soils)
\square Listed on Hydric Soils List (and soil profile matches)
\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
Supplemental indicator (e.g., NRCS field indicator)

Criteria Met? \square Yes \boxtimes No

HYDROLOGY

DETERMINATION
WETLAND? \square YES $\triangle N O$ Comments: Slight shift in topography, no hydric soil inidcators observed.

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Tree Stratum					Herb Stratum			
Total Plot Cover:0		= 50\%		$=20 \%$	Total Plot Cover:55		$27.5=50 \%$	$11=20 \%$
- Status/Raw \% Cover								Status/Raw \% Cover
1.						1. Alope		FACW 20*
2.						2.Agros		FAC 35*
3.						3.		
4.						4.		
5.						5.		
Sapling/Shrub Stra						6.		
Total Plot Cover:60	$30=50 \%$		6-20\%	Statur	\% Cover	7.		
1.Rubus discolor				FAC		8.		
2.Quercus garryana				UPL		9.		
3.Crataegus sp.				FAC	U 5	10.		
4.Malus sp.				NOL		11.		
5.						12.		

Hydrophytic Vegetation Indicators:
X $>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):66
Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: Mets wetland vegetation criteria.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \mathbb{N} No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		SlL
$13-18$	$10 \mathrm{YR4/2}$	$10 \mathrm{YR4} / 6 \mathrm{CFD}$		Si CL

Hydric Soil Indicators:
ПHistosol
ПHistic Epipedon
ПSulfidic Odor
ПReducing Conditions (tests positive)
ПGleyed or low chroma colors
\square Redox features within 10" (e.g., con
Criteria Met? \square Yes \triangle No

HYDROLOGY

Recorded Data:
\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \quad No Recorded Data Available

Field Data

Depth of inundation:
Primary Hydrology lndicators:
Depth to Saturation:4" Depth to Free Water:6" Secondary Hydrology Indicators (2 or more required):
—Inundated
\square Oxidized Root Channels (upper 12")
QSaturated in upper 12 inches
\square Water-stained leaves
\square Local Soil Survey Data
Water Marks
\square FAC - Neutral Test
\square Sediment Deposits
\square Other:
Comments: .

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method
County: Yanhill

Project/Contact: NewB/CS
Plant Community: meadow/scrub-shrub
Plot Location: paired w/19
Recent Weather: cold/wwat
Do normal environmental conditions exist?
Has Vegetation $\square \quad$ Soil \square
Explain:
Explain.

Hydrophytic Vegetation Indicators:
$\triangle>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100
Other hydrophytic vegetation indicators:
SOILS
Map Unit Name: Amity silt Ioam
On Hydric Soil List? \square Yes \boxtimes No

Det. By: C. Steinkoenig
Plot \#:20

ig

$-\quad$ -

Y$N \square$ If no, explain:. Hydrology \square been significantly disturbed?

VEGETATION

Criteria Met? \triangle Xes \square No Comments: Did not include hawthorn.

Drainage Class: Somewhat poorly drained Has Hydric Inclusions? \boxtimes Yes \square No

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

County: Yamhill
Date: $2 / 28 / 07$
City: Newberg
File \#:1985
Project/Contact: NewB,/CS
Plant Community: meadow/scrub-shrub
Plot Location: east side if isolated wetland
Recent Weather: cold
$\begin{array}{lcccc}\text { Do normal environmental conditions exist? } & \text { Y } \\ \text { Has Vegetation } \square & \text { Soil } \square & N \square & \text { If no, explain: } \\ \text { Explain: } & & \text { Hydrology } \square & \text { been significantly disturbed? }\end{array}$
Explain:
VEGETATION

Hydrophytic Vegetation Indicators:
Det. By: C. Steinkoenig
Plot \#:21
$\triangle>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):75
Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: Mets wetland vegetation criteria.
SOILS

Map Unit Name: Amity silt loam
On Hydric Soil List? \square Yes \boxtimes No

Drainage Class: Somewhat poorly drained
Has Hydric Inclusions? \triangle Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		Sl CL
$13-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{FFD}$		Si CL

\square Histosol

\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within 10 " (e.g., concentrations)
Criteria Met? \square Yes \triangle No

Recorded Data:

\square Recorded Data Availab
\square Aerial Photos

Field Data

Depth of inundation:
Primary Hydrology Indicators:
Depth to Saturation:
\square Stream Gauge \square Other

Secondary Hydrology Indicators (2 or more required)
\square Oxidized Root Channels (upper 12")
\square Water-stained leaves
DLocal Soil Survey Data
\square FAC-Neutral Test
\square Other:
Comments: .

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method
County: Yamhill
Project/Contact: NewB./CS
Plant Community: meadow/scrub-shrub
Plot Location: Paired w/ sample plot 21
Recent Weather: cold/wet
Do normal environmental conditions exist? $Y \boxtimes$
Has Vegetation \square Soil \square
Explain:
Det. By: C. Steinkoenig
Plot \#:22

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: Vegetation criterion is met.
SOLLS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture		
0-12	10YR3/2	10YR3/6 CFF	Redox Depletions	SIL		
12-18	10YR4/2	10YR4/6 MFD		SiCL		
Hydric Soil Indicators:						
\square Histosol \square Concretions/Nodules (win $3^{\prime \prime}>2 \mathrm{~mm}$						
\square Histic Epipedon		\square Concretions $/$ Nodules (w/in $3^{\prime \prime},>2 \mathrm{~mm}$)				
\square Sulfidic Odor		\square Organic streaking (in Sandy Soils)				
\square Reducing Conditions (tests positive)		\square Organic pan (in Sandy Soils)				
\square Gieyed or low chroma colors		\square Listed on Hydric Soils List (and soil profile matches)				
\triangle Redox features within 10" (e.g., concentrations)		\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)				
Criteria Met? \triangle Yes \square No \square Supplemental indicator (e.g., NRCS field indicator)						
Recorded Data: HYDROLOGX						
\square Recorded Data Available	\square Aerial Photos	\square Stream Gauge	\square Other \quad VNoRe			
Field Data				Data Available		
Depth of inundation:Primary Hydrology Indicators:Inundated						
		Secondary Hydrology Indicators (2 or more required):				
XSaturated in upper 12 inches		\square Water-stained leaves				
\square Drift Lines		Local Soil Survey Data				
\square Sediment Deposits		\square Other:				
Criteria Met? \backslash Yes \square No		Comments:				
DETERMINATION						

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill

Project／Contact：NewB．／CS
Plant Community：meadow／scrub－shrub
Plot Location：
Recent Weather：cold
Do normal environmental conditions exist？ $\mathrm{Y} \boxtimes \quad \mathrm{N} \square$ If no，explain： Has Vegetation \square Soil \square Hydrology \square been significantly disturbed？

Det．By：C．Steinkoenig
Plot \＃：23

VEGETATION

Hydrophytic Vegetation Indicators：
$\square>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：50
Other hydrophytic vegetation indicators：
Criteria Met？\square Yes \triangle No Comments：Hawthron species not included．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No
Has Hydric Inclusions？区 Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		SIL
$13-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{MFD}$		Si CL

Hydric Soil Indicators：
 \square Histosol
 \square Histic Epipedon
 \square Sulfidic Odor
 \square Reducing Conditions（tests positive）
 \square Gleyed or low chroma colors
 \square Redox features within $10^{\prime \prime}$（e．g．，concentrations）
 Criteria Met？\square Yes \boxtimes No

Recorded Data：
\square Recorded Data Available \square Aerial Photos

Field Data

Depth of inundation：
Primary Hydrology Indicators：
\square Inundated
XSaturated in upper 12 inches
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？区Yes \square No 0
\square Other
区 No Recorded Data Available
Depth to Saturation：
Secondary Hydrology Indicators（2 or more required）：
\square Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：．

DETERMINATION

WETLAND？\square YES 区NO Comments：Vegetation and soil did not met wetland criteria．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100
Other hydrophytic vegetation indicators:
Criteria Met? XYes \square No Comments: Vegetation criterion is met.
SOMS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-10$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MMF}$		SIL
$10-16$	$10 \mathrm{YR4} 42$	$10 \mathrm{YR} 4 / 6 \mathrm{MFD}$		Si CL

Hydrophytic Vegetation Indicators：

$\boxtimes>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：100 Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Did not include hawthom．
SOLLS
Map Unit Name：Amity silt loam
On Hydric Soil List？\square Yes \boxtimes No
Drainage Class：Somewhat poorly drained
Has Hydric Inclusions？\triangle Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MFD}$		SI CL
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR4/6}$ CFD		Si CL

Hydric Soil Indicators：
\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive
\square Gleyed or low chroma colors
QRedox features within 10＂（e．g．，c
Criteria Met？\boxtimes Yes \square No
Recorded Data：
\square Recorded Data Available
Field Data
Depth of inundation：
Primary Hydrology Indicators：
\square Inundated
区Saturated in upper 12 inches
\square Water Marks
\square Drif Lines
\square Sediment Deposits
Criteria Met？\boxtimes Yes \square No
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Aerial Photos
\square Stream Gauge
Depth to Saturation：to surface
\square Other
区 No Recorded Data Available

Secondary Hydrology Indicators（2 or more required）：
\square Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：Area has patches of standing water．

DETERMINATION

WETLAND？区YES पNO Comments：Wetland criteria met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):66 Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: Mets wetland vegetation criteria.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No

Has Hydric Inclusions? 区 Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	None		Sl L
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{CFD}$		Si CL

Hydric Soil Indicators:
\square Histosol
\square Concretions/Nodules (w/in $3^{\prime \prime},>2 \mathrm{~mm}$)
\square Histic Epipedon
\square High organic content in surface (in Sandy Soils)
c Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within $10^{\prime \prime}$ (e.g., concentrations)
\square Organic streaking (in Sandy Soils)
\square Organic pan (in Sandy Soils)

Criteria Met? \square Yes \boxtimes No

Recorded Data:
\square Recorded Data Available $\quad \square$ Aerial Photos $\quad \square$ Stream Gauge $\quad \square$ Other \quad No Recorded Data Available
Field Data

Field Data
Depth of inundation:
Primary Hydrology Indicators:
\square Inundated
\boxed{Q} Saturated in upper 12 inches
DWater Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met? \triangle Yes \square No

Depth to Saturation:5"
Depth to Free Water: 5^{11}
\square Oxidized Root Channels (upper 12")
\square Water-stained leaves
\square Local Soil Survey Data
\square FAC - Neutral Test
\square Other:
Comments: .

DEPARTMENT OF STATE LANDS WETLAND DETERMUNATION DATA FORM - Quick Method

County: Yamhill	Date: 2/28/07	City: Newberg	File \#:1985
Plant Community: meadow Det. By: C. Steinkoenig	Det. By: C. Steinkoenig Plot \#:27		
Plot Location: Tax lot 1000 Vet Clinic Recent Weather: cold			
Do normal environmental con Has Vegetation	$\underset{\text { Hydrology } \square}{\mathrm{N} \square}$	no, explain: en significantly	

VEGETATION

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: .
SOMS
Map Unit Name: Woodburn silt loam 0-7\% Drainage Class: Moderately well drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \square Yes \boxtimes No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
0-16	10YR3/3	None		SIL
Hydric Soil Indicators:				
$\square \mathrm{Distosol}$	\square Concretions/Nodules ($\mathrm{w} / \mathrm{in} 3^{\prime \prime},>2 \mathrm{~mm}$)			
\square Histic Epipedon		\square High organic content in surface (in Sandy Soils)		
\square Sulfidic Odor		\square Organic streaking (in Sandy Soils)		
\square Reducing Conditions (test	positive)	-Organic pan (in Sandy Soils)		
\square Gleyed or low chroma col		\square Listed on Hydric Soils List (and soil profile matches)		
\square Redox features within 10 "	(e.g., concentrations)	Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)		
Criteria Met? \square Yes \boxtimes No				
Recorded Data: HYDROLOGY				
\square Recorded Data Available Field Data	\square Aerial Photos	\square Stream Gauge \square	凹 No Recorded Data Available	
Depth of inundation:		Depth to Saturation: Depth to Free Water:		
Primary Hydrology Indicat	ors:			
\square Inundated		\square Oxidized Root Channels (upper 12")		
\square Saturated in upper 12 inch		\square Water-stained leaves		
\square Water Marks		\square Local Soil Survey Data		
\square Drift Lines		\square FAC - Neutral Test		
\square Sediment Deposits		\square Other:		
Criteria Met? \square Yes \boxtimes		Comments:		
WETLAND? $\square \mathrm{yes}$ (${ }^{\text {dNO }}$ DETERMINATION				

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: .
SOMLS
Map Unit Name: Woodburn silt loam 0-7\% Drainage Class: Moderately well drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \square Yes \boxtimes No

DETERMINATION

WETLAND? \square YES 区NO Comments: No hydric soil or wetland hydrology observed.

Appendices

Boiler Plate Information
References

Boiler Plate Information

Wetland Definition and Authority

The U.S. Army Corps of Engineers (COE) regulates the discharge of dredged or fill materials into waters and adjacent wetlands of the United States under authority of Section 404 of the Clean Water Act (Federal Register, 1986). For purposes of the Section 404 permitting program, the COE and other federal agencies define wetlands as follows (Federal Register, 1980, 1982):
"Those areas that are inundated or saturated by surface or groundwater at'a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions."

In Oregon, the Department of State Lands (DSL) regulates removal/fill permitting in wetlands under ORS 196.800 to 196.990, and OAR. 141-85-005 to OAR 141-85-090, and uses the same definition.

Regulatory Context

In 1987, the COE published a manual (Corps of Engineers Wetlands Delineation Manual or 1987 manual), which describes methods for determining the extent of jurisdictional wetlands under Section 404 of the Clean Water Act (Environmental Laboratory, 1987). The Federal Manual for Identifying and Delineating Jurisdictional Wetlands was published two years later as a collaborative effort by the COE, U.S. Fish and Wildlife Service (USFWS), U.S. Environmental Protection Agency (EPA), and U.S. Soil Conservation Service (SCS), revised the 1987 manual (Federal Interagency Committee for Wetland Delineation, or 1989 manual).

Both the COE and DSL used the 1989 manual until 1992 when the 1992 Energy and Water Development Appropriation Act went into effect. The Act limited the COE (federal permitting agency) to using the 1987 manual for determining the extent of wetlands under federal jurisdiction. Oregon continued to use the 1989 manual until March 23, 1993, when the Director of DSL signed a policy statement requiring the agency to use the 1987 manual. The policy statement was the result of the EPA agreement to use the 1987 manual.

Vegetation

Plants growing in wetlands must be specifically adapted for life under saturated or anaerobic conditions and are commonly referred to as hydrophytic vegetation. The U.S.F.W.S. in cooperation with the National and Regional Interagency Review Panels publishes regional lists estimating the probability of plant species' occurrence in wetlands (e.g., Fish and Wildlife Service, 1988). Each species is given an indicator status, which represents the likelihood that it will be found in a wetland. Categories defined in Table 1
are obligate (OBL), facultative wetland (FACW), facultative (FAC), facultative upland (FACU), or upland (UPL). Plants with an indicator status of OBL, FACW, or FAC are considered adapted for life in saturated or anaerobic soil conditions.

The percent coverage of each plant species within the herb, shrub, and tree layers was estimated at each sample plot. Shrubs within a five-foot radius and trees within a 30-foot radius of the center of each plot were identified and recorded. Within the plot, all species were recorded in descending order of coverage, and dominant species were determined. The presence of wetland vegetation was determined according to the indicator status of the dominant species within each vegetative stratum. According to the manual, a sample plot is considered to have wetland vegetation if more than 50% of the number of dominant species present has an indicator status of OBL, FACW, and/or FAC. By 1987 standards, dominant species are chosen by selecting the three most dominant species from each of the four strata (herbs, saplings/shrubs, woody vines, trees). If only one or two strata are represented, then the five most dominant species from each stratum are selected.

Table 1: Definitions of Indicator Status
Indicator Symbol Definition

OBL

FACW Facultative wetland. Species that usually occur in wetlands (estimated probability 67 to 99%), but occasionally are found in non-wetlands.

FAC

FACU

UPL

NI
Facultative. Species that are equally likely to occur in wetlands or non-wetlands (estimated probability 34 to 66%).

Facultative upland. Species that usually occur in non-wetlands (estimated probability 67 to 99%), but occasionally are found in wetlands.

Sources: Federal Interagency Committee for Wetland Delineation, 1989. Environmental Laboratory, 1987. Reed, 1988.

Schott \& Associates
feologists and Welland Spocialists

Page 15
S8.4\#:1985

Soils

Hydric soils, defined as soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part of the soil profile, are one characteristic of wetlands (USDA Soil Conservation Service, 1987). A list of hydric soils of the United States was compiled by the Soil Conservation Service (SCS), in cooperation with the National Technical Committee for Hydric Soils (NTCHS). All soils are mapped in county soil surveys. However, the mapped boundaries of SCS soil types are not at a fine enough resolution for delineating boundaries of jurisdictional wetlands. Errors of omission can occur on SCS maps. Inclusions of upland (non-wetland) soil may exist in hydric soils and uplands may have inclusions of hydric soil. Therefore, field examination of soils is important for accurately delineating the extent of hydric soils. Hydric soils exhibit certain characteristics that can be observed in the field. Field indicators include: high organic content, accumulation of sulfidic material (rotten egg odor), greenish or bluish gray color (gley formation), iron and manganese concretions, spots or blotches of color (mottling), and/or dark soil colors (low soil chroma).

A shovel, excavating down to a depth of at least 16 inches, was used to sample soil along the wetland boundary. Soil samples were checked for presence of sulfide gases; organic content was estimated visually and texturally; and soil colors were determined by using a Munsell soil color chart (Kollmorgen 1975). The Munsell soil color chart provides the standard for three attributes of color: hue, value, and chroma.

According to the 1987 manual, hydric soils are required to be inundated or saturated for seven or more consecutive days during the growing season. Soil color is examined in the horizon immediately below the A-horizon, or within 10 inches of the surface, whichever is shallower.

Hydrology

Wetlands, by their very name, must have water. Jurisdictional wetlands are characterized as having permanent or periodic inundation, or soil saturation for five percent or more of the growing season. Saturation occurs when the capillary fringe is within the major portion of the root zone (usually within 12 inches of the surface). Areas meeting one of these criteria are considered to have wetland hydrology.

Ponding or soil saturation for five percent or more of the growing season during the growing season is direct evidence of wetland hydrology. Bare soil and dried algae are evidence that a site was previously inundated. Oxidized rhizospheres along live root channels also indicate soil saturation for five percent or more of the growing season. At each sample plot, wetland hydrology was assumed if positive indicators were present.

Wetland Determination

Presence or absence of wetlands was based on soil, vegetation, and hydrology data collected at sample plots. Following procedures outlined in the 1987 manual, sample plots with homogeneous vegetation were determined to be wetlands if wetland characteristics were present or judged to be normally present (barring human or unusual natural events) for all three parameters.

Difficulties in wetland determination can arise because of disturbance or in problem areas. Both human (e.g., clearing vegetation, agriculture, filling, and excavation) and natural (e.g., mudslides, fire, and beaver dams) events have potential for obliterating field indicators of the three wetland parameters. In disturbed sites, both field and offsite data may be used to determine the presence of a wetland. Offsite information such as historical records, aerial photographs, previous soil, and vegetation surveys may indicate the presence of a jurisdictional wetland.

Some sites are difficult to evaluate because field indicators may not be present throughout the year. Field indicators may vary because of changing environmental conditions that occur seasonally and not necessarily the result of human or natural disturbance.

According to the 1987 manual, all three parameters (hydric soils, hydrophytic vegetation, and wetland hydrology) must be present for an area to be determined as wetland.
Drumlins, seasonal wetlands, prairie potholes, and vegetated flats exemplify areas that are difficult to evaluate.

REFERENCES

Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.

Federal Interagency Committee for Wetland Delineation, 1989. Federal Manual for Identifying and Delineating Jurisdictional Wetlands, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S.D.A. Soil Conservation Service, Washington, D.C. Cooperative technical publication. 138 pp .

Federal Register, 1980. 40 CFR Part 230: Section 404(b)(1), Guidelines for Specification of Disposal Sites of Dredged or Fill Material, Vol. 45, No. 249, pp. 85352-85353, U.S. Govt. Printing Office, Washington, D.C.

Federal Register, 1982. Title 33, Navigation and Navigable Waters; Chapter II, Regulatory Programs of the Corps of Engineers. Vol. 47, No. 138, p. 31810, U.S. Govt. Printing Office, Washington, D.C.

Federal Register, 1986. 33 CFR Parts 320 through 330, Regulatory Programs of the Corps of Engineers; Final Rule, Vol. 51, No. 219 pp. 41206-41259, U.S. Govt. Printing Office, Washington, D.C.

Kollmorgen Corporation, 1975. Munsell Soil Color Charts. Macbeth Division of Kollmorgen Corporation, Baltimore, MD.

Reed, P. B., Jr., 1988. National List of Plant Species that Occur in Wetlands: Northwest (Region 9), U.S. Fish and Wildlife Service, Biological Report 88 (26.9) 89 pp.

Reed, P. B., Jr., et al., 1993. Supplement to List of Plant Species That Occur in Wetlands: Northwest (Region 9), U.S. Fish and Wildlife Service. Washington D.C. 10p.
U.S. Department of Agriculture, Soil Conservation Service 1991. Hydric Soils of the United States in Cooperation with the National Technical Committee for Hydric Soils. Misc. Pub. No. 1491.
U.S. Department of Agriculture, Soil Conservation Service, 1982. Soil Survey of Yamhill County, Oregon. U.S.D.A. Soil Conservation Service, Washington, D.C., 138 pp.

\qquad

Theodore R. Kulongoski
Governor

Bill Bradbury Secretary of State

Randall Edwards State Treasurer

Dear Mr. Speakman:
The Department of State Lands has reviewed the wetland delineation report prepared by Schott and Associates for the site referenced above. Based upon the information presented in the report, we concur with the wetland and waterway boundaries as mapped in Wetland Map Pages 1 of 3 and 3 of 3 of the report. Within the study area, three wetlands (totaling approximately 2.24 acres) and two waterways within the mapped wetlands were identified. The wetlands and waterways are subject to the permit requirements of the state Removal-Fill Law. A state permit is required for cumulative fill or annual excavation of 50 cubic yards or more in the wetlands or below the ordinary high water line (OHWL) of a waterway (or the 2 year recurrence interval flood elevation if OHWL cannot be determined).

This concurrence is for purposes of the state Removal-Fill Law only. Federal or local permit requirements may apply as well. The Army Corps of Engineers will review the report and make a determination of jurisdiction for purposes of the Clean Water Act at the time that a permit application is submitted. We recommend that you attach a copy of this concurrence letter to both copies of any subsequent joint permit application to speed application review.

Please be advised that state law establishes a preference for avoidance of wetland impacts. Because measures to avoid and minimize wetland impacts may include reconfiguring parcel layout and size or development design, we recommend that you work with Department staff on appropriate site design before completing the city or county land use approval process.

This concurrence is based on information provided to the agency. The jurisdictional determination is valid for five years from the date of this letter, unless new information necessitates a revision. Circumstances under which the Department may change a determination and procedures for renewal of an expired determination are found in OAR 141-090-0045 (available on our web site or upon request). The applicant, landowner, or agent may submit a request for reconsideration of this determination in writing within 60 calendar days of the date of this letter.

Thank you for having the site evaluated. Please phone me at 503-986-5236 if you have any questions.

Sincerely,
Ganet C. Morlan
Janet C. Morlan, PWS
Wetlands Program Manager

Enclosures

cc: Claudia Steinkoenig, Schott and Associates City of Newberg, Planning Department Tina Teed, Corps of Engineers Carrie Landrum, DSL

Site Data Sheet

Project Name:	New B.
Project Number:	1985
Date of Site Visit:	February 21 \& 28, 2007
Applicant:	Tim Speakman
Applicant's Address:	3401 SW Huber Street
	Portland, Oregon 97219

TABLE OF CONTENTS
WETLAND DELINEATION INFORMATION..I
DELINEATION PURPOSE:... 1
(A) SITE DESCRIPTION ... 1

PROJECT PURPOSE ... 2
(B) WetLand Description .. 2
(C) Site Analysis.. 4
(D) Site Specific Methods .. 4
(E) DEVIATION.. 5
(F) Methods of Determining Other Waters of the State..................................... 5
(G) AddItional Info .. 6
(H) Statement of Mapping Accuracy .. 6
(l) Date of Investigation ... 6
(J) Weather ... 6
(K) Results and Conclusions ... 6
(L) REQUIRED DISCLAIMER.. 7

DATA FORMS ... 13
APPENDICES .. 14
Boller Plate Information .. 15
Wetland Definition and Authority ... 15
REGULATORY CONTEXT... 15
VEGETATION... 15
Soms ... 17
HYDROLOGY .. 17
WETLAND DETERMINATION.. 18
REFERENCES .. 19
AERIAL MAP ... 20

LIST OF FIGURES
FIGURE 1. SITE VICINITY MAP .. 8
FIGURE 2. TAX LOT MAP.. 9
FIGURE 3. LWI MAP .. 10
FIGURE 4. SOIL SURVEY MAP.. 11
FIGURE 5. WETLAND MAP.. 12

LIST OF TABLES
TABLE 1: DEFINITIONS OF INDICATOR STATUS ... 16

Schott \& Associates
Ecologists and Wetland Specialists
PO Box 589, Aurora, OR. 97002 © (503) 678-6007 • • Fax (503) 678-6011

(A) Site Description

The 30 -acre project area is located on the eastern edge of Newberg in Yamhill County, Oregon (SW1/4,NE1/4 Sec. 16, T3S, R2W TL\#900,1000, 1100)(Figure 1) just outside of the city limits. The southern boundary abuts city limits. The study area is west of Benjamin Road and east of Victoria Way. Hwy 99W forms the southern property boundary. The new Providence Hospital (zoned I- Institutional) is to the southwest. The three tax lots that comprise the study area are designated as Agricultural/Forestry Small Holdings (AF-10).

For the purposes of this report, the project area will be described by tax lot. Tax lot 900 is located west of Benjamin Road and north of Highway 99 West. The lot is approximately 5.7 acres and has two homes and two large barns on it. The topography has gentle to moderate slopes to the east. The majority of the property consists of horse pasture comprised of grasses and forbs that include colonial bentgrass (Agrostis stolonifera), Kentucky bluegrass (Poa pratensis), tall fescue (Festuca arundinacea) and white clover (Trifolium repens) as dominants: Ornamental species were observed around the homes.

Tax Lot 1000 is located west of tax lot 900 . It is 5.8 acres and has a vet clinic and associated buildings in the center of it. The topography slopes gently to the south, southeast. Fenced pastures are located on the south and north end of the property. Dominant vegetation includes bentgrass, Kentucky bluegrass, tall fescue and orchard grass (Dactylis glomerata). Groupings of Oregon Oak (Quercus garryana) and Douglas fir (Pseudotsuga menziesii) were scattered along the northern and western property perimeter.

Tax lot 1100 is 18.5 acres and located on the west end of the study area. Topography on the west end slopes gently east to two unnamed tributaries. The mid and east section of the tax lot slopes predominantly south. There is an existing residential home on the southwest end of the property and some outbuilding north of the home. A small drainage located behind the home flows to the east and joins a larger tributary of Spring Brook Creek which flows south to the Willamette River. Three meadow communities were identified on site. The first is along the western property boundary. The second is located southeast of the residence and the third is on the south end of the tax lot. The vegetation in the meadow communities consisted of grasses and forbs that included tall fescue, Kentucky bluegrass, bentgrass, orchard grass (Dactylis glomerata), and white clover, queen Anne's lace (Daucus carota) and cat's ear (Hypochoeris radicata) as subdominants. An upland forest community was located on the northern property boundary and included Oregon oak, Douglas fir, and bigleaf maple (Acer macrophyllum).

Schott \& Associates
 Ecologists and Welland Specialists

POBOx 589 , Aurora, OR. 97002 - (503)678-6007. $\operatorname{Cax}(503) 678-6011$
Page 1

The dominant species found in the shrub layer included Service berry (Amelanchier alnifolia), Indian plum (Oemleria cerasiformis), beaked hazelnut (Corylus cornuta) and common snowberry (Symphoricarpos albus). Sword fern (Polystichum munitum) and English ivy (Hedera helix) were the dominants in the herbaceous layer.

A forested riparian area was located adjacent to the largest tributary. The tree species in the riparian forest include Oregon ash (Fraxinus latifolia) and willow (Salix sp.) Shrub communities varied from area to area along the drainage. Portions of the shrub layer consisted of a dense layer of Himalayan blackberry interspersed with dense patches of Nookta rose (Rosa nutkana) and Douglas spiraea (Spiraea douglasii). Species identified in the herbaceous layer included slough sedge (Carex obnupta), water parsley (Oenanthe sarmentosa) and bentgrass.

The National Wetland Inventory (NWI) map for Newberg shows a tributary of Spring Brook Creek on the west end of the study area. There is no Local Wetland Inventory (LWI) for the area. The Yamhill County Soil Survey indicated two mapping units on the property that include Woodburn silt loam and Amity silt loam. The topographic map shows a site gently sloping north, northeast.

Project purpose

The site is proposed for commercial development to service the new hospital across the street and the adjacent residential areas. The developer of the site is currently applying for annexation into the city of Newberg and rezoning designation to Community Commercial.

(B) Wetland Description

Based on soil, hydrology and vegetation data taken on site two unnamed tributaries of Spring Brook Creek, and four wetlands were delineated. Two of the wetlands are adjacent to the tributaries. A 0.31 acres palustrine emergent/RFT wetland is locatedalong a short portion of the smaller tributary on the west end of the property. The second wetland is 1.63 acres palustrine forested/RFT wetland adjacent to the remaining portion of the smaller tributary and the entire length of the larger tributary. The other two wetlands are isolated and located in the north mid-section of the property. The larger wetland is 0.29 acre and classified as palustrine emergent/scrub-shrub/slope wetland. The smaller one is 0.011 acres classified as a palustrine emergent/slope wetland.

A small seasonal drainage channel enters on the southwest end of tax lot 1100 . It is the extension of a drainage located on the adjoining property to the west. The hydrology of the channel is associated with stormwater runoff from the neighborhood to the west. The drainage channel is u-shaped with a varying width of 2 to 3 feet and depth of approximately 3.5 feet. It has a mud and small cobble substrate bottom. The drainage flows east and drains into a larger tributary of Spring Brook Creek. Duckweed (Lemna

Schott \& Associates	
Ecologis	Wethnd Specialists
PO Box 589, Aurora, OR .9700?	(503)678-6007 - Fax [50]) 678-6011
Page 2	S8A ${ }^{\text {\# }}$: 1985

minor) was observed growing in portions of the drainage. The drainage has a defined channel for approximately 250 feet and then flattens out, draining as surface and subsurface lateral flow into the tributary of Spring Brook Creek.

A larger, unnamed perennial tributary of Spring Brook Creek enters the northwest corner of tax lot 1100 and exits the property on the south side. It flows to the south joining Spring Brook Creek on the south side of Hwy 99W. Portions of the creek are confined to a single channel while other portions of the channel are braided.

Two wetlands were identified adjacent to the two tributaries. The first is a 0.31 acre palustrine emergent (PEM/RFT) wetland. It was located on the west end of the study site where the smaller drainage entered the site. The plant community in this area is a meadow comprised of grasses and forbs. The dominant species are tall fescue and bentgrass. Hydrology for the wetland on the north and south side of the drainage is associated with precipitation, a seasonal high water table and overflow from the drainage during winter high water.

The second wetland is 1.63 acres and forested (PFO/RFT). The dominant tree in the canopy is Oregon ash (Fraxinus latifolia). The shrub layer consists of large dense patches of Douglas spirea (Spiraea douglasii) and nootka rose (Rosa nutkana). The herbaceous layer includes large patches of slough sedge (Carex obnupta) and water parsley (Oenanthe sarmentosa). Hydrology of the wetland is associated with precipitation, a seasonal high water table and overflow from the drainage during winter high water. The southern end of the drainage is fed by a perennial spring.

The other two wetlands are isolated and located in the north mid-section of the property. The larger wetland is 0.29 acres and classified as palustrine emergent/scrub-shrub/slope wetland. The dominant vegetation in the emergent portion is meadow foxtail (Alopecurus pratensis) and bentgrass (Agrostis stolonifera). The shrubs in the scrub shrub communities were nootka rose (Rosa nutkana) with scattered patches of hawthorn (Crataegus sp). The second isolated wetland is immediately below the first. It consists of a small depressional area with colonial bentgrass and meadow foxtail as the dominants.

The analysis of wetlands conducted on this site was based on published methods for implementing Section 404 of the Clean Water Act. The 1987 manual was used to satisfy the requirements of the COE on non-agricultural land. The manual requires three parameters to be examined: vegetation, soils, and hydrology. According to the 1987 manual, independent evidence of hydrophytic vegetation, hydric soils, and wetland hydrology must be present for an area to be declared a wetland. The analysis of wetlands on the project site was conducted by reviewing and analyzing existing site-specific literature and by field investigation.

Schott \& Associates Ecologists and Weland Specialists	
POBOx 589 , Aurora OR 97002 - (503) 678-6007 .	Cax (503) 678-6011
Page 3	S\&A\#:1985

(C) Site Analysis

The three tax lots that comprise the study area are designated as Agricultural/Forestry Small Holdings (AF-10). There was no evidence of alterations to the drainages observed onsite. The hydrology associated with the smaller drainage is stormwater runoff from the neighborhood to the west.

(D) Site_Specific Methods

The Routine Onsite Determination Method (1987 manual, pp: 52-69) was used to determine the State of Oregon wetland boundaries and the Federal jurisdictional wetlands. The entire study area was walked and observed for wetland characteristics. Sample plots were dug and placed in areas determined to meet all wetland criteria. Adjacent plots were placed in the upland.

The first area investigated was located on the west end of the study site. A drainage swale located on the adjacent property to the west extended east into the study area. A delineation for the property to the west was conducted a year ago and is pending review .by DSL. The area consists of a grazed meadow community with dominant grasses of bentgrass and fescue. Areas with wetland characteristics extend north and south of the drainage by approximately 30-40 feet. The source of hydrology for the wetland on the north and south side of the drainage is associated with precipitation, a seasonal high water table and overflow from the drainage during winter high water. The area had recently received days of heavy rain so that the ground water table was exceptionally high.

Along the north side of the swale the wetland boundary was determined predominantly by soil and hydrology since the vegetation in both wetland and upland were the same. On the south side of the swale the vegetation was the determining factor. The soil matrix color in the wetland varied between 10YR3/1 with redox concentrations of $10 \mathrm{YR} 3 / 4$ in sample plot 2 and $10 \mathrm{YR} 3 / 2$ with redox concentrations of $10 \mathrm{YR} 3 / 6$ in sample plot 4 . Both sample plots had a depth to free water between 6 and 8 inches.

The upland area on the south side of the swale was determined by the vegetation. The topography was slightly higher and Himalayan blackberry formed a dense hedge. Some Douglas fir trees were planted in this area as well. On the north side of the swale the upland area did not have hydric soil or wetland hydrology.

Approximately 130 feet east of the property line a small berm built for vehicle access to the back barn area crosses the drainage and wetland area. The berm has been in place on the property well over fifty years. The drainage crosses the berm via a small culvert. It flows an additional 120 feet before it becomes an undefined channel and flows as broad sheet flow into the other tributary.

The wetland continues past the berm and is located adjacent to the tributaries. The plant community on the east side of the berm slowly transitions from a meadow into a forested community that joins the riparian community along the main tributary. Soils in this portion of the wetland (Sample plot, $8,9 \& 11$) predominantly have a matrix value of $10 \mathrm{YR} 3 / 2$ with redox concentrations of $10 \mathrm{YR} 3 / 6$.

The upland edge was obvious by topography as well as vegetation and hydrology. The overstory transitioned from Oregon ash into Oregon oak and Douglas fir on the north end. Further south the vegetation in the upland riparian area had Oregon ash mixed with common snowberry (Symphoricarpos alba), beaked hazelnut (Corylus cornuta) and Himalayan blackberry. Upland soils observed along the tributaries included matrix colors of $10 \mathrm{YR} 3 / 3$ (sample plot 5), from 0 to 12 inches, $10 \mathrm{YR} 4 / 2$ (sample plot 7) and (10YR3/2) (sample plot 10). No redox concentration were observed within 10 inches and no evidence of wetland hydrology was observed.

The wetland identified in the middle of tax lot 1100 consists of an emergent and scrub shrub wetland. The majority of it is located in a clearing surrounded by dense thickets of English hawthorn, Himalayan blackberry and various overgrown fruit trees. The vegetation in the northern portion of the wetland consisted of scattered dense thickets of nootka rose (Rosa nutkana). Meadow foxtail was the dominant grass. The soil matrix color varied between $10 \mathrm{YR} 3 / 2$ and $10 \mathrm{YR} 4 / 2$ with redox concentrations that varied in color. The hydrology of the wetland was associated with overland sheet flow and a seasonal high water table. The wetland was hummocky with slight shift in topography along the upland edge.

The vegetation in the upland area was similar to the wetland vegetation. The upland area had a predominant soil color of $10 \mathrm{YR} 3 / 2$ with no redox concentrations (sample plot 13, $16,18,19,23,26)$ and no wetland hydrology.

(E) Deviation

No deviations were observed. The National Wetland Inventory (NWI) map for Newberg did not show any wetlands in the project area. It did show the tributary of Spring Brook Creek on the western portion of the study area. There is no Local Wetland Inventory (LWI) for the area.

(F) Methods of Determining Other Waters of the State

No other waters of the state were observed onsite. The top of bank was defined for the smaller tributary that flow west to east. The larger tributary had the center line mapped for the main branch of the creek, because the mid section is braided.

None.

(H) Statement of Mapping Accuracy

The wetland boundaries were flagged and the flags were surveyed by Alpha Community Development, PLS.

(I) Date of Investigation

The site was visited on February 21 and $28,2007$.

(J) Weather

The weather on the day of the February 21 site visit was cold and rainy. The day before 0.67 inches of rain were recorded at the Forest Grove weather station. 2.48 inches of rain were recorded for the past two weeks.

The weather on the day of the February 28 site visit was cold interspersed with periods of hail, rain and sun. There was 0.26 inches of rain the day prior to the site visit. 3.21 inches of rain were recorded for the past two weeks. This is 52 percent of the average for the entire month. A total of 36.56 inches were recorded since October 1, 2006. This is 115 percent of the water year average.

(K) Results and Conclusions

The National Wetland Inventory (NW) map did not show any onsite wetlands however it did show a tributary of Spring Brook Creek on the west end of the site. There is no Local Wetland Inventory for the Newberg area. The Yamhill County Soil Survey mapped two soil series on the subject property: Amity silt loam and Woodburn silt loam 0 to 7 percent slopes and 7 to 12 percent slopes. The Amity series is somewhat poorly drained. This soil series is not listed as hydric however it does have hydric inclusions. Some of the soil observed on site matched the Amity series.

Based on soil, hydrology and vegetation data taken on site two unnamed tributaries of Spring Brook Creek, and four wetlands were delineated. The smaller drainage is seasonal, the larger has recently developed a perennial flow. Two of the wetlands are adjacent to the tributaries: A 0.31 acres palustrine emergent/RFT wetland is located along a short portion of the smaller tributary on the west end of the property. The second wetland is 1.63 acres palustrine forested/RFT wetland adjacent to the tributaries. The other two wetlands are isolated and located in the north mid-section of the property. The larger wetland is 0.29 acre and classified as palustrine emergent/scrub-shrub/slope wetland. The smaller one is 0.011 acres classified as a palustrine emergent/slope wetland.

(I) Required Disclaimer

This report documents the investigation, best professional judgment and the conclusions of the investigator. It is correct and complete to the best of my knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters and used at your own risk unless it has been reviewed and approved in writing by the Oregon Department of State lands in accordance with OAR 141-090-0005 through 141-090-0055.

FIGURE 1. SITE VICINITY MAP
Schott \& Associates
P.O. Box 589

Aurora, OR. 97002
503.678.6007

FIGURE 2. TAX MAP
Schott \& Associates
S\&A \#1985

Data Forms

Schott \& Associates
Ecologists and Wetland Specialists PO Box 589 , Aurora, 0 O 970022 - (5031678 -60017 Page 12 S8.4\#:1985

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method County：Yamhill

Date： $2 / 21$

| City：Newberg |
| :--- | :--- | City．Newberg \quad File \＃：1985

Project／Contact：NewB．／CS
Det．By：C．Steinkoenig
Plot \＃： 1
Plot Location：south side of swale
Recent Weather：rainy and cold Do normal environmental conditions exist？Y区
Has Vegetation $\square \quad$ Soil $\square \quad N \quad$ Hydrol \square If no，explain：
Explain：
ydrology \square
been significantly disturbed？

$\square>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：50
Other hydrophytic vegetation indicators：
Criteria Met？\square Yes \boxtimes No Comments：Hydrophytic veg，not exceeding 50 percent．

Map	SOMS
On Hydric Soill List？\square Yes	Somewh

On Hydric Soil List？
\square Yes \triangle No
Drainage Class：Somewhat poorly drained Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture		
$0-8$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{Y} 3 / 4 \mathrm{FFD}$		S CL		
$8-16$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{R} 3 / 4 \mathrm{CMP}$		CL		
						Hydric Soil Indicators：
:---						
\square Histosol						

\square Histosol
 \square Histic Epipedon

\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\square Redox features within 10 ＂（e．g．，concentrations）

Criteria Met？ \mathbb{Z} Yes \square No

\square Concretions／Nodules（w／in 3＂，$>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）

HYDROLOGY

Recorded Data：

\square Recorded Data Available

Field Data

Depth of inundation：
Primary Hydrology Indicators：
\square Aerial Photos
Depth to Saturation：10＂
\square Other
区 No Recorded Data Available

IInundated
区Saturated in upper 12 inches
Secondary Hydrology Indicators（2 or more required）：
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？ \mathbb{Z} Yes \square No
\square Oxidized Root Channels
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
DOther：
Comments：Recent heavy rains and high water table．
WETLAND？\square YES 区NO Comments：Area adjacent blackberry thicket and higher topography．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:

X $>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:
Criteria Met? XYes \square No Comments: Hydrophytic veg. exceeds 50 percent.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-7$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{YR} 3 / 4 \mathrm{FFF}$		Si CL
$7-16$	$10 \mathrm{YR} 3 / 1$	$10 \mathrm{YR} / 4 \mathrm{CFD}$		CL

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

County: Yamhill
Date: $2 / 21$
City: Newberg
Det. By: C. Steinkoenig
Plot \#:3
Plant Community: meadow
Plot Location: North side of swale
Recent Weather: rainy and cold
Do normal environmental conditions exist? $Y \boxtimes \quad N \square \quad$ If no, explain:
Has Vegetation \square Soil \square
Explain:

VEGETATION

Hydrophytic Vegetation Indicators:
Other hydrophytic vegetation OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100
Other hydrophytic vegetation indicators:
Criteria Met? XYes \square No Comments: Hydrophytic veg. exceeds 50 percent.
SOILS
Map Unit Name: Amity silt loam On Hydric Soil List? \square Yes \boxtimes No

Drainage Class: Somewhat poorly drained
Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
0 -12	$10 \mathrm{YR} 3 / 2$	None		CL L
$12-16$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 4 \mathrm{CCP}$		SICl

Hydric Soil Indicators:

 \square Sulfidic Odor
 \square Reducing Conditions (tests positive)
 \square Gleyed or low chroma colors
 \square Redox features within 10" (e.g., concentrations)
 Criteria Met? \square Yes \triangle No

Recorded Data:

\square Recorded Data Available Field Data	\square Aerial Photos	os \square Stream Gauge	\square Other	区N
Depth of inundation:		Depth to Saturation:	Depth to	Water:
Primary Hydrology Indicators:				
\square Inundated		\square Oxidized Root Channels	$\text { r } 12^{\prime \prime} \text {) }$	
\square Saturated in upper 12 inches		\square Water-stained leaves		
\square Water Marks		\square Local Soil Survey Data		
\square Drift Lines		\square FAC - Neutral Test		
\square Sediment Deposits		\square Other:		
Criteria Met? \square Yes \boxtimes No		Comments:		
W		DETERMINA		

\square Concretions/Nodules (w/in 3", > 2mm)
\square High organic content in surface (in Sandy Soils)
\square Organic streaking (in Sandy Soils)
\square Organic pan (in Sandy Soils)
\square Listed on Hydric Soils List (and soil profile matches)
\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
\square Supplemental indicator (e.g., NRCS field indicator)

HXDROLOGY

\square Stream Gauge \square Other \boxtimes No Recorded Data Available
Depth to Saturation: Depth to Free Water:
—oxidized Root Channels (upper 12")
\square Water-stained leaves
\square Local Soil Survey Data
\square FAC - Neutral Test
Other:
Comments: .

DETERMINATION
ZYES XNO Comments: No wetland soils or hydrology.

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yambill
Date：2／21
City：Newberg
File \＃：1985
Project／Contact：NewB．／CS
Det．By：C．Steinkoenig
Plant Community：meadow
Plot Location：Paired with sample plot 3
Plot \＃：4
Recent Weather：rainy and cold
Do normal environmental conditions exist？Y区
Has Vegetation \square Soil \square
Explain：
$\mathrm{N} \square \quad$ If no，explain：
Hydrology \square been significantly disturbed？
VEGETATION

Hydrophytic Vegetation Indicators：

Q＞ 50% of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 100 Other hydrophytic vegetation indicators：
Criteria Met？\triangle Yes \square No Comments：Hydrophytic veg．exceeds 50 percent．

SOMS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{FFF}$		CLL
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{CMD}$		SI Cl

Hydric Soil Indicators：

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\triangle Redox features within 10 ＂（e．g．，concentrations）

Criteria Met？\triangle Yes \square No

Recorded Data：

\square Recorded Data Available
\square Aerial Photos
\square Stream Gauge
\square Other
区 No Recorded Data Available

Field Data

Depth of inundation：

Primary Hydrology Indicators：
\square Inundated
区Saturated in upper 12 inches
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？XYes \square No
\square Concretions／Nodules（w／in 3＂，$>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Depth to Saturation： $5^{\prime \prime} \quad$ Depth to Free Water： $8^{\prime \prime}$
Secondary Hydrology Indicators（2 or more required）：
\square Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:
$\square>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):40
Other hydrophytic vegetation indicators:
Criteria Met? \square Yes \boxtimes No Comments: Hydrophytic veg does not exceed 50%. FEAR used as FAC veg.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 3$	None		CL L
$12-16$	$10 \mathrm{YR} 3 / 4$			Sl Cl

Hydric Soil Indicators:

\square Histosol

\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within 10 " (e.g., concentrations)

Criteria Met? \square Yes \boxtimes No

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

Tree Stratum VEGETATION								
Tree Stratum				Herb Stratum				
Total Plot Cover：0	$=50 \%$	＝20\％		Total Plot Cover： 100				
		Status／Raw \％Cover				$50=50 \%$ $20=20 \%$		
$\frac{1}{2 .}$					1．Agrostis stolonifera		us／Raw \％C	
3.							FAC 25^{*}	
4.					3．Dactylis glomerata		FAC－50＊	
5.							FACU 25＊	
Sapling／Shrub Stratum					5.			
Total Plot Cover：	$=50 \%$				6.			
1．			Status／Raw \％Cover		7.			
2.					8.			
3.					9.			
4.					10.			
5.					11.			
					12.			
Hydrophytic Vegetation	ators：							

Hydrophytic Vegetation Indicators：
Other hydrophytic vegetation indicators：
Criteria Met？区Yes \square No Comments：Hydrophytic veg exceeds 50\％．FEAR used as FAC veg． SOILS
$\begin{array}{ll}\text { Map Unit Name：Amity silt loam } & \text { SOILS } \\ \text { On Hydric Soil List？} \square \text { Yes } \boxtimes \text { No } & \text { Drainage Class：Somewhat poorly drained }\end{array}$ Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-11$	$10 \mathrm{YR} 4 / 1$	$10 \mathrm{YR4/4} \mathrm{FFD}$		Si CL
$11-15$	$10 \mathrm{YR} 3 / 4$			SICl

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
ØGleyed or low chroma colors
ХRedox features within $10^{\prime \prime}$（e．g．，concentrations）

Criteria Met？\triangle Yes \square No

Recorded Data：
\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \square No Recorded Data Available
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Depth of inundation：
Primary Hydrology Indicators：
Depth to Saturation：
Secondary Hydrology Indicators（2 or more required）：
区Saturated in upper 12 inches
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？$\triangle Y e s ~ \square N o$
\square Oxidized Root Channels（upper $12^{\prime \prime}$ ）
\square Water－stained leaves
\square Local Soil Survey Data
$\square \mathrm{FAC}$－Neutral Test
\square Other：
Comments：Wetland hydrology observed．

WETLAND？区YES \square NO Comments：Wetland criteria is met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100
Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: FEAR (FAC-) used as FAC veg.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No . Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	10 YR4/2	None		Si CL
$12-17$	10 YR4/2	10 YR4/6 FFP		CL

Hydric Soil Indicators:

\square Histosol
\square Histic Epipedon
\square Concretions/Nodules (w/in 3", > 2mm)
\square High organic content in surface (in Sandy Soils)
\square Sulfidic Odor
\square Organic streaking (in Sandy Soils)
Reducing Conditions (tests positive)
\square Organic pan (in Sandy Soils)
\square Gleyed or low chroma colors
\square Listed on Hydric Soils List (and soil profile matches)
\square Redox features within 10 " (e.g., concentrations)Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
\square Supplemental indicator (e.g., NRCS field indicator)

HYDROLOGY

Recorded Data:

WETLAND? \square YES 区NO Comments: Wetland soil criterion is not met. Subdominant veg. is upland and higher topgraphy.

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:

Criteria Met? \boxtimes Yes \square No Comments: .

SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No

Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MFD}$		Si CL
$12-17$	$10 \mathrm{YR4} 42$	$10 \mathrm{YR4/4FFD}$		CL

Hydric Soil Indicators:

\square Histosol
\square Concretions/Nodules (w/in $3^{\prime \prime},>2 \mathrm{~mm}$)
\square High organic content in surface (in Sandy Soils)
\square Sulfidic Odor
\square Organic streaking (in Sandy Soils)
\square Reducing Conditions (tests positive)
\square Organic pan (in Sandy Soils)
\square Gleyed or low chroma colors
区Redox features within 10 " (e.g., concentrations)

Criteria Met? 区 Yes \square No

HYDROLOGY

Recorded Data:

 DETERMINATION

\square Listed on Hydric Soils List (and soil profile matches)
\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
\square Supplemental indicator (e.g., NRCS field indicator)

Comments: Recent heavy rainfall and high water table.

Project／Contact：NewB．／CS Plant Community：forested Plot Location：SW side of stream Recent Weather：rainy and cold Do normal environmental conditions exist？Y区 Has Vegetation \square Explain：

Tree Stratum

Hydrophytic Vegetation Indicators：

$$
\begin{aligned}
& \boxtimes>50 \% \text { of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100 } \\
& \text { Other hydrophytic vegetation indicators: }
\end{aligned}
$$

Criteria Met？\boxtimes Yes \square No Comments：．
SOILS
Map Unit Name：Amity silt loam On Hydric Soil List？\square Yes \boxtimes No

Drainage Class：Somewhat poorly drained Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MFD}$		Si CL
$12-17$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 4 \mathrm{FFD}$		CL

Hydric Soil Indicators：

\square Histosol
\square Histic Epipedon
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square Sulfidic Odor
\square High organic content in surface（in Sandy Soils）
\square Reducing Conditions（tests positive）
\square Organic streaking（in Sandy Soils）
\square Gleyed or low chroma colors
$\triangle R e d o x$ features within 10 ＂（e．g．，concentrations）

Criteria Met？ \mathbb{Z} Yes \square No

Recorded Data：
\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \boxtimes No Recorded Data Available

Field Data

Depth of inundation：
Primary Hydrology Indicators：
\square Inundated
\boxtimes Saturated in upper 12 inches
■Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？区Yes \square No

DETERMINATION

WETLAND？\triangle YES \square NO Comments：Wetland criteia met．

Depth to Saturation：to Surface
Depth to Free Water： 11
Secondary Hydrology Indicators（2 or more required）：
【Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：Recent heavy rainfall and high water table．
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:

$\square>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):50
Other hydrophytic vegetation indicators:
Criteria Met? \square Yes \boxtimes No Comments: Does not exceed fifty percent.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-11$	l0YR3/2	None		Si CL
$11-17$	10YR3/3			CL

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:

Criteria Met? \triangle Yes \square No Comments: .

SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No
Has Hydric Inclusions? \mathbb{Y} Yes \square No

VEGETATION

Hydrophytic Vegetation Indicators:
$\square>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):50 Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: BPJ. Blackberry not rooted in sample plot. Dominant cover is ash
SOMS
Map Unit Name: Amity silt loam
On Hydric Soil List? \square Yes \boxtimes No
Drainage Class: Somewhat poorly drained Has Hydric Inclusions? \boxtimes Yes \square No

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

Hydrophytic Vegetation Indicators：

$\triangle>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：75
Other hydrophytic vegetation indicators：
Criteria Met？区Yes \square No Comments：Exceeds fifty percent．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		Si CL
$13-18$	$10 \mathrm{YR} 3 / 2$			CL

Hydric Soil Indicators：
ПHistosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\square Redox features within $10^{\prime \prime}$（e．g．，concentrations）
\square Concretions／Nodules（w／in 3＂，＞2mm）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Redox features within 10 ＂（e．g．，concentrations）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
Criteria Met？\square Yes 【 No

HYDROLOGY

Recorded Data：

\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \boxtimes No Recorded Data Available

Field Data

Depth of inundation：
Primary Hydrology Indicators：
Depth to Saturation：3＂Depth to Free Water： $6^{\prime \prime}$
Secondary Hydrology Indicators（2 or more required）：
—Inundated
\square Oxidized Root Channels（upper 12＂）
\square Water Marks
\square Water－stained leaves
\square Local Soil Survey Data
\square Drift Lines
\square FAC－Neutral Test
\square Sediment Deposits
\square Other：
Criteria Met？XYes \square No
Comments：Very high water table．
DETERMINATION
WETLAND？\square YES 区NO Comments：No hydric soil，rise in topogrpahy．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill	Date： $2 / 28 / 07$	City：Newberg	File \＃：1985	
Project／Contact：NewB．／CS		Det．By：C．Steinkoenig		
Plant Community：scrub－shrub／meadow		Plot \＃：14	．	
Plot Location：paired w／sample plot 13				
Recent Weather：cold and wet／hail				
Do normal environmental conditions exist？	$Y 区 \quad N \square$		If no，explain：	
Has Vegetation \square Soil \square	Hydrology \square	been significantly disturbed？		
Explain：				

VEGETATION

Tree Stratum					Herb Stratum			
Total Plot Cover：0		＝ 50%		20\％	Total Plo	Cover：100	$50=50 \%$	20 $=20 \%$
Status／Raw \％Cover								Status／Raw \％Cover
1.						1 Alopecurus pratensis		FACW 60＊
2.						2．Agrostis stolonifera		FAC 40＊
3.						3.		
4.						4.		
5.						5.		
Sapling／Shrub S						6.		
Total Plot Cover： 10	5＝50\％		2．5 $=20 \%$	Statu	\％Cover	7.		
1．Rubus discolor				FAC		8.		
2．Rosa nutkana				FAC		9.		
3.						10.		
4.						11.		
5.						12.		

Hydrophytic Vegetation Indicators：
$\boxtimes>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：75
Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Exceeds fifty percent．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR4/6CFD}$		Si CL
$12-18$	$10 \mathrm{YR4/2}$	$10 \mathrm{YR4/4FFF}$		CL

Hydric Soil Indicators：

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
区Redox features within $10^{\prime \prime}$（e．g．，concentrations）

Criteria Met？\triangle Yes \square No

Recorded Data：
\square Recorded Data Available \square Aerial Photos

Field Data

Depth of inundation：
Primary Hydrology Indicators：
Depth to Saturation：to surface

Other
区 No Recorded Data Available

TInundated
Secondary Hydrology Indicators（2 or more required）：
XSaturated in upper 12 inches
XOxidized Root Channels（upper 12＂）
\square Water Marks
\square Water－stained leaves
\square Local Soil Survey Data
\square Drift Lines
\square FAC－Neutral Test
\square Other：
Comments：．
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
DOrganic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

\square Sediment Deposits
Criteria Met？【Yes \square No

DETERMINATION

WETLAND？\triangle YES \square NO Comments：All wetland criteria met

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill	Date：2／28／07	City：Newberg	File \＃：1985
Project／Contact：NewB．／CS		Det．By：C．Steinkoenig	
Plant Community：meadow		Plot \＃：15	
Plot Location：Northwest end of wetland			
Recent Weather：cold and wethail			
Do normal environmental conditions exist？Y			
Has Vegetation \square S	il \square Hydrology \square	been significantly disturbed？	
Explain：			

VEGETATION

Hydrophytic Vegetation Indicators：

区＞ 50% of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 75
Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Exceeds fifty percent．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 4 / 2$	10YR4／6 CFD		Si CL
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR4/4} \mathrm{FFF}$		CL

Hydric Soil Indicators：
\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
ØRedox features within $10^{\prime \prime}$（e．g．，co
Criteria Met？\boxtimes Yes \square No
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
DOrganic streaking（in Sandy Soils）
—Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Recorded Data：
 \square Recorded Data Available \square Aerial Photos $\quad \square$ Stream Gauge $\quad \square$ other \quad No Recorded Data Available
 Field Data
 Depth of inundation：
 Primary Hydrology Indicators：
 \square Inundated
 \triangle Saturated in upper 12 inches
 \square Water Marks
 \square Drift Lines
 \square Sediment Deposits
 Criteria Met？区Yes \square No
 Depth to Saturation：to surface Depth to Free Water：0．5＂
 Secondary Hydrology Indicators（2 or more required）：
 区Oxidized Root Channels（upper 12＂）
 \square Water－stained leaves
 \square Local Soil Survey Data
 $\square \mathrm{FAC}$－Neutral Test
 \square Other：
 Comments：．
 WETLAND？ $\mathbb{Y} E S \quad \square$ NO Comments：All wetland criteria met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill		Date：2／28／07		City：Newberg		File \＃：1985	
Project／Contact：NewB．／CS				Det．By：C．Steinkoenig			
Plant Community：meadow／scrub－shrub				Plot \＃：16			
Plot Location：Paired with sample plot 15							
Recent Weather：cold and wet／hail							
Do normal environmental conditions exist？				f no，explain：			
Has Vegetation \square	Soil \square			en significantly disturbed？			
Explain：							
VEGETATION							
Tree Stratum				Herb Stratum			
Total Plot Cover：15	$7.5=50 \%$			Total Plo	Cover：	$50=50 \%$	$20=20 \%$
Status／Raw \％Cover							Status／Raw \％Cover
1．Quercus garryana		UPL 5＊			1．Alopecurus pratensis		FACW 40＊
2．Malus sp．		NOL 5＊			2．Agrostis stolonifera		FAC 40＊
3.					3．Dactylis glomerata		FACU 15
4.					4．Chrysanthemum I．		NOL 5
5.					5．Hypocheris radicata		FACU trace
Sapling／Shrub Stratum					6.		
Total Plot Cover：15	7．5＝50\％	3＝20\％	Status／Raw \％Cover		7.		
1．Rubus discolor			FACU 10＊		8.		
2．Crataegus sp．			FAC／FACU ${ }^{*}$		9.		
3.					10.		
4.					11.		
5.					12.		

Hydrophytic Vegetation Indicators：

$\triangle>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 66
Other hydrophytic vegetation indicators：
Criteria Met？\triangle Yes \square No Comments：Exceeds fifty percent．Sundominants are upland
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No Has Hydric Inclusions？\triangle Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	None		Si CL
$12-18$	$10 \mathrm{YR} 4 / 2$	None		CL

Hydric Soil Indicators：

DHistosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
\square Redox features within 10＂（e．g．，concentrations）
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Criteria Met？\square Yes \triangle No

Recorded Data：
\square Recorded Data Available \square Aerial Photos
Depth to Saturation： $6^{\prime \prime}$
Depth to Free Water：9＂
Depth of inundation：
Primary Hydrology Indicators：
Secondary Hydrology Indicators（2 or more required）：
\square lnundated
\square Oxidized Root Channels（upper 12＂）
区Saturated in upper 12 inches
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Drift Lines
\square Sediment Deposits
\square Other：
Criteria Met？XYes \square No Comments：．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

VEGETATION

Hydrophytic Vegetation Indicators：

$\triangle>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）： 100
Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Mets wetland vegetation criteria．
SOILS
Map Unit Name：Amity silt loam
Drainage Class：Somewhat poorly drained Has Hydric Inclusions？\boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-11$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{FFF}$		CLL
$11-16$	$10 \mathrm{YR} 4 / 1$	10 YR4／6 CFD		Si CL

Hydric Soil Indicators：

\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive）
\square Gleyed or low chroma colors
区Redox features within $10^{\prime \prime}$（e．g．，concentrations）
\square Concretions／Nodules（w／in 3 ＂，$>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
ПOrganic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Recorded Data： \square Recorded Data Available	\square Aerial Photos \square Stream Gauge	\square Other	区 N
Field Data			
Depth of inundation：	Depth to Saturation：1．5＂	Depth to	ater：1．
Primary Hydrology Indicators：	Secondary Hydrology Ind	（2 or mor	
\square Iriundated	\square Oxidized Root Channels		
区Saturated in upper 12 inches	\square Water－stained leaves		
\square Water Marks	\square Local Soil Survey Data		
\square Dritt Lines	$\square \mathrm{FAC}$－Neutral Test		
\square Sediment Deposits	\square Other：		
Criteria Met？\triangle Yes \square No	0 Comments：．		

DETERMINATION
WETLAND？区YES \square NO Comments：Wetland criteria met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:

X $>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: Mets wetland vegetation criteria.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		Sl L
$13-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{CFD}$		Si CL

Hydric Soil Indicators:

\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within 10 " (e.g., concentrations)
\square Concretions/Nodules (w/in 3", > 2mm)
\square High organic content in surface (in Sandy Soils)
\square Organic streaking (in Sandy Soils)
\square Organic pan (in Sandy Soils)
\square Listed on Hydric Soils List (and soil profile matches)
\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)
Supplemental indicator (e.g., NRCS field indicator)

Criteria Met? \square Yes \boxtimes No

HYDROLOGY

DETERMINATION
WETLAND? \square YES $\triangle N O$ Comments: Slight shift in topography, no hydric soil inidcators observed.

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Tree Stratum					Herb Stratum			
Total Plot Cover:0		= 50\%		$=20 \%$	Total Plot Cover:55		$27.5=50 \%$	$11=20 \%$
- Status/Raw \% Cover								Status/Raw \% Cover
1.						1. Alope		FACW 20*
2.						2.Agros		FAC 35*
3.						3.		
4.						4.		
5.						5.		
Sapling/Shrub Stra						6.		
Total Plot Cover:60	$30=50 \%$		6-20\%	Statur	\% Cover	7.		
1.Rubus discolor				FAC		8.		
2.Quercus garryana				UPL		9.		
3.Crataegus sp.				FAC	U 5	10.		
4.Malus sp.				NOL		11.		
5.						12.		

Hydrophytic Vegetation Indicators:
X $>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):66
Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: Mets wetland vegetation criteria.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \mathbb{N} No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		SlL
$13-18$	$10 \mathrm{YR4/2}$	$10 \mathrm{YR4} / 6 \mathrm{CFD}$		Si CL

Hydric Soil Indicators:
ПHistosol
ПHistic Epipedon
ПSulfidic Odor
ПReducing Conditions (tests positive)
ПGleyed or low chroma colors
\square Redox features within 10" (e.g., con
Criteria Met? \square Yes \triangle No

HYDROLOGY

Recorded Data:
\square Recorded Data Available \square Aerial Photos \square Stream Gauge \square Other \quad No Recorded Data Available

Field Data

Depth of inundation:
Primary Hydrology lndicators:
Depth to Saturation:4" Depth to Free Water:6" Secondary Hydrology Indicators (2 or more required):
—Inundated
\square Oxidized Root Channels (upper 12")
QSaturated in upper 12 inches
\square Water-stained leaves
\square Local Soil Survey Data
Water Marks
\square FAC - Neutral Test
\square Sediment Deposits
\square Other:
Comments: .

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method
County: Yanhill

Project/Contact: NewB/CS
Plant Community: meadow/scrub-shrub
Plot Location: paired w/19
Recent Weather: cold/wwat
Do normal environmental conditions exist?
Has Vegetation $\square \quad$ Soil \square
Explain:
Explain.

Hydrophytic Vegetation Indicators:
$\triangle>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100
Other hydrophytic vegetation indicators:
SOILS
Map Unit Name: Amity silt Ioam
On Hydric Soil List? \square Yes \boxtimes No

Det. By: C. Steinkoenig
Plot \#:20

ig

$-\quad$ -

Y$N \square$ If no, explain:. Hydrology \square been significantly disturbed?

VEGETATION

Criteria Met? \triangle Xes \square No Comments: Did not include hawthorn.

Drainage Class: Somewhat poorly drained Has Hydric Inclusions? \boxtimes Yes \square No

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

County: Yamhill
Date: $2 / 28 / 07$
City: Newberg
File \#:1985
Project/Contact: NewB,/CS
Plant Community: meadow/scrub-shrub
Plot Location: east side if isolated wetland
Recent Weather: cold
$\begin{array}{lcccc}\text { Do normal environmental conditions exist? } & \text { Y } \\ \text { Has Vegetation } \square & \text { Soil } \square & N \square & \text { If no, explain: } \\ \text { Explain: } & & \text { Hydrology } \square & \text { been significantly disturbed? }\end{array}$
Explain:
VEGETATION

Hydrophytic Vegetation Indicators:
Det. By: C. Steinkoenig
Plot \#:21
$\triangle>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):75
Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: Mets wetland vegetation criteria.
SOILS

Map Unit Name: Amity silt loam
On Hydric Soil List? \square Yes \boxtimes No

Drainage Class: Somewhat poorly drained
Has Hydric Inclusions? \triangle Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		Sl CL
$13-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{FFD}$		Si CL

\square Histosol

\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within 10 " (e.g., concentrations)
Criteria Met? \square Yes \triangle No

Recorded Data:

\square Recorded Data Availab
\square Aerial Photos

Field Data

Depth of inundation:
Primary Hydrology Indicators:
Depth to Saturation:
\square Stream Gauge \square Other

Secondary Hydrology Indicators (2 or more required)
\square Oxidized Root Channels (upper 12")
\square Water-stained leaves
DLocal Soil Survey Data
\square FAC-Neutral Test
\square Other:
Comments: .

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method
County: Yamhill
Project/Contact: NewB./CS
Plant Community: meadow/scrub-shrub
Plot Location: Paired w/ sample plot 21
Recent Weather: cold/wet
Do normal environmental conditions exist? $Y \boxtimes$
Has Vegetation \square Soil \square
Explain:
Det. By: C. Steinkoenig
Plot \#:22

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: Vegetation criterion is met.
SOLLS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained
On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture		
0-12	10YR3/2	10YR3/6 CFF	Redox Depletions	SIL		
12-18	10YR4/2	10YR4/6 MFD		SiCL		
Hydric Soil Indicators:						
\square Histosol \square Concretions/Nodules (win $3^{\prime \prime}>2 \mathrm{~mm}$						
\square Histic Epipedon		\square Concretions $/$ Nodules (w/in $3^{\prime \prime},>2 \mathrm{~mm}$)				
\square Sulfidic Odor		\square Organic streaking (in Sandy Soils)				
\square Reducing Conditions (tests positive)		\square Organic pan (in Sandy Soils)				
\square Gieyed or low chroma colors		\square Listed on Hydric Soils List (and soil profile matches)				
\triangle Redox features within 10" (e.g., concentrations)		\square Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)				
Criteria Met? \triangle Yes \square No \square Supplemental indicator (e.g., NRCS field indicator)						
Recorded Data: HYDROLOGX						
\square Recorded Data Available	\square Aerial Photos	\square Stream Gauge	\square Other \quad VNoRe			
Field Data				Data Available		
Depth of inundation:Primary Hydrology Indicators:Inundated						
		Secondary Hydrology Indicators (2 or more required):				
XSaturated in upper 12 inches		\square Water-stained leaves				
\square Drift Lines		Local Soil Survey Data				
\square Sediment Deposits		\square Other:				
Criteria Met? \backslash Yes \square No		Comments:				
DETERMINATION						

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM－Quick Method

County：Yamhill

Project／Contact：NewB．／CS
Plant Community：meadow／scrub－shrub
Plot Location：
Recent Weather：cold
Do normal environmental conditions exist？ $\mathrm{Y} \boxtimes \quad \mathrm{N} \square$ If no，explain： Has Vegetation \square Soil \square Hydrology \square been significantly disturbed？

Det．By：C．Steinkoenig
Plot \＃：23

VEGETATION

Hydrophytic Vegetation Indicators：
$\square>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：50
Other hydrophytic vegetation indicators：
Criteria Met？\square Yes \triangle No Comments：Hawthron species not included．
SOILS
Map Unit Name：Amity silt loam Drainage Class：Somewhat poorly drained
On Hydric Soil List？\square Yes \boxtimes No
Has Hydric Inclusions？区 Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-13$	$10 \mathrm{YR} 3 / 2$	None		SIL
$13-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{MFD}$		Si CL

Hydric Soil Indicators：
 \square Histosol
 \square Histic Epipedon
 \square Sulfidic Odor
 \square Reducing Conditions（tests positive）
 \square Gleyed or low chroma colors
 \square Redox features within $10^{\prime \prime}$（e．g．，concentrations）
 Criteria Met？\square Yes \boxtimes No

Recorded Data：
\square Recorded Data Available \square Aerial Photos

Field Data

Depth of inundation：
Primary Hydrology Indicators：
\square Inundated
XSaturated in upper 12 inches
\square Water Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met？区Yes \square No 0
\square Other
区 No Recorded Data Available
Depth to Saturation：
Secondary Hydrology Indicators（2 or more required）：
\square Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：．

DETERMINATION

WETLAND？\square YES 区NO Comments：Vegetation and soil did not met wetland criteria．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

Hydrophytic Vegetation Indicators:
$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-): 100
Other hydrophytic vegetation indicators:
Criteria Met? XYes \square No Comments: Vegetation criterion is met.
SOMS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \boxtimes Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-10$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MMF}$		SIL
$10-16$	$10 \mathrm{YR4} 42$	$10 \mathrm{YR} 4 / 6 \mathrm{MFD}$		Si CL

Hydrophytic Vegetation Indicators：

$\boxtimes>50 \%$ of dominants are OBL，FACW or FAC Percent of Dominant Species that are OBL，FACW，FAC（not FAC－）：100 Other hydrophytic vegetation indicators：
Criteria Met？\boxtimes Yes \square No Comments：Did not include hawthom．
SOLLS
Map Unit Name：Amity silt loam
On Hydric Soil List？\square Yes \boxtimes No
Drainage Class：Somewhat poorly drained
Has Hydric Inclusions？\triangle Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	$10 \mathrm{YR} 3 / 6 \mathrm{MFD}$		SI CL
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR4/6}$ CFD		Si CL

Hydric Soil Indicators：
\square Histosol
\square Histic Epipedon
\square Sulfidic Odor
\square Reducing Conditions（tests positive
\square Gleyed or low chroma colors
QRedox features within 10＂（e．g．，c
Criteria Met？\boxtimes Yes \square No
Recorded Data：
\square Recorded Data Available
Field Data
Depth of inundation：
Primary Hydrology Indicators：
\square Inundated
区Saturated in upper 12 inches
\square Water Marks
\square Drif Lines
\square Sediment Deposits
Criteria Met？\boxtimes Yes \square No
\square Concretions／Nodules（w／in $3^{\prime \prime},>2 \mathrm{~mm}$ ）
\square High organic content in surface（in Sandy Soils）
\square Organic streaking（in Sandy Soils）
\square Organic pan（in Sandy Soils）
\square Listed on Hydric Soils List（and soil profile matches）
\square Meets hydric soil criteria 3 or 4 （ponded or flooded for long duration）
\square Supplemental indicator（e．g．，NRCS field indicator）

HYDROLOGY

Aerial Photos
\square Stream Gauge
Depth to Saturation：to surface
\square Other
区 No Recorded Data Available

Secondary Hydrology Indicators（2 or more required）：
\square Oxidized Root Channels（upper 12＂）
\square Water－stained leaves
\square Local Soil Survey Data
\square FAC－Neutral Test
\square Other：
Comments：Area has patches of standing water．

DETERMINATION

WETLAND？区YES पNO Comments：Wetland criteria met．

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):66 Other hydrophytic vegetation indicators:
Criteria Met? \boxtimes Yes \square No Comments: Mets wetland vegetation criteria.
SOILS
Map Unit Name: Amity silt loam Drainage Class: Somewhat poorly drained On Hydric Soil List? \square Yes \boxtimes No

Has Hydric Inclusions? 区 Yes \square No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
$0-12$	$10 \mathrm{YR} 3 / 2$	None		Sl L
$12-18$	$10 \mathrm{YR} 4 / 2$	$10 \mathrm{YR} 4 / 6 \mathrm{CFD}$		Si CL

Hydric Soil Indicators:
\square Histosol
\square Concretions/Nodules (w/in $3^{\prime \prime},>2 \mathrm{~mm}$)
\square Histic Epipedon
\square High organic content in surface (in Sandy Soils)
c Odor
\square Reducing Conditions (tests positive)
\square Gleyed or low chroma colors
\square Redox features within $10^{\prime \prime}$ (e.g., concentrations)
\square Organic streaking (in Sandy Soils)
\square Organic pan (in Sandy Soils)

Criteria Met? \square Yes \boxtimes No

Recorded Data:
\square Recorded Data Available $\quad \square$ Aerial Photos $\quad \square$ Stream Gauge $\quad \square$ Other \quad No Recorded Data Available
Field Data

Field Data
Depth of inundation:
Primary Hydrology Indicators:
\square Inundated
\boxed{Q} Saturated in upper 12 inches
DWater Marks
\square Drift Lines
\square Sediment Deposits
Criteria Met? \triangle Yes \square No

Depth to Saturation:5"
Depth to Free Water: 5^{11}
\square Oxidized Root Channels (upper 12")
\square Water-stained leaves
\square Local Soil Survey Data
\square FAC - Neutral Test
\square Other:
Comments: .

DEPARTMENT OF STATE LANDS WETLAND DETERMUNATION DATA FORM - Quick Method

County: Yamhill	Date: 2/28/07	City: Newberg	File \#:1985
Plant Community: meadow Det. By: C. Steinkoenig	Det. By: C. Steinkoenig Plot \#:27		
Plot Location: Tax lot 1000 Vet Clinic Recent Weather: cold			
Do normal environmental con Has Vegetation	$\underset{\text { Hydrology } \square}{\mathrm{N} \square}$	no, explain: en significantly	

VEGETATION

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: .
SOMS
Map Unit Name: Woodburn silt loam 0-7\% Drainage Class: Moderately well drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \square Yes \boxtimes No

Depth Range of Horizon	Matrix Color	Redox Concentrations	Redox Depletions	Texture
0-16	10YR3/3	None		SIL
Hydric Soil Indicators:				
$\square \mathrm{Distosol}$	\square Concretions/Nodules ($\mathrm{w} / \mathrm{in} 3^{\prime \prime},>2 \mathrm{~mm}$)			
\square Histic Epipedon		\square High organic content in surface (in Sandy Soils)		
\square Sulfidic Odor		\square Organic streaking (in Sandy Soils)		
\square Reducing Conditions (test	positive)	-Organic pan (in Sandy Soils)		
\square Gleyed or low chroma col		\square Listed on Hydric Soils List (and soil profile matches)		
\square Redox features within 10 "	(e.g., concentrations)	Meets hydric soil criteria 3 or 4 (ponded or flooded for long duration)		
Criteria Met? \square Yes \boxtimes No				
Recorded Data: HYDROLOGY				
\square Recorded Data Available Field Data	\square Aerial Photos	\square Stream Gauge \square	凹 No Recorded Data Available	
Depth of inundation:		Depth to Saturation: Depth to Free Water:		
Primary Hydrology Indicat	ors:			
\square Inundated		\square Oxidized Root Channels (upper 12")		
\square Saturated in upper 12 inch		\square Water-stained leaves		
\square Water Marks		\square Local Soil Survey Data		
\square Drift Lines		\square FAC - Neutral Test		
\square Sediment Deposits		\square Other:		
Criteria Met? \square Yes \boxtimes		Comments:		
WETLAND? $\square \mathrm{yes}$ (${ }^{\text {dNO }}$ DETERMINATION				

DEPARTMENT OF STATE LANDS WETLAND DETERMINATION DATA FORM - Quick Method

VEGETATION

Hydrophytic Vegetation Indicators:

$\boxtimes>50 \%$ of dominants are OBL, FACW or FAC Percent of Dominant Species that are OBL, FACW, FAC (not FAC-):100 Other hydrophytic vegetation indicators:
Criteria Met? \triangle Yes \square No Comments: .
SOMLS
Map Unit Name: Woodburn silt loam 0-7\% Drainage Class: Moderately well drained On Hydric Soil List? \square Yes \boxtimes No Has Hydric Inclusions? \square Yes \boxtimes No

DETERMINATION

WETLAND? \square YES 区NO Comments: No hydric soil or wetland hydrology observed.

Appendices

Boiler Plate Information
References

Boiler Plate Information

Wetland Definition and Authority

The U.S. Army Corps of Engineers (COE) regulates the discharge of dredged or fill materials into waters and adjacent wetlands of the United States under authority of Section 404 of the Clean Water Act (Federal Register, 1986). For purposes of the Section 404 permitting program, the COE and other federal agencies define wetlands as follows (Federal Register, 1980, 1982):
"Those areas that are inundated or saturated by surface or groundwater at'a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions."

In Oregon, the Department of State Lands (DSL) regulates removal/fill permitting in wetlands under ORS 196.800 to 196.990, and OAR. 141-85-005 to OAR 141-85-090, and uses the same definition.

Regulatory Context

In 1987, the COE published a manual (Corps of Engineers Wetlands Delineation Manual or 1987 manual), which describes methods for determining the extent of jurisdictional wetlands under Section 404 of the Clean Water Act (Environmental Laboratory, 1987). The Federal Manual for Identifying and Delineating Jurisdictional Wetlands was published two years later as a collaborative effort by the COE, U.S. Fish and Wildlife Service (USFWS), U.S. Environmental Protection Agency (EPA), and U.S. Soil Conservation Service (SCS), revised the 1987 manual (Federal Interagency Committee for Wetland Delineation, or 1989 manual).

Both the COE and DSL used the 1989 manual until 1992 when the 1992 Energy and Water Development Appropriation Act went into effect. The Act limited the COE (federal permitting agency) to using the 1987 manual for determining the extent of wetlands under federal jurisdiction. Oregon continued to use the 1989 manual until March 23, 1993, when the Director of DSL signed a policy statement requiring the agency to use the 1987 manual. The policy statement was the result of the EPA agreement to use the 1987 manual.

Vegetation

Plants growing in wetlands must be specifically adapted for life under saturated or anaerobic conditions and are commonly referred to as hydrophytic vegetation. The U.S.F.W.S. in cooperation with the National and Regional Interagency Review Panels publishes regional lists estimating the probability of plant species' occurrence in wetlands (e.g., Fish and Wildlife Service, 1988). Each species is given an indicator status, which represents the likelihood that it will be found in a wetland. Categories defined in Table 1
are obligate (OBL), facultative wetland (FACW), facultative (FAC), facultative upland (FACU), or upland (UPL). Plants with an indicator status of OBL, FACW, or FAC are considered adapted for life in saturated or anaerobic soil conditions.

The percent coverage of each plant species within the herb, shrub, and tree layers was estimated at each sample plot. Shrubs within a five-foot radius and trees within a 30-foot radius of the center of each plot were identified and recorded. Within the plot, all species were recorded in descending order of coverage, and dominant species were determined. The presence of wetland vegetation was determined according to the indicator status of the dominant species within each vegetative stratum. According to the manual, a sample plot is considered to have wetland vegetation if more than 50% of the number of dominant species present has an indicator status of OBL, FACW, and/or FAC. By 1987 standards, dominant species are chosen by selecting the three most dominant species from each of the four strata (herbs, saplings/shrubs, woody vines, trees). If only one or two strata are represented, then the five most dominant species from each stratum are selected.

Table 1: Definitions of Indicator Status
Indicator Symbol Definition

OBL

FACW Facultative wetland. Species that usually occur in wetlands (estimated probability 67 to 99%), but occasionally are found in non-wetlands.

FAC

FACU

UPL

NI
Facultative. Species that are equally likely to occur in wetlands or non-wetlands (estimated probability 34 to 66%).

Facultative upland. Species that usually occur in non-wetlands (estimated probability 67 to 99%), but occasionally are found in wetlands.

Sources: Federal Interagency Committee for Wetland Delineation, 1989. Environmental Laboratory, 1987. Reed, 1988.

Schott \& Associates
feologists and Welland Spocialists

Page 15
S8.4\#:1985

Soils

Hydric soils, defined as soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part of the soil profile, are one characteristic of wetlands (USDA Soil Conservation Service, 1987). A list of hydric soils of the United States was compiled by the Soil Conservation Service (SCS), in cooperation with the National Technical Committee for Hydric Soils (NTCHS). All soils are mapped in county soil surveys. However, the mapped boundaries of SCS soil types are not at a fine enough resolution for delineating boundaries of jurisdictional wetlands. Errors of omission can occur on SCS maps. Inclusions of upland (non-wetland) soil may exist in hydric soils and uplands may have inclusions of hydric soil. Therefore, field examination of soils is important for accurately delineating the extent of hydric soils. Hydric soils exhibit certain characteristics that can be observed in the field. Field indicators include: high organic content, accumulation of sulfidic material (rotten egg odor), greenish or bluish gray color (gley formation), iron and manganese concretions, spots or blotches of color (mottling), and/or dark soil colors (low soil chroma).

A shovel, excavating down to a depth of at least 16 inches, was used to sample soil along the wetland boundary. Soil samples were checked for presence of sulfide gases; organic content was estimated visually and texturally; and soil colors were determined by using a Munsell soil color chart (Kollmorgen 1975). The Munsell soil color chart provides the standard for three attributes of color: hue, value, and chroma.

According to the 1987 manual, hydric soils are required to be inundated or saturated for seven or more consecutive days during the growing season. Soil color is examined in the horizon immediately below the A-horizon, or within 10 inches of the surface, whichever is shallower.

Hydrology

Wetlands, by their very name, must have water. Jurisdictional wetlands are characterized as having permanent or periodic inundation, or soil saturation for five percent or more of the growing season. Saturation occurs when the capillary fringe is within the major portion of the root zone (usually within 12 inches of the surface). Areas meeting one of these criteria are considered to have wetland hydrology.

Ponding or soil saturation for five percent or more of the growing season during the growing season is direct evidence of wetland hydrology. Bare soil and dried algae are evidence that a site was previously inundated. Oxidized rhizospheres along live root channels also indicate soil saturation for five percent or more of the growing season. At each sample plot, wetland hydrology was assumed if positive indicators were present.

Wetland Determination

Presence or absence of wetlands was based on soil, vegetation, and hydrology data collected at sample plots. Following procedures outlined in the 1987 manual, sample plots with homogeneous vegetation were determined to be wetlands if wetland characteristics were present or judged to be normally present (barring human or unusual natural events) for all three parameters.

Difficulties in wetland determination can arise because of disturbance or in problem areas. Both human (e.g., clearing vegetation, agriculture, filling, and excavation) and natural (e.g., mudslides, fire, and beaver dams) events have potential for obliterating field indicators of the three wetland parameters. In disturbed sites, both field and offsite data may be used to determine the presence of a wetland. Offsite information such as historical records, aerial photographs, previous soil, and vegetation surveys may indicate the presence of a jurisdictional wetland.

Some sites are difficult to evaluate because field indicators may not be present throughout the year. Field indicators may vary because of changing environmental conditions that occur seasonally and not necessarily the result of human or natural disturbance.

According to the 1987 manual, all three parameters (hydric soils, hydrophytic vegetation, and wetland hydrology) must be present for an area to be determined as wetland.
Drumlins, seasonal wetlands, prairie potholes, and vegetated flats exemplify areas that are difficult to evaluate.

REFERENCES

Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.

Federal Interagency Committee for Wetland Delineation, 1989. Federal Manual for Identifying and Delineating Jurisdictional Wetlands, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S.D.A. Soil Conservation Service, Washington, D.C. Cooperative technical publication. 138 pp .

Federal Register, 1980. 40 CFR Part 230: Section 404(b)(1), Guidelines for Specification of Disposal Sites of Dredged or Fill Material, Vol. 45, No. 249, pp. 85352-85353, U.S. Govt. Printing Office, Washington, D.C.

Federal Register, 1982. Title 33, Navigation and Navigable Waters; Chapter II, Regulatory Programs of the Corps of Engineers. Vol. 47, No. 138, p. 31810, U.S. Govt. Printing Office, Washington, D.C.

Federal Register, 1986. 33 CFR Parts 320 through 330, Regulatory Programs of the Corps of Engineers; Final Rule, Vol. 51, No. 219 pp. 41206-41259, U.S. Govt. Printing Office, Washington, D.C.

Kollmorgen Corporation, 1975. Munsell Soil Color Charts. Macbeth Division of Kollmorgen Corporation, Baltimore, MD.

Reed, P. B., Jr., 1988. National List of Plant Species that Occur in Wetlands: Northwest (Region 9), U.S. Fish and Wildlife Service, Biological Report 88 (26.9) 89 pp.

Reed, P. B., Jr., et al., 1993. Supplement to List of Plant Species That Occur in Wetlands: Northwest (Region 9), U.S. Fish and Wildlife Service. Washington D.C. 10p.
U.S. Department of Agriculture, Soil Conservation Service 1991. Hydric Soils of the United States in Cooperation with the National Technical Committee for Hydric Soils. Misc. Pub. No. 1491.
U.S. Department of Agriculture, Soil Conservation Service, 1982. Soil Survey of Yamhill County, Oregon. U.S.D.A. Soil Conservation Service, Washington, D.C., 138 pp.

Attachment 4: Joint Permit Application Excerpts

Joint Permit Application

This is a joint application, and must be sent to both agencies, who administer separate permit programs. Alternative forms of permit applications may be acceptable; contact the Corps and DSL for more information.

TM,	U.S. Army Corps of Engineers Portland District	Oregon Department of State Lands
Corps Actio	1 ID Number	DSL Number 58464 - 2 F

(1) APPLICANT AND LANDOWNER CONTACT INFORMATION			
	Applicant	Property Owner (if different)	Authorized Agent (if applicable) ■ Consultant \square Contractor
Contact Name	Barry Cain	Jeffrey Smith	Juniper Tagliabue
Business Name	Gramor Investments	JT Smith Co.	Schott and Associates
Mailing Address 1	19767 SW 72 ${ }^{\text {nd }}$ Ave	5285 Meadows Drive	PO Box 589
Mailing Address 2	Suite 100	Suite 171	
City, State, Zip	Tualatin, OR 97062	Lake Oswego, OR 97035	Aurora, OR 97002
Business Phone	503.245 .1976		503.678 .6007
Cell Phone			
Fax			juniper@schottandassociates. Com
Email	ryan@gramor.com		

(2) PROJECT INFORMATION		
A. Provide the project location.		
Project Name Crestview Crossing	$\begin{aligned} & \text { Tax Lot \# } \\ & 1000,1100 \end{aligned}$	$\frac{\text { Latitude \& Longitude }}{}$ *
Project Address / Location NE Corner Hwy 99W \& Vittoria Ln.	City (nearest) Newberg	County Yamhill
Township Range 3S 2 W	Sectio 16	Quarter/Quarter AC
Brief Directions to the Site Highway 99W to Newberg. Site is N of highway, E of Vittoria Lane and across from the hospital.		
\square River / Stream \square Non-Tidal Wetland \square Lake / Reservoir / Pond \square Estuary or Tidal Wetland \square Other \square Pacific Ocean		
Waterbody or Wetland Name** Trib to Springbrook Creek	River Mile $6^{\text {th }}$ Fiel Unk. Hess C	ame $\frac{6^{\text {th }} \text { Field HUC (12 digits) }}{17090070307}$
C. Indicate the project category. (Check all that apply.)		
[] Commercial Development Institutional Development Transportation Dredging In- or Over-Water Structure	Industrial Development Agricultural Restoration Utility lines Maintenance	Residential Development Recreational Bank Stabilization Survey or Sampling Other:

(2) PROJECT INFORMATION

** If there is no official name for the wetland or waterway, create a unique name (such as "Wetland 1" or "Tributary A").

(3) PROJECT PURPOSE AND NEED

Provide a statement of the purpose and need for the overall project.
Introduction
The applicant (Gramor Development, Inc.) is proposing to develop planned and essential street extensions and connections in conjunction with an associated supporting new mixed-use development to service the east Newberg market area on an approximately 33-acre site on the north side of Highway 99W in the City of Newberg, Yamhill County, Oregon. The project will serve the City's identified needs for a communityserving commercial retail services, single-family residences, and a new north-south street connection and related intersections in the east Newberg market area. If the project is not developed, it will force east Newberg residents to travel out-of-direction with increased congestion on existing streets for both general vehicular travel and to obtain basic retail services, will force residential development into less desirable locations, and will threaten the ability to retain significant regional employers, which are dependent upon additional transportation connections to move goods and services and attract clients.

Purpose and Need Statement:
The purpose of this project is to develop a north-south street connection and associated supporting mixeduse development to serve identified needs in the east Newberg market. The identified needs served by the project include the following: (1) a new north-south minor arterial street connection across Highway 99 W at an existing intersection and as depicted in City of Newberg adopted plans; (2) community-serving commercial retail services with necessary visibility from and direct accessibility to both Highway 99W and a north-south minor arterial street that crosses Highway 99W; and (3) residential housing opportunities consistent with the City's identified housing needs; all located near the gateway to east Newberg. North-South Street Connection to East Newberg

The City has identified the extension of Crestview Drive as an essential and planned component of the City's System Transportation System Plan, and construction of this road connection will be achieved as a condition of the private development requiring such new infrastructure. The need for the road has been well-documented and is anticipated to be even greater upon completion of the Bypass project currently under construction. According to the City Engineer, the need for traffic relief in this vicinity will become even more crucial due to the expected failure of the current Springbrook intersection after the Bypass is completed. Additionally, the City has identified the importance of providing adequate roads for movement of goods and access for tourism services and for retention of existing businesses. The location of the road, including its connection points, is dictated by the City's Transportation System Plan as well as the need to connect with Highway 99W at an existing access point. These locations are fixed due to safety and connectivity requirements. Construction of the road is expected to occur in conjunction with private development consistent with the City's acknowledged comprehensive plan.

The requirement to construct the road and to do so in a defined location has two important implications for the site. First, the designated road location cuts through the upslope portion of the largest consolidated wetland from north to south and will create a dam effect, significantly impacting hydrologic connection and likely reducing the size of the remaining wetland areas, which will be fragmented, isolated and surrounded by development, providing minimal wetland function on the site. Any proposed development must include this road along with its significant wetland impact. Second, due to limited availability of public funds, the road must be privately funded and constructed. As a result, the private development on-site must be sufficiently substantial to allow a return on investment and allow funding for this public improvement.

Supporting Associated Development
Commercial Retail Shopping Center
The portion of the subject property fronting on Highway 99W has been identified and zoned by the City for development of a commercial retail shopping center to support the needs of east Newberg. The City

(3) PROJECT PURPOSE AND NEED

annexed the subject property for this specific purpose, and it is the only undeveloped parcel left within the City's Urban Growth Boundary ("UGB") that could support the needed infrastructure. The location serves as the entry to Newberg as well as a gateway to the surrounding 'wine country'. The location along Highway 99W is crucial for both visibility and access for the retail center, and as outlined in the Alternatives Analysis, no other viable location for such a development is available that meets the project purpose. In order to adequately develop such a commercial center, the design must meet numerous criteria that cannot be met without the proposed wetland impacts as demonstrated in the Alternatives Analysis.
Residential
The City has documented its need for residential development. Employment growth is occurring and is further anticipated due to expansion of George Fox University as well as A-dec and other regional employers. The UGB is fixed, defining where residential development can occur. This portion of the subject property area is zoned for residential development. The existing residents to the north are in support of the proposed commercial development but desire the 'buffer' of a residential component between themselves and the commercial development. This is also a requirement of the annexation
decision. decision.

Medical Office

Doctors want a medical office with direct and quick access to Providence Newberg Medical Center, which is across Highway 99W from the subject property. Having a medical office within close proximity to a commercial center is also beneficial to both entities. A medical office also has the development advantage of being able to exist on its own, outside of the primary commercial retail center. The access requirements for entering the site require impacts to this portion of the wetland. Avoiding this portion of the wetland and eliminating the medical office from the proposal would reduce the number of uses provided by the development while leaving only a low functioning isolated wetland surrounded by development.
All of the above project elements have a documented need and need each other in order for the project to be practicable. In order to adequately develop each of the project elements of this multi-use development, significant wetland/waterway impacts are unavoidable. Opportunities for minimization have been explored but largely rejected due to the fact that any such avoided areas would be significantly compromised due to fragmentation and functions provided by such small areas surrounded by development would be minimal. Minimization has been provided to the extent possible in the western portion of the site.

(4) DESCRIPTION OF RESOURCES IN PROJECT AREA

A. Describe the existing physical and biological characteristics of each wetland or waterway. Reference the wetland and waters delineation report if one is available. Include the list of items provided in the instructions.
Based on soil, vegetation and hydrology data taken in the field, four wetlands (totaling approximately 6.95 acres) and one perennial drainage were delineated onsite. The drainage was a tributary to Springbrook Creek and contained within Wetland A. A second tributary was less defined and was also contained within Wetland A. The delineation was conducted and concurred with by DSL in 2013 (WD\#13-0148). No vernal pools, bogs, fens, mature forested wetland, seasonal mudflats, or native wet prairies were identified in or near the project area. Wetlands were assessed using the Guidebook for Hydrogeomorphic (HGM)-based Assessment of Oregon Wetland and Riparian Sites Willamette Valley Ecoregion. The reference based method was used. Existing wildlife usage is low but present. The western portion of the property consists primarily of a large open meadow area which is regularly mowed. To the east is a managed tree farm. In the center is a perennial stream and riparian area which provides the highest quality habitat. Small mammals and birds certainly use the site while deer and coyote also likely move through. There is no fish access through the culvert under Highway 99W at the southern edge of the site. Downstream of the Hwy 99 W culvert there is an existing pond, containing a dam also preventing fish passage.
Wetland A (A1,A2) $(288,785$ sf) was primarily a PEM/slope wetland with areas of PSS and PFO. A $1,447 \mathrm{lf}$ perennial drainage was located within and directly adjacent to the wetland with an area of $6,589 \mathrm{sf}$.
Combined wetland/water area was 6.7 acres $(295,374 \mathrm{sf})$. The western portion of the wetland consisted of a hayed meadow community with dominant grasses of meadow foxtail (Alopecurus pratensis) in the swale

(4) DESCRIPTION OF RESOURCES IN PROJECT AREA

to the south and sweet vernal grass (Anthoxanthum odoratum) in the grassy areas further north. Vegetation in the swale and to the south was dominated by meadow foxtail, sweet vernal grass and bentgrass (Agrostis sp) as well as tall fescue (Festuca arundinacea). Oregon ash (Fraxinus latifolia), willow (Salix sp.) and Douglas hawthorn (Crataegus douglasii) saplings were also present. Soils met the Redox Dark Surface (F6) hydric soil indicator and soils were saturated at or near the surface. Further north and throughout the field, vegetation was similar, with sweet vernal grass more dominant. Sweet vernal grass is now considered a problematic species and vegetation was considered to meet hydrophytic wetland criteria where soils and hydrology criteria were also met. Wetland determination was based on presence of soils and hydrology. The source of hydrology in this area is associated with precipitation, a seasonal high water table and the stormwater outfall at the western property boundary. Despite below average precipitation patterns for the previous one and a half months, the groundwater table was high due to exceptionally high rainfall for the 3 months prior to that. It was also suggested by the property owner that an increase in hydrology onsite may have been due to the construction of the interchange of Springbrook Street and Crestview Drive offsite to the northwest.
The wetland boundary at the eastern edge of TL\#13800 was defined by a ditch at the property boundary. Approximately 130 feet east of the property line at its south end a small berm built for vehicle access to the back barn area crosses the drainage and wetland area. The berm has been in place on the property well over fifty years. The drainage crosses the berm via a small culvert and continues to flow east as a ditch with adjacent wetland before flowing into the larger tributary. The plant community east of the berm transitions from meadow into a forested community that joins the riparian community along the main tributary. Where the community transitioned to a forested community vegetation was dominated by Oregon ash in the overstory with buttercup (Ranunculus sp) and sedge (Carex sp) species in the herbaceous layer. Pacific ninebark (Physocarpus capitatus) and Himalayan blackberry (Rubus armeniacus) were also observed. Soils met the F6 indicator and there was saturation to the surface. The upland sloped up with a thick canopy of planted apple species (Malus sp), as well as snowberry (Symphoricarpos albus), sword fern (Polystichum munitum) and Himalayan blackberry. Another community was observed to the north, along the western side of the larger tributary. This community was dominated by slough sedge (Carex obnupta) with soil meeting the F6 indicator and hydrology observed 7" from the surface. To the west was a grove of black locust trees (Robinia pseudoacacia) with blackberry and sword fern in the understory. Soils did not meet any hydric criteria and no hydrology indicators were observed.
Further north, along the tributary to Springbrook Creek, wetland was identified adjacent to the eastern bank with the western boundary defined by the steep top of bank. The wetland was forested with an Oregon ash canopy with creeping buttercup and camas (Camassia quamash) both observed in the understory. Soils met the F6 indicator and at the northern boundary the depleted matrix (F3) indicator was met. One distinct open grassy community was observed adjacent to the tributary. Vegetation consisted of lush grass dominated by bluegrass (Poa sp.) and meadow foxtail. Soils met the F6 indicator and water was observed 8 " from the surface. The adjacent upland along the eastern wetland boundary was thick with Himalayan blackberry and Douglas hawthorn as well as Oregon ash, trailing blackberry (Rubus ursinus), hazelnut (Corylus cornuta) and sword fern. Although hydric soil criterion was met, vegetation and hydrology were not. The western top of bank was steep and well defined, with no adjacent wetland. Vegetation was thick Himalayan blackberry. Soil and hydrology criteria were not met. The northern boundary of the wetland was defined by a break in vegetation and soils. Based on the HGM Assessment method used, functions for this entire wetland were highest for sediment stabilization, nitrogen removal, primary production and songbird habitat.
Wetland B, at 189sf (0.004 acre) was a PFO/depressional wetland located in the northwest corner of the site. This area west of the culvert outlet is believed to be a remnant of the historical drainage. The wetland consisted of a mud bottom depressional area. Vegetation was dominated by Oregon ash canopy with some willow, rush (Juncus sp.) and meadow foxtail in the understory. Soils met the F6 hydric soil indicator and surface saturation was observed although it appeared to be perched. The adjacent upland was dominated by Himalayan blackberry, which was encroaching into the wetland, as well as meadow foxtail to the east. No hydrology or hydric soil indicators were observed. The remainder of the upland boundary was defined by topography, non-hydric soils and vegetation that was dominated by upland species such as

(4) DESCRIPTION OF RESOURCES IN PROJECT AREA

Oregon white oak (Quercus garryana), sword fern and common snowberry as well as Himalayan blackberry. Based on the HGM Assessment method used, functions for this entire wetland were highest for nitrogen removal with sediment stabilization and support of characteristic vegetation close behind.
The other two wetlands are isolated and located in the eastern portion of the property which is planted to small trees for a tree farm. These wetlands were delineated in 2007 and although no hydrology was indicated in 2013 their presence was based on vegetation and soils criteria. Wetland C is $13,147 \mathrm{sf}$ (0.3 acres) and classified as palustrine emergent slope wetland. The dominant vegetation in the emergent portion is meadow foxtail (Alopecurus pratensis) and bentgrass (Agrostis stolonifera). Wetland D is another isolated wetland (469sf) immediately below the first. It consists of a small depressional area with colonial bentgrass and meadow foxtail as the dominants. Functions for these wetlands were generally low with unsupported moderately high scores for invertebrate habitat support.
The onsite waterway ($6,589 \mathrm{sf}$) is a perennial tributary to Springbrook Creek with its onsite source being a culvert in the northwest portion of the property. An additional culvert entering the property from the west provided hydrology to a smaller tributary entirely surrounded by wetland. The waterway was mostly encompassed by Wetland A but defined a portion of the boundary. The narrow channel had vertical banks. Substrate was generally silt. Riparian conditions were a mix of reed canary grass at the upper end with a more intact forest including Oregon ash, buttercup and sedge as well as some fruit trees in the central portion. There used to be a small pond at the lower end of the site. The waterway exits the site through a culvert under Highway 99W. Assessed functions were included within the assessment for Wetland A.

No vernal pools, bogs, fens, mature forested wetlands, seasonal mudflats, or native wet prairies were identified on or near the project area.
B. Describe the existing navigation, fishing and recreational use of the waterway or wetland. None

(5) PROJECT SPECIFIC CRITERIA AND ALTERNATIVES ANALYSIS

Describe project-specific criteria necessary to achieve the project purpose. Describe alternative sites and project designs that were considered to avoid or minimize impacts to the waterway or wetland.
The specific requirements for the project described above include:
NORTH-SOUTH STREET CONNECTION

- Provide a planned new north-south connection across Highway 99W for east Newberg o Intersect Highway 99W at an existing, approved intersection
- Accommodates a minor arterial street with a 34-74 foot wide cross-section and projected capacity of 400-1000 vehicles per day
o Must be privately constructed and funded by proceeds from surrounding mixed-use development due to lack of currently available public funding
o Consistent with City's adopted Transportation System Plan including safety requirements
o Creates intersection and access to allow development of adjacent planned commercial land, consistent with the City's commercial land needs inventory and plan map designations
o Provides connectivity in northeast Newberg to serve residents and key business interests, including A-dec and Allison Inn and Spa

COMMERCIAL RETAIL SERVICES

- Highway 99W and intersecting street direct accessibility
o Highway 99W and intersecting street visual retail exposure

Attachment 5: Submittals by Applicant after July 25, 2018

Keith Leonard

From:	Andrew Tull andrew.tull@3j-consulting.com
Sent:	Friday, July 27, 2018 9:14 AM
To:	Mercedes Smith; Keith Leonard
Subject:	RE: Crestview Crossing - Density Worksheet
Attachments:	Copy of Density and Parking Calculations akt.xlsx

Hi Keith,

Attached is our updated density calculation spreadsheet. The previous worksheet that you received yesterday was not fully populated - the populated document was sitting in my email and I'm sorry about that.

Regarding the breakdown of units:

There are 51 apartments proposed - 27 of which will be one-bedroom units and 24 will be two-bedroom units.
Of the home plans submitted 80 will be three-bedroom units and 168 will have either four or five-bedrooms.

Please let me know your thoughts on the attached spreadsheet.

Andrew Tull

PH: (503) 545-1907
andrew.tull@3i-consulting.com

From: Mercedes Smith
Sent: Thursday, July 26, 2018 1:12 PM
To: Keith Leonard
Cc: Andrew Tull
Subject: RE: Crestview Crossing - Density Worksheet

Hi Keith,

I believe the table I sent does not show the density points for the commercial area. The narrative states that the C-2 zone allows density of the R-3 district. We calculated the area used for residential development that is zoned commercial, which I believe was approximately 14 acres. We then multiplied this by the density point allowance and added it to the R-1 and R-2 zones. This gave us a total of 11,859.85.

Let me know if you need anything else.

Thanks!

Mercedes Smith
Urban Designer
3) Consulting, Inc.

PH: (503) 946-9365 x211

From: Keith Leonard Keith.Leonard@newbergoregon.gov
Sent: Thursday, July 26, 2018 12:56 PM

To: Mercedes Smith mercedes.smith@3j-consulting.com
Cc: Andrew Tull andrew.tull@3j-consulting.com
Subject: RE: Crestview Crossing - Density Worksheet
Hi Mercedes,
Thank you for the info. Can you tell me how you arrived at the total number of density points of $11,859.85$ listed on page 14 of the narrative? I didn't see this number in the table you provided.

Thanks!
Keith Leonard, AICP |Associate Planner
City of Newberg
(503) 537-1215
keith.leonard@newbergoregon.gov

From: Mercedes Smith [mailto:mercedes.smith@3i-consulting.com]
Sent: Thursday, July 26, 2018 12:43 PM
To: Keith Leonard Keith.Leonard@newbergoregon.gov
Cc: Andrew Tull andrew.tull@3j-consulting.com
Subject: Crestview Crossing - Density Worksheet
Hi Keith,
I've attached our internal density and parking matrix worksheet for your use. If you have any questions or concerns feel free to contact me directly.

Thank you,
Mercedes Smith
Urban Designer
3J Consulting, Inc.
5075 SW Griffith Drive, Suite 150
Beaverton, OR 97005
O: (503) 946-9365 x211 C: (541) 999-7870
mercedes.smith@3j-consulting.com
Civil Engineering - Water Resources - Land Use Planning
www.3i-consulting.com \mid Follow us on Linkedln \mid Like us on Facebook

Crestview Crossing Density and Parking Matrix

Per Newberg Development Code Sections 15.240.020.F and 15.440.030

	DENSITY						MULTI-FAMILY PAR		
Dwelling Type	Number of UnitsStandard	Density Points per UnitStandard	Total Number of Points Required	Number of UnitsIncome Restricted Affordable	Density Points Per Unit - Income Restricted Affordable	Total Number of Points Required	Parking Required per Dwelling Unit	Number of Dwelling Units per Type	
Studio and Efficiency	0	12	0	Need Value	9	9	1	0	
One-Bedroom	27	14	378	Need Value	11	11	1	27	
Two-Bedroom	24	21	504	Need Value	16	16	1.5	24	
Three-Bedroom	80	28	2240	Need Value	21	21	2	0	
Four+ Bedrooms	168	35	5880	Need Value	26	26	2	0	
Five Bedrooms	Value only applicable for Parking Standards						0.75/br	Need Value	
						83	0.2	48	
Total Density Points Needed:			9002	Total Density Points Needed:			Total Multi-Family Parking Spaces Required:		
Maximum Allowable Density on the Site			Total Density Points Available to Crestview Crossing Based on Gross Area of Each Zoning Type:			11859.85	*Single-Family Parking provided on individu		
Zoning District	Gross Site Size	Max. Allowable Density							
R-1	4.31	754.25	Total Density Points Needed to Develop Crestview Crossing PUD as Proposed:				9085		
R-2	6.58	4211.2							
C-2	22.24	6894.4							
TOTAL DENSITY POINTS AVAILABLE:		11859.85							

KING*
Number of Parking Spaces Required
0
27
36
0
0
9.6
72.6
9

Keith Leonard

From:	Andrew Tull andrew.tull@3j-consulting.com
Sent:	Friday, July 27, 2018 9:58 AM
To:	Keith Leonard
Cc:	Kristen Svicarovich; Aaron Murphy
Subject:	RE: Additional questions - Crestview
Attachments:	DOC008.pdf

Hi Keith,
I've attached a drawing showing the private streets and walkways in Orange and the public streets in Yellow. I've also replied to each of your comments below.

Andrew Tull

PH: (503) 545-1907
andrew.tull@3i-consulting.com

From: Keith Leonard [mailto:Keith.Leonard@newbergoregon.gov]
Sent: Thursday, July 26, 2018 3:17 PM
To: Aaron Murphy ; Andrew Tull
Cc: Kristen Svicarovich
Subject: Additional questions - Crestview
Hello,
I met with engineering this afternoon to discuss your submittal.

1. Public vs Private walkways - We can't tell you which paths should be public and which should be private. We do agree that those sidewalks fronting public streets should be public and meet city requirements. There are two other areas that we suggest should be public. The pathway leading to the park (shown below) and the one leading from the Apartments to Hwy 99. Do you have permission to build a path into the park? We believe that it would be appropriate to have a public path leading up to the park in the first picture but stopping at the property line. The second pathway that should probably be public pathway is the one leading from the Apartments to Hwy 99. Aaron and Kristen Svicarovich should discuss this issue.

We intended to make all walkways fronting right-of-way public and all other walkways private. The applicant would accept a condition of approval requiring all public walkways to be built to public standards. We'd also accept a condition requiring all private walkways to be built to private standards. We're happy to provide a blanket public access easement over the top of all private walkways.

2. We cannot determine where the alleys are on your site plans.

I'm sorry if this is confusing within the narrative. The private streets and alleys are basically considered to be a parking/access driveway network. There are no alleys - just private streets.

We've designed this site in this manner to be more of a mult-family styled project. This approach reflects the higher density of the products that will be constructed.

Please feel free to omit the term alley from your report. The private streets will either be
3. Parking (more of a planning issue) - TVF\&R provided a comment stating no parking on the private roads with a width of only 24 feet. It is not clear if TVF\&R comments have been addressed in your site plans. Does your parking calculations include on -street parking on the private streets? If so then your parking calculations will need to be updated.

All private streets will have at least 26 feet of access. In some cases, access drives will be $2 A^{\prime}$ in width with mountable curbs and sidewalks built to withstand wheel-loads. Private streets without walkways will have 26^{\prime} of pavement.

The fire access plan that we submitted shows the wheel pathways for an aerial access emergency vehicle. We should no problem meeting TVF's requirements.

Aaron, please talk to Kristen directly, her direct line is 503-537-1282.
Keith Leonard, AICP |Associate Planner
City of Newberg
(503) 537-1215
keith.leonard@newbergoregon.gov

\qquad

SUBDIVISION STATISTICS

zonnc Coob Chaprer 3.20	zone	ZONE R.2	$\begin{aligned} & \text { ZONE R-2 } \\ & \text { PUD* } \\ & \text { AS PROPOSED } \end{aligned}$	z
ZONE AREA	4.31 CCRES	6.58ACRES	6.58ACRES	${ }^{2224 A C R E S}$
maximum denstry				
maxmum Lot size	10.000 SF	5,000 SF	3,100 SF	NA
Mnmum Lot ste	5.00 SF	3.000 SF	1,400 SF	${ }^{5}$,000 SF
мnımum Lot wioth	FT@	${ }_{35} 5 \mathrm{FT}$	${ }^{22 \mathrm{FT}}$	NA
maxmmm Lot coverage	30\%	50\%	60\%	NA
maxmum bulomg height	${ }_{30 \mathrm{Ft}}$	${ }_{30}$ ¢	${ }_{30} \mathrm{FT}$	NA
setbacks				
front	${ }^{15 \mathrm{FT}}$	${ }^{15 \mathrm{FT}}$	${ }^{10 \mathrm{Ft}}$	10 Ft
nterior	${ }_{5} 5 \mathrm{~T}$	${ }_{5 \text { FT }}$	2.5 FT	offtoert

-
\qquad
\square

R1 ZONE
$\xrightarrow{\text { R1 ZONE }}$

R2 ZONE

$$
\begin{aligned}
& \text { R2 ZONE } \\
& \hline
\end{aligned}
$$

—

 li] $-[-1$ $[|-\overline{17}|$
\square

\qquad $=$

$$
=
$$

E

250

$$
\langle
$$

,

3J CONSULTING

5075 SW GRIFFITH DRIVE, SUITE 150
BEAVERTON, OREGON 97005
July 24, 2018
PH: (503) 946.9365
WWW.3J-CONSULTING.COM
Mr. Keith Leonard, AICP
Associate Planner
City of Newberg
414 E. First Street
Newberg, Oregon 97132

Crestview Crossing \#3216AC-13800

Dear Mr. Leonard,
This letter has been prepared on behalf of our client, JT Smith Companies, to introduce new information into the record for the Crestview Crossing Planned Unit Development and Conditional Use Permit (\#3216AC-13800).

As you are aware, this is a large and complex project. During the time which has elapsed since the initial submission to the City, our clients have been receiving refined sales and absorption projections and have been updating the plat to accommodate a series of potential changes to the housing mix. Our office has also been working over the past several weeks to develop a project phasing plan for construction and for the platting of lots within the development. Phasing plans are permitted within Planned Unit Developments within section 15.240.020.C of the City's Community Development Code. Because of the size and complexity of this development project, the Applicant has submitted the attached preliminary phasing plan and revised preliminary plat for consideration by the City. The following sections have been provided in order to further explain the intent of the submission of each document:

Project Phasing:

As directed by section 15.240.020.D of the City's general provisions for a Planned Unit Development, the Applicant is entitled to propose a phasing schedule for the completion of final plan phases and may specify a schedule for the completion of phase within a development. This section indicates that if preliminary plans encompassing only a portion of the site are submitted, they must be accompanied by a statement and be sufficiently detailed to prove that the entire area can be developed and used in accordance with city standards, policies, plans, and ordinances. In the original land use application, the applicant acknowledged that a phasing plan could be submitted. This letter has been prepared to transmit a proposed phasing plan. The phasing plan is described as follows:

- Phase 1: This phase will include improvements to the site's frontage along Highway 99 and the installation of underground utility connections necessary to provide service to the site.
- Phase 1a: This phase will include the extension of Crestview Drive through the site and the construction of roadways and lots located east of the Crestview extension to public road D. This phase will also include the stormwater facility located south of public road B.
- Phase 2: This phase will include the installation of the roadways, infrastructure and lots which are to be located west of the Crestview extension.
- Phase 3: This phase will include the lots located east of public road D to the property's eastern property boundary.
- Phases B and C will be constructed after the construction of Phases 1 and $1 A$ and may be constructed independently of the subdivision lots and by other entities or assigns.

Due to the size of the plan and the complexity of the various components within the development, the Applicant would request that the City grant the developer a ten (10) year window for the construction of the infrastructure shown within the plan's phases with opportunities for up to five (5) one (1) year extensions following the approval of the preliminary plat. While the Applicant does not intend to wait for ten (10) years to allow for the construction of the proposed improvements, the flexibility afforded by the ten (10) year schedule with the requested extensions will allow for the project's various components to be sensitive to changing market conditions.

In addition to covering the entitlements afforded to the developer through Section D of the Planned Unit Development's general conditions, this phasing schedule is also intended to supersede the one (1) year limitation imposed upon Conditional Use Permits which is described in section 15.225.100 and the Final Plat criteria described in section 15.235.070. This time limitation can be made to be flexible by section 15.225.080.L of the City's code. Within this section, the City's hearing body provided with the ability to define the time period within which the proposed uses shall be developed.

Revised Preliminary Plat

As mentioned above, the preliminary plat submitted with the application has been recently evaluated by a series of real estate professionals with the intent of providing guidance regarding product selection and absorption. While the guidance provided is helpful to the developer, it should be noted that as the development is constructed and as homes are constructed and sold, the projected data regarding product typologies and market preferences will convert from projection to tangible sales data.

The attached revised preliminary plat has been submitted as a slight alternative to the plat initially submitted. The proposed changes in the alternative plat reflect a desire on the part of the builder to remove the attached product from the plan in favor of all detached homes. This resulted in a slight reconfiguration of several of the lots which had previously been identified as attached units. The reconfiguration resulted in slight adjustments to the proposed lots to accommodate the desired setback configurations for detached products.

The information gathered as sales commence may cause the developer to select slight alterations to the product mixture represented within the attached plat and may result in the need for changes to the widths of lots within the proposed preliminary plat. This request has been expressed in order to allow the developer to make adjustments as required to support homebuyer's preferences and choices. In no event would the developer anticipate the removal of or addition of new lots within the development without first requesting an amendment to the approved planned unit development.

We very much appreciate the City's considerations of the additional materials submitted herein. We would invite you to please feel free to give us a call if you have any questions or need any additional clarification.

Sincerely,

Andrew Tull

Principal Planner
3J Consulting, Inc.
copy: Jesse Nemec, JT Smith Companies
Mike Robinson, Schwabe Williamson and Wyatt
File - 17393

Attachment 6: 5 Party Agreement

City of Newberg
$\square \square$

Yamhill County
535 NE Fifth 54.
McMinavile, OR 97128
Oxberg Lake Homeowners Association.
\qquad
Ken Austin
Joan Austin
\qquad
JT Smith Companies
(T3S R2W Tax Lot 13800)
\qquad
MeadowWood Development, LLC
"MeadowWood"
(T3S R2W Tax Lots 900, 1000 and 1100)
\qquad

Dated: April 10, 2006
"City"
"County"
"Association"
"Austin"
"JT Smith"
"

RECITALS

A. City's Transportation System Plan ("TSP") calls for a northerly arterial via Crestview Drive connecting to Hwy. 99W (the "TSP Northern Arterial").
B. Association has expressed its concern about a northerly arterial Crestview Drive terninaing at Hwy. 99 W .
C. Austin intends to submit for master plan approval for the development of an approximately 400 -acre site (the "Austin Master Plan") located in the City. Austin desires a transportation system that will have adequate capacity to serve the development on the Austin Miaster Plan parcel.
5. Improvements on the proposed Crestview Drive Major Collector will be paid for as a capital improvement subject to City's transportation SDC program.
6. The parties agree to support an amendment to County Board Order 06-070 to delete the condition requiring a study and County approval before the City can construct a roundabout on Springbrook Road.
7. County will expeditiously initiate a process to surrender jurisdiction of that portion of Crestview Drive as originally requested by City.
8. The parties agree with the findings of the initial study that the capacity in the transportation system achieved through the Springbrook Northern Arterial Plan will have virtually no effect on Springbrook Road operations and will maintain the capacity and functionality of the City of Newberg's Transportation System Plan.
9. This agreement has no bearing on the City's consideration to annex or not annex Oxberg Lake Estates.
10. Each party hereto represents to the other parties that the party has all necessary power and authority to perform under and be bound by the terms and conditions of this Agreement.
11. All of the terms and provisions contained herein shall inure to the benefit of and shall be binding upon the parties hereto and their respective heirs, successors, and assigns.
12. Counterparts and facsimile signatures. The parties may execute this agreement in counterparts, each of which shall be deemed to be an original thereof. The parties agree that facsimile signatures shall be accepted as original signatures with respect to this agreement.

CITY OF NEWBERG

OXBERG LAKE HOMEOWNERS ASSOCIATION

YAMHILL COUNTY

KEN AUSTIN

JOAN AUSTIN

EXHIBIT B

JRH Engineering Study
 March 27, 2006

BACKGROUND

The City of Newberg Transportation System Plan envisions a I northern arterial connecting Mountain View Drive at the north, crossing the railroad tracks and continuing east from Springbrook Street along the alignment of Crestview Drive to the Oxburg neighborhood, and then south to an intersection with ORE 99W. Residents along the proposed arterial are concerned that this facility would have a negative effect on the livability of their neighborhood. They have proposed that this arterial be changed to a major collector with traffic calming to reduce operating speeds to 25 miles per hour to help mitigate traffic impacts.

There is concern by others that this downgrading of classification

 on Crestview Drive will produce traffic spill over onto Springbrook should vacant property be developed. Our challenge is to evaluate the relative traffic demand on Springbrook, resulting from the conversion of Crestview from an arterial to a major collector.

[^8] reduced. Thurefore, capacity restrictions will not divert traffic from Crestvicw Drive to Springbrook Street.
2) A ten mile per hour operating speed reduction on Crestview Drive (as migh be expected from the reclassification of the street and addition of traffic calming measures) would have virtually no effect on Springbrook Street operations.

The following contains the analysis used to develop these conclusions.

Merely knowing the difference in numbers is not sufficient to
determine the impact on Springbrook. To do this difference, we adjusted 2025 turning movements shown in the Transportation System Plan to reflect the increase in traffic on Springbrook. We then ran these adjusted traffic volumes using the SYNCHRO traffic evaluation model to determine the effect on level of service at both the Crestview intersection with ORE 99W, and the Springbrook intersection with ORE 99W. These volumes were compared with the traffic volumes in a SYNCHRO rom using the unadjusted volumes representing the current classification. Both of these runs were for the year 2025. The results of this analysis are shown in Table 2. As can be seen, the traffic volumes change is so small that there is no effect in level of service or volume-to-capacity ratio at Springbrook and Highway 99 West.

through traffic on OR 99W. Appendix 2 contains the outputs from the SYNCHRO runs.

 of Transjportation "Freeway Diversion" curves. ${ }^{1}$ These calculations delermine relative traffic volumes along parallel routes based on differentials in time and distance. We calculated the arterial travel
 the., route as well as a 35 MPH speed for Springbrook. To these travel times, we placed a delay factor on Springbrook for delay at signalized intersections along OR 99 W , between Springbrook and the proposed intersection between Crestview and OR 99W.

Table I provides the Year 2025 projected through traffic volumes for Crestiow and Springbrook with Crestview as an arterial and as a - i.ector assuming a ten MPH reduction in speed.

A ten mile per hour speed differential was selected using information contained in Appendix A "Traffic Calming, State of the Proactive", by IS FHWA. This is available on the web at http://ite.org/traffic/tcstate. ham

A wiew of the data indicates that a ten MPH speed is a reasonable best case for cflective traffic calming measures, and conservative for use in detcmining the impacts on Springbrook. If the speed reduction is less, then fewer cars will transfer from Crestview to Springbrook and the impacts will be less.

Diversion Curves.
Frewoy Diweran curves, more properly, should be called parallel route diversion curves.

Curve indicates a higher traffic volume estimated to be diverted and, therefore, represents a more conservative analysis.
Alf of the analysis in this study assumes land development in with once win the adopted Comprehensive Plan. In discussions With ODOT Staff, they indicated that this development includes full
developnent of the Austin Industries property. It should be noted, hovever, that property may develop with more or less intensity than anticipated in the Plan. This should not impact the conclusions of this stucly. as this study is focused on the relative impact on Springbrook we to changes in the functional classification of Crestview. It is not lucused on the absolute impacts on Springbrook due to any specific
land use.

[^0]: Attachments: General Information, Fee Schedule, Noticing Procedures, Planning Commission Schedule, Criteria, Checklists

[^1]: Command \& Business Operations Center and North Operating Center
 11945 SW 70th Avenue
 Tigard, Oregon 97223-9196
 503-649-8577

[^2]: Pqu Pumbl

 ## FIRM

 f-COD INSURANGERATE MAP
 Ya Mhill COUNTY.
 OREGON

 Sewne

 NAP NUMBET
 4107 C0241]
 EFFECTVE DATE
 EFFECTIIE DATE
 MARCH2, 2010

[^3]: ${ }^{1}$ Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$.
 ${ }^{2}$ The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98 , and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.
 ${ }^{3}$ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.
 ${ }^{4}$ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage $(\mathrm{CN}=98)$ and the pervious area CN . The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.
 5 Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

[^4]: ${ }^{1}$ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

[^5]: ${ }^{1}$ City of Newberg Transportation System Plan (TSP, Reference 2)
 ${ }^{2}$ Posted speed is 35 mph at and west of Brutscher Street, 45 mph from east of Brutscher Street to east of Providence Drive, and 55 mph at and east of Benjamin Road
 ${ }^{3}$ Sidewalks are provided on both sides of OR 99W throughout the study area except on the north side from 250 feet east of Brutscher Street to the east end of the study area and on the south side from 400 feet east of Providence Drive to the east end of the study area
 ${ }^{4}$ The sidewalk on the east side of Providence Drive ends approximately 270 feet south of OR 99W.
 ${ }^{5}$ No sidewalk is provided on the east side of Vittoria Way south of Aquarius Boulevard.

[^6]: ${ }^{1}$ The ITE Trip Generation Handbook does not include trip internalization rates for the weekday AM peak hour time period. The weekday midday peak hour trip internalization rates were applied as the best available data.

[^7]:

[^8]: There are two ways that this conversion might impact Springbrook. The first would be the reduction in capacity on Crestview Drive to the extent that traffic would be forced to divert from Crestview to Springbrook. The second question is, would reducing speeds on Crestview Drive make Springbrook become relatively more attractive and, thus, increase traffic volumes? This memo analyzes both effects.

